Recursive nonparametric predictive for a discrete regression model

A recursive algorithm is proposed to estimate a set of distribution functions indexed by a regressor variable. The procedure is fully nonparametric and has a Bayesian motivation and interpretation. Indeed, the recursive algorithm follows a certain Bayesian update, defined by the predictive distribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis Jg. 215; S. 108275
Hauptverfasser: Cappello, Lorenzo, Walker, Stephen G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2026
Schlagworte:
ISSN:0167-9473
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A recursive algorithm is proposed to estimate a set of distribution functions indexed by a regressor variable. The procedure is fully nonparametric and has a Bayesian motivation and interpretation. Indeed, the recursive algorithm follows a certain Bayesian update, defined by the predictive distribution of a Dirichlet process mixture of linear regression models. Consistency of the algorithm is demonstrated under mild assumptions, and numerical accuracy in finite samples is shown via simulations and real data examples. The algorithm is very fast to implement, it is parallelizable, sequential, and requires limited computing power.
ISSN:0167-9473
DOI:10.1016/j.csda.2025.108275