Innovative integration of computer vision, IoT, and digital twin in food quality and safety assessment
Ensuring food quality and safety is a key priority for public health and economic stability. Traditional methods of food quality assessment, while effective, are often labor-intensive, destructive or lack traceability and transparency. Recent advances in deep learning and computer vision introduce d...
Saved in:
| Published in: | Trends in food science & technology Vol. 163; p. 105176 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2025
|
| Subjects: | |
| ISSN: | 0924-2244 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Ensuring food quality and safety is a key priority for public health and economic stability. Traditional methods of food quality assessment, while effective, are often labor-intensive, destructive or lack traceability and transparency. Recent advances in deep learning and computer vision introduce digitally intelligent, cost-effective and automated solutions.
This review presents a typical workflow of deep learning and computer vision, from data acquisition and data preprocessing to model selection, training and evaluation for validation, and summarizes the applications of deep learning and computer vision in different areas of food, such as image classification, object detection, image segmentation, and image generation, as well as model optimization strategies for different tasks. The applications of Internet of Things (IoT), digital twin, computer vision, and deep learning technologies in the food industry are highlighted. In addition, this review also discusses transfer learning and model compression methods, and reviews the applications of lightweight models and embedded systems in the food industry.
The innovative integration of technologies such as computer vision, deep learning, IoT, and digital twin has enhanced food traceability and transparency, and promoted sustainable development. The advancement of cloud computing and big data technologies has promoted the deep integration of these technologies, enabling real-time, accurate and dynamic decision-making in food production. Looking forward to the future, the focus of future research should be placed on improving the availability and quality of labeled datasets, enhancing the interpretability and robustness of model.
•Propose the challenges of deep learning models in interpretability and robustness.•Analyzing transfer learning and lightweight model in deep learning.•The application of DL and CV in food quality and safety is reviewed.•Propose an innovative integration of DL, CV, IoT and digital twin technologies.•Summarize the tasks and representative models of computer vision. |
|---|---|
| AbstractList | Ensuring food quality and safety is a key priority for public health and economic stability. Traditional methods of food quality assessment, while effective, are often labor-intensive, destructive or lack traceability and transparency. Recent advances in deep learning and computer vision introduce digitally intelligent, cost-effective and automated solutions.
This review presents a typical workflow of deep learning and computer vision, from data acquisition and data preprocessing to model selection, training and evaluation for validation, and summarizes the applications of deep learning and computer vision in different areas of food, such as image classification, object detection, image segmentation, and image generation, as well as model optimization strategies for different tasks. The applications of Internet of Things (IoT), digital twin, computer vision, and deep learning technologies in the food industry are highlighted. In addition, this review also discusses transfer learning and model compression methods, and reviews the applications of lightweight models and embedded systems in the food industry.
The innovative integration of technologies such as computer vision, deep learning, IoT, and digital twin has enhanced food traceability and transparency, and promoted sustainable development. The advancement of cloud computing and big data technologies has promoted the deep integration of these technologies, enabling real-time, accurate and dynamic decision-making in food production. Looking forward to the future, the focus of future research should be placed on improving the availability and quality of labeled datasets, enhancing the interpretability and robustness of model.
•Propose the challenges of deep learning models in interpretability and robustness.•Analyzing transfer learning and lightweight model in deep learning.•The application of DL and CV in food quality and safety is reviewed.•Propose an innovative integration of DL, CV, IoT and digital twin technologies.•Summarize the tasks and representative models of computer vision. |
| ArticleNumber | 105176 |
| Author | Guo, Mengshuai Wei, Fang Wang, Dan Chen, Hong Lv, Xin |
| Author_xml | – sequence: 1 givenname: Mengshuai surname: Guo fullname: Guo, Mengshuai organization: Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China – sequence: 2 givenname: Xin surname: Lv fullname: Lv, Xin organization: Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China – sequence: 3 givenname: Dan surname: Wang fullname: Wang, Dan organization: Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China – sequence: 4 givenname: Hong surname: Chen fullname: Chen, Hong organization: Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China – sequence: 5 givenname: Fang orcidid: 0000-0002-0469-3567 surname: Wei fullname: Wei, Fang email: willasa@163.com organization: Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China |
| BookMark | eNp9kM9uAiEQhznYpGr7Aj3xAK5l2WV3SXppTP-YmPRiz4SFwWAULOA2vn3Z2nNP88tkvsnMN0MT5x0g9FCSZUnK5nG_TNbEJSWU5QYr22aCpoTTuqC0rm_RLMY9IYRVjE2RWTvnB5nsANi6BLuQs3fYG6z88XROEPBgY24t8NpvF1g6jbXd2SQPOH1blylsvNf46ywPNl1-B6I0MMYYIcYjuHSHbow8RLj_q3P0-fqyXb0Xm4-39ep5UyjKqlS0hiuou6br-66iirBaNabXUtadNpyVlWGGtlD3Oj9q2qbVhEveg-K8IYb31RzR614VfIwBjDgFe5ThIkoiRjtiL0Y7YrQjrnYy9HSFIF82WAgiKgtOgbYBVBLa2__wH4ZxdCY |
| Cites_doi | 10.3389/fsufs.2025.1538375 10.1007/s40747-023-01261-7 10.1016/j.compag.2022.107208 10.1016/j.foodchem.2023.136309 10.1002/asi.20317 10.1145/3065386 10.1016/j.foodcont.2019.106716 10.1038/s41598-025-87173-7 10.1016/j.infrared.2024.105442 10.1038/s41598-024-57077-z 10.1109/TNNLS.2025.3538924 10.1016/j.compind.2019.103133 10.1111/1750-3841.17620 10.1016/j.tifs.2024.104408 10.3389/fpls.2024.1495222 10.1038/s41538-022-00162-2 10.1111/jph.13374 10.1007/s13197-024-06158-y 10.1007/s11694-020-00627-6 10.1109/TPAMI.2023.3292075 10.3389/fnut.2022.1075781 10.1109/ACCESS.2022.3228701 10.1016/j.jfoodeng.2023.111658 10.3390/app13127138 10.1007/s12393-024-09385-3 10.3390/pr9111937 10.1007/s00217-024-04493-0 10.1021/acsomega.2c07722 10.1016/j.jfca.2022.104698 10.1371/journal.pone.0296789 10.3390/standards2030023 10.3390/jimaging7090186 10.1016/j.ijpe.2020.107838 10.1016/j.foodhyd.2024.110510 10.1007/s10499-024-01422-6 10.1016/j.jfoodeng.2023.111656 10.1007/s42452-021-04657-7 10.3390/nu16020200 10.1016/j.engappai.2024.108452 10.3390/foods11213429 10.1016/j.foodcont.2024.110819 10.1186/s40537-021-00492-0 10.1038/s41598-022-06379-1 10.1016/j.foodcont.2020.107801 10.1016/j.tifs.2020.11.028 10.1007/s00521-023-09332-z 10.1186/s40537-019-0197-0 10.1016/j.tifs.2021.09.014 10.1126/sciadv.adn4944 10.1038/s41598-021-01254-x 10.1016/j.compag.2020.105345 10.1016/j.cofs.2022.100986 10.1016/j.compag.2018.02.016 10.1007/s00138-021-01204-7 10.1016/j.tifs.2022.02.017 10.1016/j.tifs.2024.104523 10.1016/j.jafr.2023.100767 10.1007/s00521-024-10233-y 10.1111/1750-3841.17159 10.3390/s24237461 10.1007/s10462-024-11090-w 10.1016/j.sbsr.2024.100683 10.1016/j.foodcont.2024.110413 10.1007/s11760-020-01764-7 10.1016/j.foodchem.2024.140911 10.1007/s00542-020-05123-x 10.3390/agriculture11090863 10.1016/j.tifs.2023.06.012 10.3389/fpls.2023.1321877 10.1038/s41467-024-45725-x 10.1038/nature14539 10.1007/s10489-021-02452-w 10.1109/ACCESS.2022.3186353 10.1007/s13762-023-05328-3 10.1016/j.compag.2020.105393 10.1111/1750-3841.15553 10.3390/electronics10111223 10.1016/j.jfoodeng.2023.111772 10.1039/D3FB00059A 10.1016/j.tifs.2021.03.059 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tifs.2025.105176 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| ExternalDocumentID | 10_1016_j_tifs_2025_105176 S0924224425003127 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAB SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K WH7 WUQ Y6R ~G- ~HD ~KM 9DU AAYXX ACLOT CITATION |
| ID | FETCH-LOGICAL-c253t-7f9ce4868bb832c054c6fbdaa48df9513f5f27e4bd016f767d09a9bec9960f9b3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001548109200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-2244 |
| IngestDate | Sat Nov 29 06:55:08 EST 2025 Sat Sep 13 17:00:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Computer vision Digital twin Food quality and safety IoT |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c253t-7f9ce4868bb832c054c6fbdaa48df9513f5f27e4bd016f767d09a9bec9960f9b3 |
| ORCID | 0000-0002-0469-3567 |
| ParticipantIDs | crossref_primary_10_1016_j_tifs_2025_105176 elsevier_sciencedirect_doi_10_1016_j_tifs_2025_105176 |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 2025-09-00 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Trends in food science & technology |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Benouis, Medus, Saban, Ghemougui, Rosado-Muñoz (bib9) 2021; 7 Liu, Rhim, Park, Xu, Lo (bib50) 2021; 231 Kumar, Koul, Kamini, Woźniak, Shafi, Ijaz (bib44) 2024; 14 Mandal, Chatterjee, Tudu (bib53) 2021; 34 Uhlenkamp, Hauge, Broda, Lütjen, Freitag, Thoben (bib90) 2022; 10 Yin, Qi, Zhu, Chen, Jiang, Ngo (bib99) 2023 Stoyanova, Marinova, Stoilov, Kirechev (bib83) 2022; 2 Nayak, Dutta (bib61) 2023; 1 Gao, Huang, Chen, Shao, Ni, Cai (bib26) 2024; 32 Nuanmeesri (bib63) 2025; 15 Guo, Yang, Liu (bib31) 2023; 13 Shao, Min, Hou, Luo, Li, Zheng, Jiang (bib76) 2023; 424 Nanda, Das, Dandapat, Dhar, Bandyopadhyay, Dib, Lorenzo, Gagaoua (bib60) 2021; 112 Chen (bib13) 2005; 57 Dutta, Deshpande, Rai (bib22) 2021; 3 Khan, Byun, Park (bib39) 2020; 20 Chen, Chen, Zhang, Sun, Nanehkaran (bib15) 2020; 173 LeCun, Bengio, Hinton (bib45) 2015; 521 Lee, Kwon (bib46) 2024; 24 Roy, Chaudhuri, Pramanik (bib72) 2021; 27 Banús, Boada, Xiberta, Toldrà, Bustins (bib8) 2021; 11 Huang, Liu, Zhao, Wang (bib35) 2024; 36 Yin, Hameed, Xie, Ying (bib98) 2021; 15 Pradana-López, Pérez-Calabuig, Cancilla, Lozano, Rodrigo, Mena, Torrecilla (bib66) 2021; 122 Gorji, Shahabi, Sharma, Tande, Husarik, Qin, Chan, Baek, Kim, MacKinnon, Morrow, Sokolov, Akhbardeh, Vasefi, Tavakolian (bib29) 2022; 12 Yu, Cai, Luo, Hou, Deng (bib100) 2024; 10 Alahmari, Salem (bib4) 2022; 10 Dzwolak (bib23) 2019; 106 Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (bib33) 2017 Agarwal, Dwivedi, Hazra, Gupta, Garg (bib2) 2024 Bu, Hu, Zhang (bib11) 2024; 19 Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (bib20) 2020 Qi, Lu, Li, Wang, Sun, Liao (bib67) 2022; 10 Chen, Bao, Li, Wu, Qi, Zhu, Tan, Jia, Zhou, Qi (bib14) 2024; 161 Song, Wang, Yun (bib82) 2025; 462 Tseng, Chuang, Appell (bib88) 2023; 8 Kollia, Stevenson, Kollias (bib41) 2021; 10 Quaade, Vallebueno, Alcabes, Rodolfa, Ho (bib69) 2024; 10 Shorten, Khoshgoftaar, Furht (bib80) 2021; 8 Wang, Min, Li, Dong, Li, Jiang (bib94) 2022; 122 Shorten, Khoshgoftaar (bib79) 2019; 6 Hu, Wen (bib34) 2021; 2078 Gong, Thota, Yu, Duan, Swainson, Ye, Kollias (bib27) 2021; 15 Sun, Wang, Dong (bib84) 2023; 23 Zou, Gao, Wu, Liu (bib103) 2024; 24 Mehta, Rastegari (bib57) 2021 Shao, Hou, Jia, Zheng (bib75) 2022; 11 Wang, Wang, Xiang, Chen, Zhao, Li, Sun-Waterhouse, Wu (bib95) 2024; 148 Tzachor, Richards, Jeen (bib89) 2022; 6 Sari, Gofuku (bib74) 2023; 358 Balkir, Kemahlioglu, Yucel (bib7) 2021; 108 Liu, Zhang, Long, Bai, Huang, Gao (bib51) 2024; 363 Sajitha, Diana Andrushia, Mostafa, Younes Shdefat, Suni, Anand (bib73) 2023; 14 Wadsworth, Mahajan, Prasad, Menon (bib92) 2024; 141 Ni (bib62) 2024; 172 Keong, Husin, Ismail, Yasruddin (bib38) 2024; 36 Orchi, Sadik, Khaldoun (bib65) 2022; 12 Singh, Nickhil, Nisha, Upendar, Jithender, Deka (bib81) 2025; 17 Feng, Li, Zhang, Xie (bib24) 2023; 358 Ku, Chi, Ling (bib43) 2021; 9 Attokaren, Fernandes, Sriram, Murthy, Koolagudi (bib6) 2017 Liu, Cao, Luo, Chen, Vokkarane, Ma (bib48) 2016 Vennerød, Kjærran, Bugge (bib91) 2021 Krizhevsky, Sutskever, Hinton (bib42) 2017; 60 Redmon, Divvala, Girshick, Farhadi (bib71) 2015 Melek, Battini Sönmez, Varlı (bib58) 2024; 133 Wang, Xiao (bib96) 2021; 11 Chen, Liou, Hsu, Chen, Chuang (bib17) 2020; 86 Meenu, Kurade, Neelapu, Kalra, Ramaswamy, Yu (bib56) 2021; 118 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib28) 2014 Tan, Le (bib86) 2019 Meyes, Lu, Puiseau, Meisen (bib59) 2019 Sheng, Min, Zhu, Xu, Sun, Yang, Wang, Jiang (bib77) 2024; 16 Liu, Liang, Ye, Song, Zhao (bib49) 2023 Ahmed, Monjur, Khaliduzzaman, Kamruzzaman (bib3) 2025; 58 Sipola, Kokkonen, Puura, Riuttanen, Pitkäniemi, Juutilainen, Kontio (bib105) 2023; 13 Gupta, Madan, Quadir Md (bib32) 2022; 62 Wang, McClements, Xu, Meng, Qiu, Long, Jin, Chen (bib93) 2023; 138 Ceni (bib12) 2025; 36 Li, Luo, Hu, Yan, Ryu, McClements (bib47) 2025; 158 Kim, Heo (bib40) 2024; 15 Dragone, Grasso, Licciardi, Di Stefano, Frazzoli (bib21) 2024; 45 Chen, Liu, Li, Wang (bib18) 2022; 112 Mazumder, Mridha, Alfarhood, Safran, Abdullah-Al-Jubair, Che (bib55) 2024; 14 Syed-Ab-Rahman, Hesamian, Prasad (bib85) 2022; 52 Zhao, Wang, Wang (bib101) 2025; 90 Kamilaris, Prenafeta-Boldú (bib36) 2018; 147 Amani, Aghamohammadi (bib5) 2024; 21 Yildiz, Yasin, Koklu (bib97) 2024; 250 Chen, Dai, Zheng, Kang, Wang, Zheng, Gu, Mo, Luo (bib16) 2023; 9 Zhu, Lin, Jain, Zhou (bib102) 2023; 45 Tapkire, Arun, Lavanya, Shashidhar (bib87) 2025; 62 Qiu, Wang, Wang, Li, Jin, Qing, Shi (bib68) 2024; 15 Gracia Moisés, Pascual, Avedillo de la Casa, Pérez, Imas González, Ruiz-Zamarreño (bib30) 2025; 167 Raza, Raza, Babeker, Haq, Islam, Li (bib70) 2024 Abdurrahman, Ferrari (bib1) 2025; 9 Kaushal, Tammineni, Rana, Sharma, Sridhar, Chen (bib37) 2024; 146 Maurya, Singh, Pathak, Dutta (bib54) 2021; 32 Gao, Chen, Huang, Cai (bib25) 2024; 89 Shi, Liang, Pu, Li, Zou (bib78) 2023; 50 Bezen, Edan, Halachmi (bib10) 2020; 172 Lu, Chen, Olaniyi, Huang (bib52) 2022; 200 Onoufriou, Bickerton, Pearson, Leontidis (bib64) 2019; 113 Khan (10.1016/j.tifs.2025.105176_bib39) 2020; 20 Liu (10.1016/j.tifs.2025.105176_bib51) 2024; 363 Kaushal (10.1016/j.tifs.2025.105176_bib37) 2024; 146 Shi (10.1016/j.tifs.2025.105176_bib78) 2023; 50 Dosovitskiy (10.1016/j.tifs.2025.105176_bib20) 2020 Chen (10.1016/j.tifs.2025.105176_bib15) 2020; 173 Agarwal (10.1016/j.tifs.2025.105176_bib2) 2024 Gong (10.1016/j.tifs.2025.105176_bib27) 2021; 15 Bu (10.1016/j.tifs.2025.105176_bib11) 2024; 19 Lee (10.1016/j.tifs.2025.105176_bib46) 2024; 24 Yildiz (10.1016/j.tifs.2025.105176_bib97) 2024; 250 Zhu (10.1016/j.tifs.2025.105176_bib102) 2023; 45 Gorji (10.1016/j.tifs.2025.105176_bib29) 2022; 12 Singh (10.1016/j.tifs.2025.105176_bib81) 2025; 17 Nayak (10.1016/j.tifs.2025.105176_bib61) 2023; 1 Gao (10.1016/j.tifs.2025.105176_bib26) 2024; 32 Attokaren (10.1016/j.tifs.2025.105176_bib6) 2017 Yin (10.1016/j.tifs.2025.105176_bib98) 2021; 15 Tapkire (10.1016/j.tifs.2025.105176_bib87) 2025; 62 Roy (10.1016/j.tifs.2025.105176_bib72) 2021; 27 Dzwolak (10.1016/j.tifs.2025.105176_bib23) 2019; 106 Tan (10.1016/j.tifs.2025.105176_bib86) 2019 Wadsworth (10.1016/j.tifs.2025.105176_bib92) 2024; 141 Huang (10.1016/j.tifs.2025.105176_bib35) 2024; 36 Uhlenkamp (10.1016/j.tifs.2025.105176_bib90) 2022; 10 Benouis (10.1016/j.tifs.2025.105176_bib9) 2021; 7 LeCun (10.1016/j.tifs.2025.105176_bib45) 2015; 521 Mandal (10.1016/j.tifs.2025.105176_bib53) 2021; 34 Balkir (10.1016/j.tifs.2025.105176_bib7) 2021; 108 Pradana-López (10.1016/j.tifs.2025.105176_bib66) 2021; 122 Chen (10.1016/j.tifs.2025.105176_bib16) 2023; 9 Syed-Ab-Rahman (10.1016/j.tifs.2025.105176_bib85) 2022; 52 Sipola (10.1016/j.tifs.2025.105176_bib105) 2023; 13 Gracia Moisés (10.1016/j.tifs.2025.105176_bib30) 2025; 167 Abdurrahman (10.1016/j.tifs.2025.105176_bib1) 2025; 9 Banús (10.1016/j.tifs.2025.105176_bib8) 2021; 11 Dutta (10.1016/j.tifs.2025.105176_bib22) 2021; 3 Hu (10.1016/j.tifs.2025.105176_bib34) 2021; 2078 Kollia (10.1016/j.tifs.2025.105176_bib41) 2021; 10 Wang (10.1016/j.tifs.2025.105176_bib95) 2024; 148 Chen (10.1016/j.tifs.2025.105176_bib14) 2024; 161 Chen (10.1016/j.tifs.2025.105176_bib18) 2022; 112 Wang (10.1016/j.tifs.2025.105176_bib94) 2022; 122 Keong (10.1016/j.tifs.2025.105176_bib38) 2024; 36 Zhao (10.1016/j.tifs.2025.105176_bib101) 2025; 90 Melek (10.1016/j.tifs.2025.105176_bib58) 2024; 133 Onoufriou (10.1016/j.tifs.2025.105176_bib64) 2019; 113 Maurya (10.1016/j.tifs.2025.105176_bib54) 2021; 32 Dragone (10.1016/j.tifs.2025.105176_bib21) 2024; 45 Shorten (10.1016/j.tifs.2025.105176_bib79) 2019; 6 Wang (10.1016/j.tifs.2025.105176_bib96) 2021; 11 Krizhevsky (10.1016/j.tifs.2025.105176_bib42) 2017; 60 Qi (10.1016/j.tifs.2025.105176_bib67) 2022; 10 Kim (10.1016/j.tifs.2025.105176_bib40) 2024; 15 Wang (10.1016/j.tifs.2025.105176_bib93) 2023; 138 Yu (10.1016/j.tifs.2025.105176_bib100) 2024; 10 Howard (10.1016/j.tifs.2025.105176_bib33) 2017 Sari (10.1016/j.tifs.2025.105176_bib74) 2023; 358 Shao (10.1016/j.tifs.2025.105176_bib76) 2023; 424 Sajitha (10.1016/j.tifs.2025.105176_bib73) 2023; 14 Shao (10.1016/j.tifs.2025.105176_bib75) 2022; 11 Liu (10.1016/j.tifs.2025.105176_bib50) 2021; 231 Feng (10.1016/j.tifs.2025.105176_bib24) 2023; 358 Tseng (10.1016/j.tifs.2025.105176_bib88) 2023; 8 Qiu (10.1016/j.tifs.2025.105176_bib68) 2024; 15 Liu (10.1016/j.tifs.2025.105176_bib49) 2023 Tzachor (10.1016/j.tifs.2025.105176_bib89) 2022; 6 Raza (10.1016/j.tifs.2025.105176_bib70) 2024 Redmon (10.1016/j.tifs.2025.105176_bib71) 2015 Gupta (10.1016/j.tifs.2025.105176_bib32) 2022; 62 Goodfellow (10.1016/j.tifs.2025.105176_bib28) 2014 Ceni (10.1016/j.tifs.2025.105176_bib12) 2025; 36 Zou (10.1016/j.tifs.2025.105176_bib103) 2024; 24 Ahmed (10.1016/j.tifs.2025.105176_bib3) 2025; 58 Quaade (10.1016/j.tifs.2025.105176_bib69) 2024; 10 Mazumder (10.1016/j.tifs.2025.105176_bib55) 2024; 14 Song (10.1016/j.tifs.2025.105176_bib82) 2025; 462 Yin (10.1016/j.tifs.2025.105176_bib99) 2023 Sheng (10.1016/j.tifs.2025.105176_bib77) 2024; 16 Sun (10.1016/j.tifs.2025.105176_bib84) 2023; 23 Gao (10.1016/j.tifs.2025.105176_bib25) 2024; 89 Ku (10.1016/j.tifs.2025.105176_bib43) 2021; 9 Nanda (10.1016/j.tifs.2025.105176_bib60) 2021; 112 Shorten (10.1016/j.tifs.2025.105176_bib80) 2021; 8 Vennerød (10.1016/j.tifs.2025.105176_bib91) 2021 Kumar (10.1016/j.tifs.2025.105176_bib44) 2024; 14 Nuanmeesri (10.1016/j.tifs.2025.105176_bib63) 2025; 15 Alahmari (10.1016/j.tifs.2025.105176_bib4) 2022; 10 Chen (10.1016/j.tifs.2025.105176_bib13) 2005; 57 Lu (10.1016/j.tifs.2025.105176_bib52) 2022; 200 Amani (10.1016/j.tifs.2025.105176_bib5) 2024; 21 Bezen (10.1016/j.tifs.2025.105176_bib10) 2020; 172 Stoyanova (10.1016/j.tifs.2025.105176_bib83) 2022; 2 Chen (10.1016/j.tifs.2025.105176_bib17) 2020; 86 Ni (10.1016/j.tifs.2025.105176_bib62) 2024; 172 Orchi (10.1016/j.tifs.2025.105176_bib65) 2022; 12 Kamilaris (10.1016/j.tifs.2025.105176_bib36) 2018; 147 Meyes (10.1016/j.tifs.2025.105176_bib59) 2019 Meenu (10.1016/j.tifs.2025.105176_bib56) 2021; 118 Mehta (10.1016/j.tifs.2025.105176_bib57) 2021 Liu (10.1016/j.tifs.2025.105176_bib48) 2016 Li (10.1016/j.tifs.2025.105176_bib47) 2025; 158 Guo (10.1016/j.tifs.2025.105176_bib31) 2023; 13 |
| References_xml | – volume: 7 year: 2021 ident: bib9 article-title: Food tray sealing fault detection in multi-spectral images using data fusion and deep learning techniques publication-title: Journal of Imaging – volume: 50 year: 2023 ident: bib78 article-title: Nondestructive detection of the bioactive components and nutritional value in restructured functional foods publication-title: Current Opinion in Food Science – volume: 3 start-page: 657 year: 2021 ident: bib22 article-title: AI-based soft-sensor for shelf life prediction of ‘Kesar’ mango publication-title: SN Applied Sciences – volume: 15 start-page: 1561 year: 2024 ident: bib40 article-title: An agricultural digital twin for mandarins demonstrates the potential for individualized agriculture publication-title: Nature Communications – volume: 62 start-page: 4758 year: 2022 end-page: 4763 ident: bib32 article-title: A smart agriculture framework for IoT based plant decay detection using smart croft algorithm publication-title: Materials Today: Proceedings – volume: 133 year: 2024 ident: bib58 article-title: Datasets and methods of product recognition on grocery shelf images using computer vision and machine learning approaches: An exhaustive literature review publication-title: Engineering Applications of Artificial Intelligence – volume: 17 start-page: 127 year: 2025 end-page: 160 ident: bib81 article-title: A comprehensive review of advanced deep learning approaches for food freshness detection publication-title: Food Engineering Reviews – volume: 24 year: 2024 ident: bib103 article-title: Carbon-efficient scheduling in fresh food supply chains with a time-window-constrained deep reinforcement learning model publication-title: Sensors – volume: 172 year: 2024 ident: bib62 article-title: Smart agriculture: An intelligent approach for apple leaf disease identification based on convolutional neural network publication-title: Journal of Phytopathology – volume: 10 year: 2024 ident: bib69 article-title: Remote sensing and computer vision for marine aquaculture publication-title: Science Advances – volume: 27 start-page: 3365 year: 2021 end-page: 3375 ident: bib72 article-title: Deep learning based real-time industrial framework for rotten and fresh fruit detection using semantic segmentation publication-title: Microsystem Technologies – volume: 15 start-page: 189 year: 2021 end-page: 198 ident: bib98 article-title: Non-destructive detection of foreign contaminants in toast bread with near infrared spectroscopy and computer vision techniques publication-title: Journal of Food Measurement and Characterization – volume: 138 start-page: 297 year: 2023 end-page: 309 ident: bib93 article-title: Recent advances in the optimization of the sensory attributes of fried foods: Appearance, flavor, and texture publication-title: Trends in Food Science & Technology – year: 2020 ident: bib20 article-title: An image is worth 16x16 words: Transformers for image recognition at scale publication-title: ArXiv, abs/2010.11929 – year: 2014 ident: bib28 article-title: Generative adversarial nets publication-title: Neural information processing systems – volume: 12 start-page: 2392 year: 2022 ident: bib29 article-title: Combining deep learning and fluorescence imaging to automatically identify fecal contamination on meat carcasses publication-title: Scientific Reports – year: 2019 ident: bib59 article-title: Ablation studies in artificial neural networks publication-title: ArXiv, abs/1901.08644 – volume: 11 year: 2021 ident: bib8 article-title: Deep learning for the quality control of thermoforming food packages publication-title: Scientific Reports – year: 2024 ident: bib70 article-title: Efficient citrus fruit image classification via a hybrid hierarchical CNN and transfer learning framework publication-title: Journal of Food Measurement and Characterization – volume: 32 start-page: 5171 year: 2024 end-page: 5198 ident: bib26 article-title: Deep transfer learning-based computer vision for real-time harvest period classification and impurity detection of Porphyra haitnensis publication-title: Aquaculture International – volume: 173 year: 2020 ident: bib15 article-title: Using deep transfer learning for image-based plant disease identification publication-title: Computers and Electronics in Agriculture – volume: 158 year: 2025 ident: bib47 article-title: Creation of novel animal protein substitutes with potato protein and gellan gum: Control of food texture, color, and shape publication-title: Food Hydrocolloids – volume: 32 start-page: 79 year: 2021 ident: bib54 article-title: Computer-aided automatic detection of acrylamide in deep-fried carbohydrate-rich food items using deep learning publication-title: Machine Vision and Applications – volume: 13 year: 2023 ident: bib31 article-title: Research on lightweight model for rapid identification of chunky food based on machine vision publication-title: Applied Sciences – year: 2015 ident: bib71 article-title: You only look once: Unified, real-time object detection publication-title: 2016 IEEE conference on computer vision and pattern recognition (CVPR) – volume: 10 start-page: 69605 year: 2022 end-page: 69635 ident: bib90 article-title: Digital twins: A maturity model for their classification and evaluation publication-title: IEEE Access – volume: 14 year: 2023 ident: bib73 article-title: Smart farming application using knowledge embedded-graph convolutional neural network (KEGCNN) for banana quality detection publication-title: Journal of Agriculture and Food Research – volume: 122 start-page: 223 year: 2022 end-page: 237 ident: bib94 article-title: A review on vision-based analysis for automatic dietary assessment publication-title: Trends in Food Science & Technology – year: 2016 ident: bib48 article-title: DeepFood: Deep learning-based food image recognition for computer-aided dietary assessment publication-title: ArXiv, abs/1606.05675 – volume: 19 year: 2024 ident: bib11 article-title: Recognition of food images based on transfer learning and ensemble learning publication-title: PLoS One – start-page: 2801 year: 2017 end-page: 2806 ident: bib6 article-title: Food classification from images using convolutional neural networks publication-title: Tencon 2017 - 2017 IEEE region 10 conference – volume: 9 year: 2021 ident: bib43 article-title: Design of an IOTA tangle-based intelligent food safety service platform for bubble tea publication-title: Processes – volume: 200 year: 2022 ident: bib52 article-title: Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review publication-title: Computers and Electronics in Agriculture – volume: 106 year: 2019 ident: bib23 article-title: Assessment of HACCP plans in standardized food safety management systems – The case of small-sized Polish food businesses publication-title: Food Control – volume: 363 year: 2024 ident: bib51 article-title: CNN-assisted accurate smartphone testing of μPAD for pork sausage freshness publication-title: Journal of Food Engineering – volume: 23 year: 2023 ident: bib84 article-title: CNN–LSTM neural network for identification of pre-cooked pasta products in different physical states using infrared spectroscopy publication-title: Sensors – volume: 16 year: 2024 ident: bib77 article-title: A lightweight hybrid model with location-preserving ViT for efficient food recognition publication-title: Nutrients – volume: 14 start-page: 6589 year: 2024 ident: bib44 article-title: Automated detection and recognition system for chewable food items using advanced deep learning models publication-title: Scientific Reports – volume: 45 start-page: 13344 year: 2023 end-page: 13362 ident: bib102 article-title: Transfer learning in deep reinforcement learning: A survey publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 8 start-page: 15854 year: 2023 end-page: 15864 ident: bib88 article-title: When machine learning and deep learning come to the big data in food chemistry publication-title: ACS Omega – volume: 112 start-page: 252 year: 2021 end-page: 267 ident: bib60 article-title: Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review publication-title: Trends in Food Science & Technology – volume: 167 year: 2025 ident: bib30 article-title: Optimization of optical spectroscopy classification algorithms for limited data scenarios in the food industry: Tomato sauce samples case publication-title: Food Control – volume: 122 year: 2021 ident: bib66 article-title: Deep transfer learning to verify quality and safety of ground coffee publication-title: Food Control – volume: 6 start-page: 60 year: 2019 ident: bib79 article-title: A survey on image data augmentation for deep learning publication-title: Journal of Big Data – year: 2021 ident: bib91 article-title: Long short-term memory RNN publication-title: ArXiv, abs/2105.06756 – volume: 148 year: 2024 ident: bib95 article-title: Unlocking the opportunities for creating sustainable, flavorful and healthy high-protein “blue foods”: Focusing on the impacts of protein-flavor interactions publication-title: Trends in Food Science & Technology – volume: 36 start-page: 5333 year: 2024 end-page: 5346 ident: bib35 article-title: A lightweight deep neural network model and its applications based on channel pruning and group vector quantization publication-title: Neural Computing & Applications – volume: 34 year: 2021 ident: bib53 article-title: A deep neural network and random forests driven computer vision framework for identification and prediction of metanil yellow adulteration in turmeric powder publication-title: Concurrency and Computation: Practice and Experience – volume: 13 year: 2023 ident: bib105 article-title: Digital twin of food supply chain for cyber exercises publication-title: Applied Sciences – volume: 231 year: 2021 ident: bib50 article-title: HACCP certification in food industry: Trade-offs in product safety and firm performance publication-title: International Journal of Production Economics – volume: 424 year: 2023 ident: bib76 article-title: Vision-based food nutrition estimation via RGB-D fusion network publication-title: Food Chemistry – volume: 147 start-page: 70 year: 2018 end-page: 90 ident: bib36 article-title: Deep learning in agriculture: A survey publication-title: Computers and Electronics in Agriculture – volume: 24 year: 2024 ident: bib46 article-title: Amount estimation method for food intake based on color and depth images through deep learning publication-title: Sensors – volume: 9 year: 2023 ident: bib16 article-title: Intelligent grading method for walnut kernels based on deep learning and physiological indicators publication-title: Frontiers in Nutrition – volume: 118 start-page: 106 year: 2021 end-page: 124 ident: bib56 article-title: A concise review on food quality assessment using digital image processing publication-title: Trends in Food Science & Technology – volume: 21 start-page: 5007 year: 2024 end-page: 5018 ident: bib5 article-title: A novel technology to monitor effects of ethylene on the food products' supply chain: A deep learning approach publication-title: International journal of Environmental Science and Technology – volume: 10 start-page: 130048 year: 2022 end-page: 130057 ident: bib4 article-title: Food state recognition using deep learning publication-title: IEEE Access – volume: 45 year: 2024 ident: bib21 article-title: Sensors driven system coupled with artificial intelligence for quality monitoring and HACCP in dairy production publication-title: Sensing and Bio-Sensing Research – volume: 52 start-page: 927 year: 2022 end-page: 938 ident: bib85 article-title: Citrus disease detection and classification using end-to-end anchor-based deep learning model publication-title: Applied Intelligence – volume: 462 year: 2025 ident: bib82 article-title: Smartphone video imaging: A versatile, low-cost technology for food authentication publication-title: Food Chemistry – volume: 146 year: 2024 ident: bib37 article-title: Computer vision and deep learning-based approaches for detection of food nutrients/nutrition: New insights and advances publication-title: Trends in Food Science & Technology – volume: 141 year: 2024 ident: bib92 article-title: Deep learning for thermal-RGB image-to-image translation publication-title: Infrared Physics & Technology – year: 2019 ident: bib86 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks publication-title: ArXiv, abs/1905.11946 – volume: 2078 year: 2021 ident: bib34 article-title: Research on model compression for embedded platform through quantization and pruning publication-title: Journal of Physics: Conference Series – volume: 10 start-page: 2047 year: 2024 end-page: 2066 ident: bib100 article-title: A-pruning: A lightweight pineapple flower counting network based on filter pruning publication-title: Complex & Intelligent Systems – volume: 58 start-page: 96 year: 2025 ident: bib3 article-title: A comprehensive review of deep learning-based hyperspectral image reconstruction for agri-food quality appraisal publication-title: Artificial Intelligence Review – volume: 36 start-page: 18705 year: 2024 end-page: 18725 ident: bib38 article-title: Stacked ensemble learning based on deep transfer learning models for food ingredient classification and food quality determination publication-title: Neural Computing & Applications – year: 2023 ident: bib99 article-title: FoodLMM: A versatile food assistant using large multi-modal model publication-title: ArXiv, abs/2312.14991 – volume: 15 start-page: 449 year: 2021 end-page: 457 ident: bib27 article-title: A novel unified deep neural networks methodology for use by date recognition in retail food package image publication-title: Signal, Image and Video Processing – volume: 10 year: 2021 ident: bib41 article-title: AI-Enabled efficient and safe food supply chain publication-title: Electronics – volume: 6 start-page: 47 year: 2022 ident: bib89 article-title: Transforming agrifood production systems and supply chains with digital twins publication-title: Npj Science of Food – volume: 57 start-page: 359 year: 2005 end-page: 377 ident: bib13 article-title: CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature publication-title: Journal of the American Society for Information Science and Technology – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: bib42 article-title: ImageNet classification with deep convolutional neural networks publication-title: Communications of the ACM – volume: 36 start-page: 10794 year: 2025 end-page: 10807 ident: bib12 article-title: Random orthogonal additive filters: A solution to the vanishing/exploding gradient of deep neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 250 start-page: 1919 year: 2024 end-page: 1932 ident: bib97 article-title: Fisheye freshness detection using common deep learning algorithms and machine learning methods with a developed Mobile application publication-title: European Food Research and Technology – volume: 20 year: 2020 ident: bib39 article-title: IoT-Blockchain enabled optimized provenance System for food industry 4.0 using advanced deep learning publication-title: Sensors – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib45 article-title: Deep learning publication-title: Nature – volume: 358 year: 2023 ident: bib74 article-title: Measuring food volume from RGB-depth image with point cloud conversion method using geometrical approach and robust ellipsoid fitting algorithm publication-title: Journal of Food Engineering – volume: 113 year: 2019 ident: bib64 article-title: Nemesyst: A hybrid parallelism deep learning-based framework applied for internet of things enabled food retailing refrigeration systems publication-title: Computers in Industry – volume: 12 year: 2022 ident: bib65 article-title: On using artificial intelligence and the internet of things for crop disease detection: A contemporary survey publication-title: Agriculture – volume: 90 year: 2025 ident: bib101 article-title: Causal inference of whole‐grain foods' risk based on a generative adversarial network and Bayesian network publication-title: Journal of Food Science – volume: 9 year: 2025 ident: bib1 article-title: Digital twin applications in the food industry: A review publication-title: Frontiers in Sustainable Food Systems – volume: 89 start-page: 4359 year: 2024 end-page: 4371 ident: bib25 article-title: Real‐time quantitative detection of hydrocolloid adulteration in meat based on swin transformer and smartphone publication-title: Journal of Food Science – volume: 1 start-page: 641 year: 2023 end-page: 657 ident: bib61 article-title: A comprehensive review on CRISPR and artificial intelligence based emerging food packaging technology to ensure “safe food” publication-title: Sustainable Food Technology – volume: 11 year: 2022 ident: bib75 article-title: Rapid non-destructive analysis of food nutrient content using swin-nutrition publication-title: Foods – volume: 86 start-page: 40 year: 2020 end-page: 54 ident: bib17 article-title: Implementation of food safety management systems that meets ISO 22000:2018 and HACCP: A case study of capsule biotechnology products of chaga mushroom publication-title: Journal of Food Science – volume: 8 start-page: 101 year: 2021 ident: bib80 article-title: Text data augmentation for deep learning publication-title: Journal of Big Data – volume: 11 year: 2021 ident: bib96 article-title: Potato surface defect detection based on deep transfer learning publication-title: Agriculture – volume: 62 start-page: 1164 year: 2025 end-page: 1172 ident: bib87 article-title: Gluten identification from food images using advanced deep learning and transfer learning methods publication-title: Journal of Food Science and Technology – volume: 108 start-page: 49 year: 2021 end-page: 57 ident: bib7 article-title: Foodomics: A new approach in food quality and safety publication-title: Trends in Food Science & Technology – volume: 161 year: 2024 ident: bib14 article-title: Microscopic identification of foodborne bacterial pathogens based on deep learning method publication-title: Food Control – volume: 10 start-page: 886 year: 2022 end-page: 903 ident: bib67 article-title: Learning low resource consumption CNN through pruning and quantization publication-title: IEEE Transactions on Emerging Topics in Computing – volume: 358 year: 2023 ident: bib24 article-title: Detection of Atlantic salmon residues based on computer vision publication-title: Journal of Food Engineering – year: 2017 ident: bib33 article-title: MobileNets: Efficient convolutional neural networks for Mobile vision applications publication-title: ArXiv, abs/1704.04861 – volume: 172 year: 2020 ident: bib10 article-title: Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms publication-title: Computers and Electronics in Agriculture – year: 2021 ident: bib57 article-title: MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer publication-title: ArXiv, abs/2110.02178 – volume: 14 year: 2024 ident: bib55 article-title: A robust and light-weight transfer learning-based architecture for accurate detection of leaf diseases across multiple plants using less amount of images publication-title: Frontiers in Plant Science – year: 2023 ident: bib49 article-title: A food package recognition and sorting system based on structured light and deep learning publication-title: Proceedings of the 2023 international joint conference on robotics and artificial intelligence – volume: 112 year: 2022 ident: bib18 article-title: A rapid and effective method for species identification of edible boletes: FT-NIR spectroscopy combined with ResNet publication-title: Journal of Food Composition and Analysis – volume: 15 year: 2024 ident: bib68 article-title: YOLO-SDL: A lightweight wheat grain detection technology based on an improved YOLOv8n model publication-title: Frontiers in Plant Science – year: 2024 ident: bib2 article-title: Development of IoT enabled deep learning model for Indian food classification: An approach based on differential evaluation publication-title: Food Analytical Methods – volume: 2 start-page: 329 year: 2022 end-page: 351 ident: bib83 article-title: Food safety management system (FSMS) model with application of the PDCA cycle and risk assessment as requirements of the ISO 22000:2018 standard publication-title: Standards – volume: 15 start-page: 3719 year: 2025 ident: bib63 article-title: Enhanced hybrid attention deep learning for avocado ripeness classification on resource constrained devices publication-title: Scientific Reports – volume: 9 year: 2025 ident: 10.1016/j.tifs.2025.105176_bib1 article-title: Digital twin applications in the food industry: A review publication-title: Frontiers in Sustainable Food Systems doi: 10.3389/fsufs.2025.1538375 – start-page: 2801 year: 2017 ident: 10.1016/j.tifs.2025.105176_bib6 article-title: Food classification from images using convolutional neural networks – volume: 10 start-page: 2047 issue: 2 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib100 article-title: A-pruning: A lightweight pineapple flower counting network based on filter pruning publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-023-01261-7 – volume: 200 year: 2022 ident: 10.1016/j.tifs.2025.105176_bib52 article-title: Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2022.107208 – volume: 424 year: 2023 ident: 10.1016/j.tifs.2025.105176_bib76 article-title: Vision-based food nutrition estimation via RGB-D fusion network publication-title: Food Chemistry doi: 10.1016/j.foodchem.2023.136309 – volume: 57 start-page: 359 issue: 3 year: 2005 ident: 10.1016/j.tifs.2025.105176_bib13 article-title: CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature publication-title: Journal of the American Society for Information Science and Technology doi: 10.1002/asi.20317 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 10.1016/j.tifs.2025.105176_bib42 article-title: ImageNet classification with deep convolutional neural networks publication-title: Communications of the ACM doi: 10.1145/3065386 – volume: 106 year: 2019 ident: 10.1016/j.tifs.2025.105176_bib23 article-title: Assessment of HACCP plans in standardized food safety management systems – The case of small-sized Polish food businesses publication-title: Food Control doi: 10.1016/j.foodcont.2019.106716 – volume: 15 start-page: 3719 issue: 1 year: 2025 ident: 10.1016/j.tifs.2025.105176_bib63 article-title: Enhanced hybrid attention deep learning for avocado ripeness classification on resource constrained devices publication-title: Scientific Reports doi: 10.1038/s41598-025-87173-7 – volume: 141 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib92 article-title: Deep learning for thermal-RGB image-to-image translation publication-title: Infrared Physics & Technology doi: 10.1016/j.infrared.2024.105442 – volume: 14 start-page: 6589 issue: 1 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib44 article-title: Automated detection and recognition system for chewable food items using advanced deep learning models publication-title: Scientific Reports doi: 10.1038/s41598-024-57077-z – volume: 36 start-page: 10794 issue: 6 year: 2025 ident: 10.1016/j.tifs.2025.105176_bib12 article-title: Random orthogonal additive filters: A solution to the vanishing/exploding gradient of deep neural networks publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2025.3538924 – volume: 113 year: 2019 ident: 10.1016/j.tifs.2025.105176_bib64 article-title: Nemesyst: A hybrid parallelism deep learning-based framework applied for internet of things enabled food retailing refrigeration systems publication-title: Computers in Industry doi: 10.1016/j.compind.2019.103133 – volume: 90 issue: 1 year: 2025 ident: 10.1016/j.tifs.2025.105176_bib101 article-title: Causal inference of whole‐grain foods' risk based on a generative adversarial network and Bayesian network publication-title: Journal of Food Science doi: 10.1111/1750-3841.17620 – volume: 146 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib37 article-title: Computer vision and deep learning-based approaches for detection of food nutrients/nutrition: New insights and advances publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2024.104408 – volume: 15 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib68 article-title: YOLO-SDL: A lightweight wheat grain detection technology based on an improved YOLOv8n model publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2024.1495222 – volume: 6 start-page: 47 issue: 1 year: 2022 ident: 10.1016/j.tifs.2025.105176_bib89 article-title: Transforming agrifood production systems and supply chains with digital twins publication-title: Npj Science of Food doi: 10.1038/s41538-022-00162-2 – year: 2017 ident: 10.1016/j.tifs.2025.105176_bib33 article-title: MobileNets: Efficient convolutional neural networks for Mobile vision applications publication-title: ArXiv, abs/1704.04861 – year: 2020 ident: 10.1016/j.tifs.2025.105176_bib20 article-title: An image is worth 16x16 words: Transformers for image recognition at scale publication-title: ArXiv, abs/2010.11929 – volume: 172 issue: 4 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib62 article-title: Smart agriculture: An intelligent approach for apple leaf disease identification based on convolutional neural network publication-title: Journal of Phytopathology doi: 10.1111/jph.13374 – volume: 12 year: 2022 ident: 10.1016/j.tifs.2025.105176_bib65 article-title: On using artificial intelligence and the internet of things for crop disease detection: A contemporary survey publication-title: Agriculture – volume: 62 start-page: 1164 issue: 6 year: 2025 ident: 10.1016/j.tifs.2025.105176_bib87 article-title: Gluten identification from food images using advanced deep learning and transfer learning methods publication-title: Journal of Food Science and Technology doi: 10.1007/s13197-024-06158-y – year: 2016 ident: 10.1016/j.tifs.2025.105176_bib48 article-title: DeepFood: Deep learning-based food image recognition for computer-aided dietary assessment publication-title: ArXiv, abs/1606.05675 – volume: 15 start-page: 189 issue: 1 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib98 article-title: Non-destructive detection of foreign contaminants in toast bread with near infrared spectroscopy and computer vision techniques publication-title: Journal of Food Measurement and Characterization doi: 10.1007/s11694-020-00627-6 – volume: 45 start-page: 13344 issue: 11 year: 2023 ident: 10.1016/j.tifs.2025.105176_bib102 article-title: Transfer learning in deep reinforcement learning: A survey publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2023.3292075 – year: 2023 ident: 10.1016/j.tifs.2025.105176_bib49 article-title: A food package recognition and sorting system based on structured light and deep learning – year: 2019 ident: 10.1016/j.tifs.2025.105176_bib59 article-title: Ablation studies in artificial neural networks publication-title: ArXiv, abs/1901.08644 – year: 2021 ident: 10.1016/j.tifs.2025.105176_bib91 article-title: Long short-term memory RNN publication-title: ArXiv, abs/2105.06756 – volume: 9 year: 2023 ident: 10.1016/j.tifs.2025.105176_bib16 article-title: Intelligent grading method for walnut kernels based on deep learning and physiological indicators publication-title: Frontiers in Nutrition doi: 10.3389/fnut.2022.1075781 – volume: 10 start-page: 130048 year: 2022 ident: 10.1016/j.tifs.2025.105176_bib4 article-title: Food state recognition using deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3228701 – volume: 358 year: 2023 ident: 10.1016/j.tifs.2025.105176_bib24 article-title: Detection of Atlantic salmon residues based on computer vision publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2023.111658 – volume: 13 year: 2023 ident: 10.1016/j.tifs.2025.105176_bib105 article-title: Digital twin of food supply chain for cyber exercises publication-title: Applied Sciences doi: 10.3390/app13127138 – volume: 17 start-page: 127 issue: 1 year: 2025 ident: 10.1016/j.tifs.2025.105176_bib81 article-title: A comprehensive review of advanced deep learning approaches for food freshness detection publication-title: Food Engineering Reviews doi: 10.1007/s12393-024-09385-3 – volume: 9 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib43 article-title: Design of an IOTA tangle-based intelligent food safety service platform for bubble tea publication-title: Processes doi: 10.3390/pr9111937 – volume: 250 start-page: 1919 issue: 7 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib97 article-title: Fisheye freshness detection using common deep learning algorithms and machine learning methods with a developed Mobile application publication-title: European Food Research and Technology doi: 10.1007/s00217-024-04493-0 – volume: 62 start-page: 4758 year: 2022 ident: 10.1016/j.tifs.2025.105176_bib32 article-title: A smart agriculture framework for IoT based plant decay detection using smart croft algorithm publication-title: Materials Today: Proceedings – volume: 8 start-page: 15854 issue: 18 year: 2023 ident: 10.1016/j.tifs.2025.105176_bib88 article-title: When machine learning and deep learning come to the big data in food chemistry publication-title: ACS Omega doi: 10.1021/acsomega.2c07722 – volume: 10 start-page: 886 issue: 2 year: 2022 ident: 10.1016/j.tifs.2025.105176_bib67 article-title: Learning low resource consumption CNN through pruning and quantization publication-title: IEEE Transactions on Emerging Topics in Computing – volume: 112 year: 2022 ident: 10.1016/j.tifs.2025.105176_bib18 article-title: A rapid and effective method for species identification of edible boletes: FT-NIR spectroscopy combined with ResNet publication-title: Journal of Food Composition and Analysis doi: 10.1016/j.jfca.2022.104698 – volume: 19 issue: 1 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib11 article-title: Recognition of food images based on transfer learning and ensemble learning publication-title: PLoS One doi: 10.1371/journal.pone.0296789 – volume: 2 start-page: 329 year: 2022 ident: 10.1016/j.tifs.2025.105176_bib83 article-title: Food safety management system (FSMS) model with application of the PDCA cycle and risk assessment as requirements of the ISO 22000:2018 standard publication-title: Standards doi: 10.3390/standards2030023 – volume: 7 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib9 article-title: Food tray sealing fault detection in multi-spectral images using data fusion and deep learning techniques publication-title: Journal of Imaging doi: 10.3390/jimaging7090186 – volume: 231 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib50 article-title: HACCP certification in food industry: Trade-offs in product safety and firm performance publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2020.107838 – volume: 158 year: 2025 ident: 10.1016/j.tifs.2025.105176_bib47 article-title: Creation of novel animal protein substitutes with potato protein and gellan gum: Control of food texture, color, and shape publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2024.110510 – volume: 32 start-page: 5171 issue: 4 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib26 article-title: Deep transfer learning-based computer vision for real-time harvest period classification and impurity detection of Porphyra haitnensis publication-title: Aquaculture International doi: 10.1007/s10499-024-01422-6 – volume: 2078 issue: 1 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib34 article-title: Research on model compression for embedded platform through quantization and pruning publication-title: Journal of Physics: Conference Series – volume: 358 year: 2023 ident: 10.1016/j.tifs.2025.105176_bib74 article-title: Measuring food volume from RGB-depth image with point cloud conversion method using geometrical approach and robust ellipsoid fitting algorithm publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2023.111656 – volume: 3 start-page: 657 issue: 6 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib22 article-title: AI-based soft-sensor for shelf life prediction of ‘Kesar’ mango publication-title: SN Applied Sciences doi: 10.1007/s42452-021-04657-7 – volume: 16 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib77 article-title: A lightweight hybrid model with location-preserving ViT for efficient food recognition publication-title: Nutrients doi: 10.3390/nu16020200 – volume: 133 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib58 article-title: Datasets and methods of product recognition on grocery shelf images using computer vision and machine learning approaches: An exhaustive literature review publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2024.108452 – volume: 11 year: 2022 ident: 10.1016/j.tifs.2025.105176_bib75 article-title: Rapid non-destructive analysis of food nutrient content using swin-nutrition publication-title: Foods doi: 10.3390/foods11213429 – volume: 167 year: 2025 ident: 10.1016/j.tifs.2025.105176_bib30 article-title: Optimization of optical spectroscopy classification algorithms for limited data scenarios in the food industry: Tomato sauce samples case publication-title: Food Control doi: 10.1016/j.foodcont.2024.110819 – volume: 8 start-page: 101 issue: 1 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib80 article-title: Text data augmentation for deep learning publication-title: Journal of Big Data doi: 10.1186/s40537-021-00492-0 – year: 2015 ident: 10.1016/j.tifs.2025.105176_bib71 article-title: You only look once: Unified, real-time object detection – volume: 12 start-page: 2392 issue: 1 year: 2022 ident: 10.1016/j.tifs.2025.105176_bib29 article-title: Combining deep learning and fluorescence imaging to automatically identify fecal contamination on meat carcasses publication-title: Scientific Reports doi: 10.1038/s41598-022-06379-1 – volume: 122 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib66 article-title: Deep transfer learning to verify quality and safety of ground coffee publication-title: Food Control doi: 10.1016/j.foodcont.2020.107801 – volume: 34 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib53 article-title: A deep neural network and random forests driven computer vision framework for identification and prediction of metanil yellow adulteration in turmeric powder publication-title: Concurrency and Computation: Practice and Experience – volume: 108 start-page: 49 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib7 article-title: Foodomics: A new approach in food quality and safety publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2020.11.028 – volume: 36 start-page: 5333 issue: 10 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib35 article-title: A lightweight deep neural network model and its applications based on channel pruning and group vector quantization publication-title: Neural Computing & Applications doi: 10.1007/s00521-023-09332-z – volume: 6 start-page: 60 issue: 1 year: 2019 ident: 10.1016/j.tifs.2025.105176_bib79 article-title: A survey on image data augmentation for deep learning publication-title: Journal of Big Data doi: 10.1186/s40537-019-0197-0 – volume: 118 start-page: 106 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib56 article-title: A concise review on food quality assessment using digital image processing publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2021.09.014 – volume: 20 year: 2020 ident: 10.1016/j.tifs.2025.105176_bib39 article-title: IoT-Blockchain enabled optimized provenance System for food industry 4.0 using advanced deep learning publication-title: Sensors – volume: 10 issue: 42 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib69 article-title: Remote sensing and computer vision for marine aquaculture publication-title: Science Advances doi: 10.1126/sciadv.adn4944 – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib8 article-title: Deep learning for the quality control of thermoforming food packages publication-title: Scientific Reports doi: 10.1038/s41598-021-01254-x – volume: 172 year: 2020 ident: 10.1016/j.tifs.2025.105176_bib10 article-title: Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105345 – volume: 50 year: 2023 ident: 10.1016/j.tifs.2025.105176_bib78 article-title: Nondestructive detection of the bioactive components and nutritional value in restructured functional foods publication-title: Current Opinion in Food Science doi: 10.1016/j.cofs.2022.100986 – volume: 147 start-page: 70 year: 2018 ident: 10.1016/j.tifs.2025.105176_bib36 article-title: Deep learning in agriculture: A survey publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2018.02.016 – volume: 32 start-page: 79 issue: 4 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib54 article-title: Computer-aided automatic detection of acrylamide in deep-fried carbohydrate-rich food items using deep learning publication-title: Machine Vision and Applications doi: 10.1007/s00138-021-01204-7 – year: 2019 ident: 10.1016/j.tifs.2025.105176_bib86 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks publication-title: ArXiv, abs/1905.11946 – volume: 122 start-page: 223 year: 2022 ident: 10.1016/j.tifs.2025.105176_bib94 article-title: A review on vision-based analysis for automatic dietary assessment publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2022.02.017 – volume: 148 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib95 article-title: Unlocking the opportunities for creating sustainable, flavorful and healthy high-protein “blue foods”: Focusing on the impacts of protein-flavor interactions publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2024.104523 – volume: 14 year: 2023 ident: 10.1016/j.tifs.2025.105176_bib73 article-title: Smart farming application using knowledge embedded-graph convolutional neural network (KEGCNN) for banana quality detection publication-title: Journal of Agriculture and Food Research doi: 10.1016/j.jafr.2023.100767 – volume: 36 start-page: 18705 issue: 30 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib38 article-title: Stacked ensemble learning based on deep transfer learning models for food ingredient classification and food quality determination publication-title: Neural Computing & Applications doi: 10.1007/s00521-024-10233-y – volume: 89 start-page: 4359 issue: 7 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib25 article-title: Real‐time quantitative detection of hydrocolloid adulteration in meat based on swin transformer and smartphone publication-title: Journal of Food Science doi: 10.1111/1750-3841.17159 – volume: 24 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib103 article-title: Carbon-efficient scheduling in fresh food supply chains with a time-window-constrained deep reinforcement learning model publication-title: Sensors doi: 10.3390/s24237461 – volume: 58 start-page: 96 issue: 4 year: 2025 ident: 10.1016/j.tifs.2025.105176_bib3 article-title: A comprehensive review of deep learning-based hyperspectral image reconstruction for agri-food quality appraisal publication-title: Artificial Intelligence Review doi: 10.1007/s10462-024-11090-w – volume: 45 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib21 article-title: Sensors driven system coupled with artificial intelligence for quality monitoring and HACCP in dairy production publication-title: Sensing and Bio-Sensing Research doi: 10.1016/j.sbsr.2024.100683 – volume: 161 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib14 article-title: Microscopic identification of foodborne bacterial pathogens based on deep learning method publication-title: Food Control doi: 10.1016/j.foodcont.2024.110413 – volume: 15 start-page: 449 issue: 3 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib27 article-title: A novel unified deep neural networks methodology for use by date recognition in retail food package image publication-title: Signal, Image and Video Processing doi: 10.1007/s11760-020-01764-7 – volume: 24 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib46 article-title: Amount estimation method for food intake based on color and depth images through deep learning publication-title: Sensors – volume: 462 year: 2025 ident: 10.1016/j.tifs.2025.105176_bib82 article-title: Smartphone video imaging: A versatile, low-cost technology for food authentication publication-title: Food Chemistry doi: 10.1016/j.foodchem.2024.140911 – year: 2014 ident: 10.1016/j.tifs.2025.105176_bib28 article-title: Generative adversarial nets – year: 2021 ident: 10.1016/j.tifs.2025.105176_bib57 article-title: MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer publication-title: ArXiv, abs/2110.02178 – year: 2024 ident: 10.1016/j.tifs.2025.105176_bib70 article-title: Efficient citrus fruit image classification via a hybrid hierarchical CNN and transfer learning framework publication-title: Journal of Food Measurement and Characterization – volume: 27 start-page: 3365 issue: 9 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib72 article-title: Deep learning based real-time industrial framework for rotten and fresh fruit detection using semantic segmentation publication-title: Microsystem Technologies doi: 10.1007/s00542-020-05123-x – volume: 11 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib96 article-title: Potato surface defect detection based on deep transfer learning publication-title: Agriculture doi: 10.3390/agriculture11090863 – volume: 138 start-page: 297 year: 2023 ident: 10.1016/j.tifs.2025.105176_bib93 article-title: Recent advances in the optimization of the sensory attributes of fried foods: Appearance, flavor, and texture publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2023.06.012 – volume: 23 year: 2023 ident: 10.1016/j.tifs.2025.105176_bib84 article-title: CNN–LSTM neural network for identification of pre-cooked pasta products in different physical states using infrared spectroscopy publication-title: Sensors – volume: 14 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib55 article-title: A robust and light-weight transfer learning-based architecture for accurate detection of leaf diseases across multiple plants using less amount of images publication-title: Frontiers in Plant Science doi: 10.3389/fpls.2023.1321877 – volume: 15 start-page: 1561 issue: 1 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib40 article-title: An agricultural digital twin for mandarins demonstrates the potential for individualized agriculture publication-title: Nature Communications doi: 10.1038/s41467-024-45725-x – year: 2024 ident: 10.1016/j.tifs.2025.105176_bib2 article-title: Development of IoT enabled deep learning model for Indian food classification: An approach based on differential evaluation publication-title: Food Analytical Methods – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.tifs.2025.105176_bib45 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 52 start-page: 927 issue: 1 year: 2022 ident: 10.1016/j.tifs.2025.105176_bib85 article-title: Citrus disease detection and classification using end-to-end anchor-based deep learning model publication-title: Applied Intelligence doi: 10.1007/s10489-021-02452-w – volume: 10 start-page: 69605 year: 2022 ident: 10.1016/j.tifs.2025.105176_bib90 article-title: Digital twins: A maturity model for their classification and evaluation publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3186353 – volume: 21 start-page: 5007 issue: 5 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib5 article-title: A novel technology to monitor effects of ethylene on the food products' supply chain: A deep learning approach publication-title: International journal of Environmental Science and Technology doi: 10.1007/s13762-023-05328-3 – volume: 173 year: 2020 ident: 10.1016/j.tifs.2025.105176_bib15 article-title: Using deep transfer learning for image-based plant disease identification publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2020.105393 – volume: 86 start-page: 40 issue: 1 year: 2020 ident: 10.1016/j.tifs.2025.105176_bib17 article-title: Implementation of food safety management systems that meets ISO 22000:2018 and HACCP: A case study of capsule biotechnology products of chaga mushroom publication-title: Journal of Food Science doi: 10.1111/1750-3841.15553 – volume: 13 year: 2023 ident: 10.1016/j.tifs.2025.105176_bib31 article-title: Research on lightweight model for rapid identification of chunky food based on machine vision publication-title: Applied Sciences – volume: 10 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib41 article-title: AI-Enabled efficient and safe food supply chain publication-title: Electronics doi: 10.3390/electronics10111223 – volume: 363 year: 2024 ident: 10.1016/j.tifs.2025.105176_bib51 article-title: CNN-assisted accurate smartphone testing of μPAD for pork sausage freshness publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2023.111772 – year: 2023 ident: 10.1016/j.tifs.2025.105176_bib99 article-title: FoodLMM: A versatile food assistant using large multi-modal model publication-title: ArXiv, abs/2312.14991 – volume: 1 start-page: 641 issue: 5 year: 2023 ident: 10.1016/j.tifs.2025.105176_bib61 article-title: A comprehensive review on CRISPR and artificial intelligence based emerging food packaging technology to ensure “safe food” publication-title: Sustainable Food Technology doi: 10.1039/D3FB00059A – volume: 112 start-page: 252 year: 2021 ident: 10.1016/j.tifs.2025.105176_bib60 article-title: Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2021.03.059 |
| SSID | ssj0005355 |
| Score | 2.4747682 |
| SecondaryResourceType | review_article |
| Snippet | Ensuring food quality and safety is a key priority for public health and economic stability. Traditional methods of food quality assessment, while effective,... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 105176 |
| SubjectTerms | Computer vision Deep learning Digital twin Food quality and safety IoT |
| Title | Innovative integration of computer vision, IoT, and digital twin in food quality and safety assessment |
| URI | https://dx.doi.org/10.1016/j.tifs.2025.105176 |
| Volume | 163 |
| WOSCitedRecordID | wos001548109200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0924-2244 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005355 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB0tWyTgULUFRGlBPnDbBhHHieNj1Q_aClUctrC3yIljSIWyVTe79B_wtzuOHWf7heiBSxRZsRN5nsaT0Zs3AB-0YGWY6jigUcQCpnIVSHSQgWQqlLrgkrWFtN--8NPTdDIRXweDP10tzOIXr-v06kpc_FdT4xga25TOPsLcflEcwHs0Ol7R7Hj9J8Mfuz6ni9JrQbigsHAdHEa2oLx1D9Nxx99U1Q_TQGTU_K5a9qM2ese25tJqNM2kNvxO6bU8lwPbnlvbzuuqhQywmjvZ-8_zNkFrGLWzn3NZeVbQwgxPKg_Y7y6bvd9jeM-VkxxN3ZnrUhY09pwsn3ukLMDYgd1ww87RWUcaGu2w5F4fb9MN53ika6O3TuOP_cM3BbVvHXSeftgx284zs0Zm1sjsGk9ghfJYpENY2T0-mJz0bKGobaDrv9zVX1mq4O0vuT_GWYpbxmuw6n44yK4FyjoMynoDnnX16LMNeLEkSfkSdA8fsgQfMtWkgw-x8NkhCJ4dgsggDjrEQAdnEQMB4qDTPmChQ3rovIKzw4Px3lHgenEEBY2jJuBaFCVLkzTP8QwoMNAvEp0rKVmqNEbpkY415SXLFW6J5glXn4QU6CCM-o8WefQahvW0Lt8AEaqgPAllbnIRMoqEZpLnaYh_voxqITZh1O1edmElV7KHLbYJcbfBmcO2DQYzxMtf5r191Fu24HkP5G0YNpfz8h08LRZNNbt878ByDWT8jtk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+integration+of+computer+vision%2C+IoT%2C+and+digital+twin+in+food+quality+and+safety+assessment&rft.jtitle=Trends+in+food+science+%26+technology&rft.au=Guo%2C+Mengshuai&rft.au=Lv%2C+Xin&rft.au=Wang%2C+Dan&rft.au=Chen%2C+Hong&rft.date=2025-09-01&rft.issn=0924-2244&rft.volume=163&rft.spage=105176&rft_id=info:doi/10.1016%2Fj.tifs.2025.105176&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tifs_2025_105176 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2244&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2244&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2244&client=summon |