Innovative integration of computer vision, IoT, and digital twin in food quality and safety assessment

Ensuring food quality and safety is a key priority for public health and economic stability. Traditional methods of food quality assessment, while effective, are often labor-intensive, destructive or lack traceability and transparency. Recent advances in deep learning and computer vision introduce d...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Trends in food science & technology Ročník 163; s. 105176
Hlavní autoři: Guo, Mengshuai, Lv, Xin, Wang, Dan, Chen, Hong, Wei, Fang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2025
Témata:
ISSN:0924-2244
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ensuring food quality and safety is a key priority for public health and economic stability. Traditional methods of food quality assessment, while effective, are often labor-intensive, destructive or lack traceability and transparency. Recent advances in deep learning and computer vision introduce digitally intelligent, cost-effective and automated solutions. This review presents a typical workflow of deep learning and computer vision, from data acquisition and data preprocessing to model selection, training and evaluation for validation, and summarizes the applications of deep learning and computer vision in different areas of food, such as image classification, object detection, image segmentation, and image generation, as well as model optimization strategies for different tasks. The applications of Internet of Things (IoT), digital twin, computer vision, and deep learning technologies in the food industry are highlighted. In addition, this review also discusses transfer learning and model compression methods, and reviews the applications of lightweight models and embedded systems in the food industry. The innovative integration of technologies such as computer vision, deep learning, IoT, and digital twin has enhanced food traceability and transparency, and promoted sustainable development. The advancement of cloud computing and big data technologies has promoted the deep integration of these technologies, enabling real-time, accurate and dynamic decision-making in food production. Looking forward to the future, the focus of future research should be placed on improving the availability and quality of labeled datasets, enhancing the interpretability and robustness of model. •Propose the challenges of deep learning models in interpretability and robustness.•Analyzing transfer learning and lightweight model in deep learning.•The application of DL and CV in food quality and safety is reviewed.•Propose an innovative integration of DL, CV, IoT and digital twin technologies.•Summarize the tasks and representative models of computer vision.
AbstractList Ensuring food quality and safety is a key priority for public health and economic stability. Traditional methods of food quality assessment, while effective, are often labor-intensive, destructive or lack traceability and transparency. Recent advances in deep learning and computer vision introduce digitally intelligent, cost-effective and automated solutions. This review presents a typical workflow of deep learning and computer vision, from data acquisition and data preprocessing to model selection, training and evaluation for validation, and summarizes the applications of deep learning and computer vision in different areas of food, such as image classification, object detection, image segmentation, and image generation, as well as model optimization strategies for different tasks. The applications of Internet of Things (IoT), digital twin, computer vision, and deep learning technologies in the food industry are highlighted. In addition, this review also discusses transfer learning and model compression methods, and reviews the applications of lightweight models and embedded systems in the food industry. The innovative integration of technologies such as computer vision, deep learning, IoT, and digital twin has enhanced food traceability and transparency, and promoted sustainable development. The advancement of cloud computing and big data technologies has promoted the deep integration of these technologies, enabling real-time, accurate and dynamic decision-making in food production. Looking forward to the future, the focus of future research should be placed on improving the availability and quality of labeled datasets, enhancing the interpretability and robustness of model. •Propose the challenges of deep learning models in interpretability and robustness.•Analyzing transfer learning and lightweight model in deep learning.•The application of DL and CV in food quality and safety is reviewed.•Propose an innovative integration of DL, CV, IoT and digital twin technologies.•Summarize the tasks and representative models of computer vision.
ArticleNumber 105176
Author Guo, Mengshuai
Wei, Fang
Wang, Dan
Chen, Hong
Lv, Xin
Author_xml – sequence: 1
  givenname: Mengshuai
  surname: Guo
  fullname: Guo, Mengshuai
  organization: Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
– sequence: 2
  givenname: Xin
  surname: Lv
  fullname: Lv, Xin
  organization: Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
– sequence: 3
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
  organization: Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
– sequence: 4
  givenname: Hong
  surname: Chen
  fullname: Chen, Hong
  organization: Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
– sequence: 5
  givenname: Fang
  orcidid: 0000-0002-0469-3567
  surname: Wei
  fullname: Wei, Fang
  email: willasa@163.com
  organization: Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, PR China
BookMark eNp9kM9uAiEQhznYpGr7Aj3xAK5l2WV3SXppTP-YmPRiz4SFwWAULOA2vn3Z2nNP88tkvsnMN0MT5x0g9FCSZUnK5nG_TNbEJSWU5QYr22aCpoTTuqC0rm_RLMY9IYRVjE2RWTvnB5nsANi6BLuQs3fYG6z88XROEPBgY24t8NpvF1g6jbXd2SQPOH1blylsvNf46ywPNl1-B6I0MMYYIcYjuHSHbow8RLj_q3P0-fqyXb0Xm4-39ep5UyjKqlS0hiuou6br-66iirBaNabXUtadNpyVlWGGtlD3Oj9q2qbVhEveg-K8IYb31RzR614VfIwBjDgFe5ThIkoiRjtiL0Y7YrQjrnYy9HSFIF82WAgiKgtOgbYBVBLa2__wH4ZxdCY
Cites_doi 10.3389/fsufs.2025.1538375
10.1007/s40747-023-01261-7
10.1016/j.compag.2022.107208
10.1016/j.foodchem.2023.136309
10.1002/asi.20317
10.1145/3065386
10.1016/j.foodcont.2019.106716
10.1038/s41598-025-87173-7
10.1016/j.infrared.2024.105442
10.1038/s41598-024-57077-z
10.1109/TNNLS.2025.3538924
10.1016/j.compind.2019.103133
10.1111/1750-3841.17620
10.1016/j.tifs.2024.104408
10.3389/fpls.2024.1495222
10.1038/s41538-022-00162-2
10.1111/jph.13374
10.1007/s13197-024-06158-y
10.1007/s11694-020-00627-6
10.1109/TPAMI.2023.3292075
10.3389/fnut.2022.1075781
10.1109/ACCESS.2022.3228701
10.1016/j.jfoodeng.2023.111658
10.3390/app13127138
10.1007/s12393-024-09385-3
10.3390/pr9111937
10.1007/s00217-024-04493-0
10.1021/acsomega.2c07722
10.1016/j.jfca.2022.104698
10.1371/journal.pone.0296789
10.3390/standards2030023
10.3390/jimaging7090186
10.1016/j.ijpe.2020.107838
10.1016/j.foodhyd.2024.110510
10.1007/s10499-024-01422-6
10.1016/j.jfoodeng.2023.111656
10.1007/s42452-021-04657-7
10.3390/nu16020200
10.1016/j.engappai.2024.108452
10.3390/foods11213429
10.1016/j.foodcont.2024.110819
10.1186/s40537-021-00492-0
10.1038/s41598-022-06379-1
10.1016/j.foodcont.2020.107801
10.1016/j.tifs.2020.11.028
10.1007/s00521-023-09332-z
10.1186/s40537-019-0197-0
10.1016/j.tifs.2021.09.014
10.1126/sciadv.adn4944
10.1038/s41598-021-01254-x
10.1016/j.compag.2020.105345
10.1016/j.cofs.2022.100986
10.1016/j.compag.2018.02.016
10.1007/s00138-021-01204-7
10.1016/j.tifs.2022.02.017
10.1016/j.tifs.2024.104523
10.1016/j.jafr.2023.100767
10.1007/s00521-024-10233-y
10.1111/1750-3841.17159
10.3390/s24237461
10.1007/s10462-024-11090-w
10.1016/j.sbsr.2024.100683
10.1016/j.foodcont.2024.110413
10.1007/s11760-020-01764-7
10.1016/j.foodchem.2024.140911
10.1007/s00542-020-05123-x
10.3390/agriculture11090863
10.1016/j.tifs.2023.06.012
10.3389/fpls.2023.1321877
10.1038/s41467-024-45725-x
10.1038/nature14539
10.1007/s10489-021-02452-w
10.1109/ACCESS.2022.3186353
10.1007/s13762-023-05328-3
10.1016/j.compag.2020.105393
10.1111/1750-3841.15553
10.3390/electronics10111223
10.1016/j.jfoodeng.2023.111772
10.1039/D3FB00059A
10.1016/j.tifs.2021.03.059
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tifs.2025.105176
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
ExternalDocumentID 10_1016_j_tifs_2025_105176
S0924224425003127
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
WH7
WUQ
Y6R
~G-
~HD
~KM
9DU
AAYXX
ACLOT
CITATION
ID FETCH-LOGICAL-c253t-7f9ce4868bb832c054c6fbdaa48df9513f5f27e4bd016f767d09a9bec9960f9b3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001548109200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-2244
IngestDate Sat Nov 29 06:55:08 EST 2025
Sat Sep 13 17:00:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Computer vision
Digital twin
Food quality and safety
IoT
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-7f9ce4868bb832c054c6fbdaa48df9513f5f27e4bd016f767d09a9bec9960f9b3
ORCID 0000-0002-0469-3567
ParticipantIDs crossref_primary_10_1016_j_tifs_2025_105176
elsevier_sciencedirect_doi_10_1016_j_tifs_2025_105176
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Trends in food science & technology
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Benouis, Medus, Saban, Ghemougui, Rosado-Muñoz (bib9) 2021; 7
Liu, Rhim, Park, Xu, Lo (bib50) 2021; 231
Kumar, Koul, Kamini, Woźniak, Shafi, Ijaz (bib44) 2024; 14
Mandal, Chatterjee, Tudu (bib53) 2021; 34
Uhlenkamp, Hauge, Broda, Lütjen, Freitag, Thoben (bib90) 2022; 10
Yin, Qi, Zhu, Chen, Jiang, Ngo (bib99) 2023
Stoyanova, Marinova, Stoilov, Kirechev (bib83) 2022; 2
Nayak, Dutta (bib61) 2023; 1
Gao, Huang, Chen, Shao, Ni, Cai (bib26) 2024; 32
Nuanmeesri (bib63) 2025; 15
Guo, Yang, Liu (bib31) 2023; 13
Shao, Min, Hou, Luo, Li, Zheng, Jiang (bib76) 2023; 424
Nanda, Das, Dandapat, Dhar, Bandyopadhyay, Dib, Lorenzo, Gagaoua (bib60) 2021; 112
Chen (bib13) 2005; 57
Dutta, Deshpande, Rai (bib22) 2021; 3
Khan, Byun, Park (bib39) 2020; 20
Chen, Chen, Zhang, Sun, Nanehkaran (bib15) 2020; 173
LeCun, Bengio, Hinton (bib45) 2015; 521
Lee, Kwon (bib46) 2024; 24
Roy, Chaudhuri, Pramanik (bib72) 2021; 27
Banús, Boada, Xiberta, Toldrà, Bustins (bib8) 2021; 11
Huang, Liu, Zhao, Wang (bib35) 2024; 36
Yin, Hameed, Xie, Ying (bib98) 2021; 15
Pradana-López, Pérez-Calabuig, Cancilla, Lozano, Rodrigo, Mena, Torrecilla (bib66) 2021; 122
Gorji, Shahabi, Sharma, Tande, Husarik, Qin, Chan, Baek, Kim, MacKinnon, Morrow, Sokolov, Akhbardeh, Vasefi, Tavakolian (bib29) 2022; 12
Yu, Cai, Luo, Hou, Deng (bib100) 2024; 10
Alahmari, Salem (bib4) 2022; 10
Dzwolak (bib23) 2019; 106
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (bib33) 2017
Agarwal, Dwivedi, Hazra, Gupta, Garg (bib2) 2024
Bu, Hu, Zhang (bib11) 2024; 19
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (bib20) 2020
Qi, Lu, Li, Wang, Sun, Liao (bib67) 2022; 10
Chen, Bao, Li, Wu, Qi, Zhu, Tan, Jia, Zhou, Qi (bib14) 2024; 161
Song, Wang, Yun (bib82) 2025; 462
Tseng, Chuang, Appell (bib88) 2023; 8
Kollia, Stevenson, Kollias (bib41) 2021; 10
Quaade, Vallebueno, Alcabes, Rodolfa, Ho (bib69) 2024; 10
Shorten, Khoshgoftaar, Furht (bib80) 2021; 8
Wang, Min, Li, Dong, Li, Jiang (bib94) 2022; 122
Shorten, Khoshgoftaar (bib79) 2019; 6
Hu, Wen (bib34) 2021; 2078
Gong, Thota, Yu, Duan, Swainson, Ye, Kollias (bib27) 2021; 15
Sun, Wang, Dong (bib84) 2023; 23
Zou, Gao, Wu, Liu (bib103) 2024; 24
Mehta, Rastegari (bib57) 2021
Shao, Hou, Jia, Zheng (bib75) 2022; 11
Wang, Wang, Xiang, Chen, Zhao, Li, Sun-Waterhouse, Wu (bib95) 2024; 148
Tzachor, Richards, Jeen (bib89) 2022; 6
Sari, Gofuku (bib74) 2023; 358
Balkir, Kemahlioglu, Yucel (bib7) 2021; 108
Liu, Zhang, Long, Bai, Huang, Gao (bib51) 2024; 363
Sajitha, Diana Andrushia, Mostafa, Younes Shdefat, Suni, Anand (bib73) 2023; 14
Wadsworth, Mahajan, Prasad, Menon (bib92) 2024; 141
Ni (bib62) 2024; 172
Keong, Husin, Ismail, Yasruddin (bib38) 2024; 36
Orchi, Sadik, Khaldoun (bib65) 2022; 12
Singh, Nickhil, Nisha, Upendar, Jithender, Deka (bib81) 2025; 17
Feng, Li, Zhang, Xie (bib24) 2023; 358
Ku, Chi, Ling (bib43) 2021; 9
Attokaren, Fernandes, Sriram, Murthy, Koolagudi (bib6) 2017
Liu, Cao, Luo, Chen, Vokkarane, Ma (bib48) 2016
Vennerød, Kjærran, Bugge (bib91) 2021
Krizhevsky, Sutskever, Hinton (bib42) 2017; 60
Redmon, Divvala, Girshick, Farhadi (bib71) 2015
Melek, Battini Sönmez, Varlı (bib58) 2024; 133
Wang, Xiao (bib96) 2021; 11
Chen, Liou, Hsu, Chen, Chuang (bib17) 2020; 86
Meenu, Kurade, Neelapu, Kalra, Ramaswamy, Yu (bib56) 2021; 118
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib28) 2014
Tan, Le (bib86) 2019
Meyes, Lu, Puiseau, Meisen (bib59) 2019
Sheng, Min, Zhu, Xu, Sun, Yang, Wang, Jiang (bib77) 2024; 16
Liu, Liang, Ye, Song, Zhao (bib49) 2023
Ahmed, Monjur, Khaliduzzaman, Kamruzzaman (bib3) 2025; 58
Sipola, Kokkonen, Puura, Riuttanen, Pitkäniemi, Juutilainen, Kontio (bib105) 2023; 13
Gupta, Madan, Quadir Md (bib32) 2022; 62
Wang, McClements, Xu, Meng, Qiu, Long, Jin, Chen (bib93) 2023; 138
Ceni (bib12) 2025; 36
Li, Luo, Hu, Yan, Ryu, McClements (bib47) 2025; 158
Kim, Heo (bib40) 2024; 15
Dragone, Grasso, Licciardi, Di Stefano, Frazzoli (bib21) 2024; 45
Chen, Liu, Li, Wang (bib18) 2022; 112
Mazumder, Mridha, Alfarhood, Safran, Abdullah-Al-Jubair, Che (bib55) 2024; 14
Syed-Ab-Rahman, Hesamian, Prasad (bib85) 2022; 52
Zhao, Wang, Wang (bib101) 2025; 90
Kamilaris, Prenafeta-Boldú (bib36) 2018; 147
Amani, Aghamohammadi (bib5) 2024; 21
Yildiz, Yasin, Koklu (bib97) 2024; 250
Chen, Dai, Zheng, Kang, Wang, Zheng, Gu, Mo, Luo (bib16) 2023; 9
Zhu, Lin, Jain, Zhou (bib102) 2023; 45
Tapkire, Arun, Lavanya, Shashidhar (bib87) 2025; 62
Qiu, Wang, Wang, Li, Jin, Qing, Shi (bib68) 2024; 15
Gracia Moisés, Pascual, Avedillo de la Casa, Pérez, Imas González, Ruiz-Zamarreño (bib30) 2025; 167
Raza, Raza, Babeker, Haq, Islam, Li (bib70) 2024
Abdurrahman, Ferrari (bib1) 2025; 9
Kaushal, Tammineni, Rana, Sharma, Sridhar, Chen (bib37) 2024; 146
Maurya, Singh, Pathak, Dutta (bib54) 2021; 32
Gao, Chen, Huang, Cai (bib25) 2024; 89
Shi, Liang, Pu, Li, Zou (bib78) 2023; 50
Bezen, Edan, Halachmi (bib10) 2020; 172
Lu, Chen, Olaniyi, Huang (bib52) 2022; 200
Onoufriou, Bickerton, Pearson, Leontidis (bib64) 2019; 113
Khan (10.1016/j.tifs.2025.105176_bib39) 2020; 20
Liu (10.1016/j.tifs.2025.105176_bib51) 2024; 363
Kaushal (10.1016/j.tifs.2025.105176_bib37) 2024; 146
Shi (10.1016/j.tifs.2025.105176_bib78) 2023; 50
Dosovitskiy (10.1016/j.tifs.2025.105176_bib20) 2020
Chen (10.1016/j.tifs.2025.105176_bib15) 2020; 173
Agarwal (10.1016/j.tifs.2025.105176_bib2) 2024
Gong (10.1016/j.tifs.2025.105176_bib27) 2021; 15
Bu (10.1016/j.tifs.2025.105176_bib11) 2024; 19
Lee (10.1016/j.tifs.2025.105176_bib46) 2024; 24
Yildiz (10.1016/j.tifs.2025.105176_bib97) 2024; 250
Zhu (10.1016/j.tifs.2025.105176_bib102) 2023; 45
Gorji (10.1016/j.tifs.2025.105176_bib29) 2022; 12
Singh (10.1016/j.tifs.2025.105176_bib81) 2025; 17
Nayak (10.1016/j.tifs.2025.105176_bib61) 2023; 1
Gao (10.1016/j.tifs.2025.105176_bib26) 2024; 32
Attokaren (10.1016/j.tifs.2025.105176_bib6) 2017
Yin (10.1016/j.tifs.2025.105176_bib98) 2021; 15
Tapkire (10.1016/j.tifs.2025.105176_bib87) 2025; 62
Roy (10.1016/j.tifs.2025.105176_bib72) 2021; 27
Dzwolak (10.1016/j.tifs.2025.105176_bib23) 2019; 106
Tan (10.1016/j.tifs.2025.105176_bib86) 2019
Wadsworth (10.1016/j.tifs.2025.105176_bib92) 2024; 141
Huang (10.1016/j.tifs.2025.105176_bib35) 2024; 36
Uhlenkamp (10.1016/j.tifs.2025.105176_bib90) 2022; 10
Benouis (10.1016/j.tifs.2025.105176_bib9) 2021; 7
LeCun (10.1016/j.tifs.2025.105176_bib45) 2015; 521
Mandal (10.1016/j.tifs.2025.105176_bib53) 2021; 34
Balkir (10.1016/j.tifs.2025.105176_bib7) 2021; 108
Pradana-López (10.1016/j.tifs.2025.105176_bib66) 2021; 122
Chen (10.1016/j.tifs.2025.105176_bib16) 2023; 9
Syed-Ab-Rahman (10.1016/j.tifs.2025.105176_bib85) 2022; 52
Sipola (10.1016/j.tifs.2025.105176_bib105) 2023; 13
Gracia Moisés (10.1016/j.tifs.2025.105176_bib30) 2025; 167
Abdurrahman (10.1016/j.tifs.2025.105176_bib1) 2025; 9
Banús (10.1016/j.tifs.2025.105176_bib8) 2021; 11
Dutta (10.1016/j.tifs.2025.105176_bib22) 2021; 3
Hu (10.1016/j.tifs.2025.105176_bib34) 2021; 2078
Kollia (10.1016/j.tifs.2025.105176_bib41) 2021; 10
Wang (10.1016/j.tifs.2025.105176_bib95) 2024; 148
Chen (10.1016/j.tifs.2025.105176_bib14) 2024; 161
Chen (10.1016/j.tifs.2025.105176_bib18) 2022; 112
Wang (10.1016/j.tifs.2025.105176_bib94) 2022; 122
Keong (10.1016/j.tifs.2025.105176_bib38) 2024; 36
Zhao (10.1016/j.tifs.2025.105176_bib101) 2025; 90
Melek (10.1016/j.tifs.2025.105176_bib58) 2024; 133
Onoufriou (10.1016/j.tifs.2025.105176_bib64) 2019; 113
Maurya (10.1016/j.tifs.2025.105176_bib54) 2021; 32
Dragone (10.1016/j.tifs.2025.105176_bib21) 2024; 45
Shorten (10.1016/j.tifs.2025.105176_bib79) 2019; 6
Wang (10.1016/j.tifs.2025.105176_bib96) 2021; 11
Krizhevsky (10.1016/j.tifs.2025.105176_bib42) 2017; 60
Qi (10.1016/j.tifs.2025.105176_bib67) 2022; 10
Kim (10.1016/j.tifs.2025.105176_bib40) 2024; 15
Wang (10.1016/j.tifs.2025.105176_bib93) 2023; 138
Yu (10.1016/j.tifs.2025.105176_bib100) 2024; 10
Howard (10.1016/j.tifs.2025.105176_bib33) 2017
Sari (10.1016/j.tifs.2025.105176_bib74) 2023; 358
Shao (10.1016/j.tifs.2025.105176_bib76) 2023; 424
Sajitha (10.1016/j.tifs.2025.105176_bib73) 2023; 14
Shao (10.1016/j.tifs.2025.105176_bib75) 2022; 11
Liu (10.1016/j.tifs.2025.105176_bib50) 2021; 231
Feng (10.1016/j.tifs.2025.105176_bib24) 2023; 358
Tseng (10.1016/j.tifs.2025.105176_bib88) 2023; 8
Qiu (10.1016/j.tifs.2025.105176_bib68) 2024; 15
Liu (10.1016/j.tifs.2025.105176_bib49) 2023
Tzachor (10.1016/j.tifs.2025.105176_bib89) 2022; 6
Raza (10.1016/j.tifs.2025.105176_bib70) 2024
Redmon (10.1016/j.tifs.2025.105176_bib71) 2015
Gupta (10.1016/j.tifs.2025.105176_bib32) 2022; 62
Goodfellow (10.1016/j.tifs.2025.105176_bib28) 2014
Ceni (10.1016/j.tifs.2025.105176_bib12) 2025; 36
Zou (10.1016/j.tifs.2025.105176_bib103) 2024; 24
Ahmed (10.1016/j.tifs.2025.105176_bib3) 2025; 58
Quaade (10.1016/j.tifs.2025.105176_bib69) 2024; 10
Mazumder (10.1016/j.tifs.2025.105176_bib55) 2024; 14
Song (10.1016/j.tifs.2025.105176_bib82) 2025; 462
Yin (10.1016/j.tifs.2025.105176_bib99) 2023
Sheng (10.1016/j.tifs.2025.105176_bib77) 2024; 16
Sun (10.1016/j.tifs.2025.105176_bib84) 2023; 23
Gao (10.1016/j.tifs.2025.105176_bib25) 2024; 89
Ku (10.1016/j.tifs.2025.105176_bib43) 2021; 9
Nanda (10.1016/j.tifs.2025.105176_bib60) 2021; 112
Shorten (10.1016/j.tifs.2025.105176_bib80) 2021; 8
Vennerød (10.1016/j.tifs.2025.105176_bib91) 2021
Kumar (10.1016/j.tifs.2025.105176_bib44) 2024; 14
Nuanmeesri (10.1016/j.tifs.2025.105176_bib63) 2025; 15
Alahmari (10.1016/j.tifs.2025.105176_bib4) 2022; 10
Chen (10.1016/j.tifs.2025.105176_bib13) 2005; 57
Lu (10.1016/j.tifs.2025.105176_bib52) 2022; 200
Amani (10.1016/j.tifs.2025.105176_bib5) 2024; 21
Bezen (10.1016/j.tifs.2025.105176_bib10) 2020; 172
Stoyanova (10.1016/j.tifs.2025.105176_bib83) 2022; 2
Chen (10.1016/j.tifs.2025.105176_bib17) 2020; 86
Ni (10.1016/j.tifs.2025.105176_bib62) 2024; 172
Orchi (10.1016/j.tifs.2025.105176_bib65) 2022; 12
Kamilaris (10.1016/j.tifs.2025.105176_bib36) 2018; 147
Meyes (10.1016/j.tifs.2025.105176_bib59) 2019
Meenu (10.1016/j.tifs.2025.105176_bib56) 2021; 118
Mehta (10.1016/j.tifs.2025.105176_bib57) 2021
Liu (10.1016/j.tifs.2025.105176_bib48) 2016
Li (10.1016/j.tifs.2025.105176_bib47) 2025; 158
Guo (10.1016/j.tifs.2025.105176_bib31) 2023; 13
References_xml – volume: 7
  year: 2021
  ident: bib9
  article-title: Food tray sealing fault detection in multi-spectral images using data fusion and deep learning techniques
  publication-title: Journal of Imaging
– volume: 50
  year: 2023
  ident: bib78
  article-title: Nondestructive detection of the bioactive components and nutritional value in restructured functional foods
  publication-title: Current Opinion in Food Science
– volume: 3
  start-page: 657
  year: 2021
  ident: bib22
  article-title: AI-based soft-sensor for shelf life prediction of ‘Kesar’ mango
  publication-title: SN Applied Sciences
– volume: 15
  start-page: 1561
  year: 2024
  ident: bib40
  article-title: An agricultural digital twin for mandarins demonstrates the potential for individualized agriculture
  publication-title: Nature Communications
– volume: 62
  start-page: 4758
  year: 2022
  end-page: 4763
  ident: bib32
  article-title: A smart agriculture framework for IoT based plant decay detection using smart croft algorithm
  publication-title: Materials Today: Proceedings
– volume: 133
  year: 2024
  ident: bib58
  article-title: Datasets and methods of product recognition on grocery shelf images using computer vision and machine learning approaches: An exhaustive literature review
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 17
  start-page: 127
  year: 2025
  end-page: 160
  ident: bib81
  article-title: A comprehensive review of advanced deep learning approaches for food freshness detection
  publication-title: Food Engineering Reviews
– volume: 24
  year: 2024
  ident: bib103
  article-title: Carbon-efficient scheduling in fresh food supply chains with a time-window-constrained deep reinforcement learning model
  publication-title: Sensors
– volume: 172
  year: 2024
  ident: bib62
  article-title: Smart agriculture: An intelligent approach for apple leaf disease identification based on convolutional neural network
  publication-title: Journal of Phytopathology
– volume: 10
  year: 2024
  ident: bib69
  article-title: Remote sensing and computer vision for marine aquaculture
  publication-title: Science Advances
– volume: 27
  start-page: 3365
  year: 2021
  end-page: 3375
  ident: bib72
  article-title: Deep learning based real-time industrial framework for rotten and fresh fruit detection using semantic segmentation
  publication-title: Microsystem Technologies
– volume: 15
  start-page: 189
  year: 2021
  end-page: 198
  ident: bib98
  article-title: Non-destructive detection of foreign contaminants in toast bread with near infrared spectroscopy and computer vision techniques
  publication-title: Journal of Food Measurement and Characterization
– volume: 138
  start-page: 297
  year: 2023
  end-page: 309
  ident: bib93
  article-title: Recent advances in the optimization of the sensory attributes of fried foods: Appearance, flavor, and texture
  publication-title: Trends in Food Science & Technology
– year: 2020
  ident: bib20
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: ArXiv, abs/2010.11929
– year: 2014
  ident: bib28
  article-title: Generative adversarial nets
  publication-title: Neural information processing systems
– volume: 12
  start-page: 2392
  year: 2022
  ident: bib29
  article-title: Combining deep learning and fluorescence imaging to automatically identify fecal contamination on meat carcasses
  publication-title: Scientific Reports
– year: 2019
  ident: bib59
  article-title: Ablation studies in artificial neural networks
  publication-title: ArXiv, abs/1901.08644
– volume: 11
  year: 2021
  ident: bib8
  article-title: Deep learning for the quality control of thermoforming food packages
  publication-title: Scientific Reports
– year: 2024
  ident: bib70
  article-title: Efficient citrus fruit image classification via a hybrid hierarchical CNN and transfer learning framework
  publication-title: Journal of Food Measurement and Characterization
– volume: 32
  start-page: 5171
  year: 2024
  end-page: 5198
  ident: bib26
  article-title: Deep transfer learning-based computer vision for real-time harvest period classification and impurity detection of Porphyra haitnensis
  publication-title: Aquaculture International
– volume: 173
  year: 2020
  ident: bib15
  article-title: Using deep transfer learning for image-based plant disease identification
  publication-title: Computers and Electronics in Agriculture
– volume: 158
  year: 2025
  ident: bib47
  article-title: Creation of novel animal protein substitutes with potato protein and gellan gum: Control of food texture, color, and shape
  publication-title: Food Hydrocolloids
– volume: 32
  start-page: 79
  year: 2021
  ident: bib54
  article-title: Computer-aided automatic detection of acrylamide in deep-fried carbohydrate-rich food items using deep learning
  publication-title: Machine Vision and Applications
– volume: 13
  year: 2023
  ident: bib31
  article-title: Research on lightweight model for rapid identification of chunky food based on machine vision
  publication-title: Applied Sciences
– year: 2015
  ident: bib71
  article-title: You only look once: Unified, real-time object detection
  publication-title: 2016 IEEE conference on computer vision and pattern recognition (CVPR)
– volume: 10
  start-page: 69605
  year: 2022
  end-page: 69635
  ident: bib90
  article-title: Digital twins: A maturity model for their classification and evaluation
  publication-title: IEEE Access
– volume: 14
  year: 2023
  ident: bib73
  article-title: Smart farming application using knowledge embedded-graph convolutional neural network (KEGCNN) for banana quality detection
  publication-title: Journal of Agriculture and Food Research
– volume: 122
  start-page: 223
  year: 2022
  end-page: 237
  ident: bib94
  article-title: A review on vision-based analysis for automatic dietary assessment
  publication-title: Trends in Food Science & Technology
– year: 2016
  ident: bib48
  article-title: DeepFood: Deep learning-based food image recognition for computer-aided dietary assessment
  publication-title: ArXiv, abs/1606.05675
– volume: 19
  year: 2024
  ident: bib11
  article-title: Recognition of food images based on transfer learning and ensemble learning
  publication-title: PLoS One
– start-page: 2801
  year: 2017
  end-page: 2806
  ident: bib6
  article-title: Food classification from images using convolutional neural networks
  publication-title: Tencon 2017 - 2017 IEEE region 10 conference
– volume: 9
  year: 2021
  ident: bib43
  article-title: Design of an IOTA tangle-based intelligent food safety service platform for bubble tea
  publication-title: Processes
– volume: 200
  year: 2022
  ident: bib52
  article-title: Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review
  publication-title: Computers and Electronics in Agriculture
– volume: 106
  year: 2019
  ident: bib23
  article-title: Assessment of HACCP plans in standardized food safety management systems – The case of small-sized Polish food businesses
  publication-title: Food Control
– volume: 363
  year: 2024
  ident: bib51
  article-title: CNN-assisted accurate smartphone testing of μPAD for pork sausage freshness
  publication-title: Journal of Food Engineering
– volume: 23
  year: 2023
  ident: bib84
  article-title: CNN–LSTM neural network for identification of pre-cooked pasta products in different physical states using infrared spectroscopy
  publication-title: Sensors
– volume: 16
  year: 2024
  ident: bib77
  article-title: A lightweight hybrid model with location-preserving ViT for efficient food recognition
  publication-title: Nutrients
– volume: 14
  start-page: 6589
  year: 2024
  ident: bib44
  article-title: Automated detection and recognition system for chewable food items using advanced deep learning models
  publication-title: Scientific Reports
– volume: 45
  start-page: 13344
  year: 2023
  end-page: 13362
  ident: bib102
  article-title: Transfer learning in deep reinforcement learning: A survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 8
  start-page: 15854
  year: 2023
  end-page: 15864
  ident: bib88
  article-title: When machine learning and deep learning come to the big data in food chemistry
  publication-title: ACS Omega
– volume: 112
  start-page: 252
  year: 2021
  end-page: 267
  ident: bib60
  article-title: Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review
  publication-title: Trends in Food Science & Technology
– volume: 167
  year: 2025
  ident: bib30
  article-title: Optimization of optical spectroscopy classification algorithms for limited data scenarios in the food industry: Tomato sauce samples case
  publication-title: Food Control
– volume: 122
  year: 2021
  ident: bib66
  article-title: Deep transfer learning to verify quality and safety of ground coffee
  publication-title: Food Control
– volume: 6
  start-page: 60
  year: 2019
  ident: bib79
  article-title: A survey on image data augmentation for deep learning
  publication-title: Journal of Big Data
– year: 2021
  ident: bib91
  article-title: Long short-term memory RNN
  publication-title: ArXiv, abs/2105.06756
– volume: 148
  year: 2024
  ident: bib95
  article-title: Unlocking the opportunities for creating sustainable, flavorful and healthy high-protein “blue foods”: Focusing on the impacts of protein-flavor interactions
  publication-title: Trends in Food Science & Technology
– volume: 36
  start-page: 5333
  year: 2024
  end-page: 5346
  ident: bib35
  article-title: A lightweight deep neural network model and its applications based on channel pruning and group vector quantization
  publication-title: Neural Computing & Applications
– volume: 34
  year: 2021
  ident: bib53
  article-title: A deep neural network and random forests driven computer vision framework for identification and prediction of metanil yellow adulteration in turmeric powder
  publication-title: Concurrency and Computation: Practice and Experience
– volume: 13
  year: 2023
  ident: bib105
  article-title: Digital twin of food supply chain for cyber exercises
  publication-title: Applied Sciences
– volume: 231
  year: 2021
  ident: bib50
  article-title: HACCP certification in food industry: Trade-offs in product safety and firm performance
  publication-title: International Journal of Production Economics
– volume: 424
  year: 2023
  ident: bib76
  article-title: Vision-based food nutrition estimation via RGB-D fusion network
  publication-title: Food Chemistry
– volume: 147
  start-page: 70
  year: 2018
  end-page: 90
  ident: bib36
  article-title: Deep learning in agriculture: A survey
  publication-title: Computers and Electronics in Agriculture
– volume: 24
  year: 2024
  ident: bib46
  article-title: Amount estimation method for food intake based on color and depth images through deep learning
  publication-title: Sensors
– volume: 9
  year: 2023
  ident: bib16
  article-title: Intelligent grading method for walnut kernels based on deep learning and physiological indicators
  publication-title: Frontiers in Nutrition
– volume: 118
  start-page: 106
  year: 2021
  end-page: 124
  ident: bib56
  article-title: A concise review on food quality assessment using digital image processing
  publication-title: Trends in Food Science & Technology
– volume: 21
  start-page: 5007
  year: 2024
  end-page: 5018
  ident: bib5
  article-title: A novel technology to monitor effects of ethylene on the food products' supply chain: A deep learning approach
  publication-title: International journal of Environmental Science and Technology
– volume: 10
  start-page: 130048
  year: 2022
  end-page: 130057
  ident: bib4
  article-title: Food state recognition using deep learning
  publication-title: IEEE Access
– volume: 45
  year: 2024
  ident: bib21
  article-title: Sensors driven system coupled with artificial intelligence for quality monitoring and HACCP in dairy production
  publication-title: Sensing and Bio-Sensing Research
– volume: 52
  start-page: 927
  year: 2022
  end-page: 938
  ident: bib85
  article-title: Citrus disease detection and classification using end-to-end anchor-based deep learning model
  publication-title: Applied Intelligence
– volume: 462
  year: 2025
  ident: bib82
  article-title: Smartphone video imaging: A versatile, low-cost technology for food authentication
  publication-title: Food Chemistry
– volume: 146
  year: 2024
  ident: bib37
  article-title: Computer vision and deep learning-based approaches for detection of food nutrients/nutrition: New insights and advances
  publication-title: Trends in Food Science & Technology
– volume: 141
  year: 2024
  ident: bib92
  article-title: Deep learning for thermal-RGB image-to-image translation
  publication-title: Infrared Physics & Technology
– year: 2019
  ident: bib86
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
  publication-title: ArXiv, abs/1905.11946
– volume: 2078
  year: 2021
  ident: bib34
  article-title: Research on model compression for embedded platform through quantization and pruning
  publication-title: Journal of Physics: Conference Series
– volume: 10
  start-page: 2047
  year: 2024
  end-page: 2066
  ident: bib100
  article-title: A-pruning: A lightweight pineapple flower counting network based on filter pruning
  publication-title: Complex & Intelligent Systems
– volume: 58
  start-page: 96
  year: 2025
  ident: bib3
  article-title: A comprehensive review of deep learning-based hyperspectral image reconstruction for agri-food quality appraisal
  publication-title: Artificial Intelligence Review
– volume: 36
  start-page: 18705
  year: 2024
  end-page: 18725
  ident: bib38
  article-title: Stacked ensemble learning based on deep transfer learning models for food ingredient classification and food quality determination
  publication-title: Neural Computing & Applications
– year: 2023
  ident: bib99
  article-title: FoodLMM: A versatile food assistant using large multi-modal model
  publication-title: ArXiv, abs/2312.14991
– volume: 15
  start-page: 449
  year: 2021
  end-page: 457
  ident: bib27
  article-title: A novel unified deep neural networks methodology for use by date recognition in retail food package image
  publication-title: Signal, Image and Video Processing
– volume: 10
  year: 2021
  ident: bib41
  article-title: AI-Enabled efficient and safe food supply chain
  publication-title: Electronics
– volume: 6
  start-page: 47
  year: 2022
  ident: bib89
  article-title: Transforming agrifood production systems and supply chains with digital twins
  publication-title: Npj Science of Food
– volume: 57
  start-page: 359
  year: 2005
  end-page: 377
  ident: bib13
  article-title: CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature
  publication-title: Journal of the American Society for Information Science and Technology
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: bib42
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
– volume: 36
  start-page: 10794
  year: 2025
  end-page: 10807
  ident: bib12
  article-title: Random orthogonal additive filters: A solution to the vanishing/exploding gradient of deep neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 250
  start-page: 1919
  year: 2024
  end-page: 1932
  ident: bib97
  article-title: Fisheye freshness detection using common deep learning algorithms and machine learning methods with a developed Mobile application
  publication-title: European Food Research and Technology
– volume: 20
  year: 2020
  ident: bib39
  article-title: IoT-Blockchain enabled optimized provenance System for food industry 4.0 using advanced deep learning
  publication-title: Sensors
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib45
  article-title: Deep learning
  publication-title: Nature
– volume: 358
  year: 2023
  ident: bib74
  article-title: Measuring food volume from RGB-depth image with point cloud conversion method using geometrical approach and robust ellipsoid fitting algorithm
  publication-title: Journal of Food Engineering
– volume: 113
  year: 2019
  ident: bib64
  article-title: Nemesyst: A hybrid parallelism deep learning-based framework applied for internet of things enabled food retailing refrigeration systems
  publication-title: Computers in Industry
– volume: 12
  year: 2022
  ident: bib65
  article-title: On using artificial intelligence and the internet of things for crop disease detection: A contemporary survey
  publication-title: Agriculture
– volume: 90
  year: 2025
  ident: bib101
  article-title: Causal inference of whole‐grain foods' risk based on a generative adversarial network and Bayesian network
  publication-title: Journal of Food Science
– volume: 9
  year: 2025
  ident: bib1
  article-title: Digital twin applications in the food industry: A review
  publication-title: Frontiers in Sustainable Food Systems
– volume: 89
  start-page: 4359
  year: 2024
  end-page: 4371
  ident: bib25
  article-title: Real‐time quantitative detection of hydrocolloid adulteration in meat based on swin transformer and smartphone
  publication-title: Journal of Food Science
– volume: 1
  start-page: 641
  year: 2023
  end-page: 657
  ident: bib61
  article-title: A comprehensive review on CRISPR and artificial intelligence based emerging food packaging technology to ensure “safe food”
  publication-title: Sustainable Food Technology
– volume: 11
  year: 2022
  ident: bib75
  article-title: Rapid non-destructive analysis of food nutrient content using swin-nutrition
  publication-title: Foods
– volume: 86
  start-page: 40
  year: 2020
  end-page: 54
  ident: bib17
  article-title: Implementation of food safety management systems that meets ISO 22000:2018 and HACCP: A case study of capsule biotechnology products of chaga mushroom
  publication-title: Journal of Food Science
– volume: 8
  start-page: 101
  year: 2021
  ident: bib80
  article-title: Text data augmentation for deep learning
  publication-title: Journal of Big Data
– volume: 11
  year: 2021
  ident: bib96
  article-title: Potato surface defect detection based on deep transfer learning
  publication-title: Agriculture
– volume: 62
  start-page: 1164
  year: 2025
  end-page: 1172
  ident: bib87
  article-title: Gluten identification from food images using advanced deep learning and transfer learning methods
  publication-title: Journal of Food Science and Technology
– volume: 108
  start-page: 49
  year: 2021
  end-page: 57
  ident: bib7
  article-title: Foodomics: A new approach in food quality and safety
  publication-title: Trends in Food Science & Technology
– volume: 161
  year: 2024
  ident: bib14
  article-title: Microscopic identification of foodborne bacterial pathogens based on deep learning method
  publication-title: Food Control
– volume: 10
  start-page: 886
  year: 2022
  end-page: 903
  ident: bib67
  article-title: Learning low resource consumption CNN through pruning and quantization
  publication-title: IEEE Transactions on Emerging Topics in Computing
– volume: 358
  year: 2023
  ident: bib24
  article-title: Detection of Atlantic salmon residues based on computer vision
  publication-title: Journal of Food Engineering
– year: 2017
  ident: bib33
  article-title: MobileNets: Efficient convolutional neural networks for Mobile vision applications
  publication-title: ArXiv, abs/1704.04861
– volume: 172
  year: 2020
  ident: bib10
  article-title: Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms
  publication-title: Computers and Electronics in Agriculture
– year: 2021
  ident: bib57
  article-title: MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer
  publication-title: ArXiv, abs/2110.02178
– volume: 14
  year: 2024
  ident: bib55
  article-title: A robust and light-weight transfer learning-based architecture for accurate detection of leaf diseases across multiple plants using less amount of images
  publication-title: Frontiers in Plant Science
– year: 2023
  ident: bib49
  article-title: A food package recognition and sorting system based on structured light and deep learning
  publication-title: Proceedings of the 2023 international joint conference on robotics and artificial intelligence
– volume: 112
  year: 2022
  ident: bib18
  article-title: A rapid and effective method for species identification of edible boletes: FT-NIR spectroscopy combined with ResNet
  publication-title: Journal of Food Composition and Analysis
– volume: 15
  year: 2024
  ident: bib68
  article-title: YOLO-SDL: A lightweight wheat grain detection technology based on an improved YOLOv8n model
  publication-title: Frontiers in Plant Science
– year: 2024
  ident: bib2
  article-title: Development of IoT enabled deep learning model for Indian food classification: An approach based on differential evaluation
  publication-title: Food Analytical Methods
– volume: 2
  start-page: 329
  year: 2022
  end-page: 351
  ident: bib83
  article-title: Food safety management system (FSMS) model with application of the PDCA cycle and risk assessment as requirements of the ISO 22000:2018 standard
  publication-title: Standards
– volume: 15
  start-page: 3719
  year: 2025
  ident: bib63
  article-title: Enhanced hybrid attention deep learning for avocado ripeness classification on resource constrained devices
  publication-title: Scientific Reports
– volume: 9
  year: 2025
  ident: 10.1016/j.tifs.2025.105176_bib1
  article-title: Digital twin applications in the food industry: A review
  publication-title: Frontiers in Sustainable Food Systems
  doi: 10.3389/fsufs.2025.1538375
– start-page: 2801
  year: 2017
  ident: 10.1016/j.tifs.2025.105176_bib6
  article-title: Food classification from images using convolutional neural networks
– volume: 10
  start-page: 2047
  issue: 2
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib100
  article-title: A-pruning: A lightweight pineapple flower counting network based on filter pruning
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-023-01261-7
– volume: 200
  year: 2022
  ident: 10.1016/j.tifs.2025.105176_bib52
  article-title: Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.107208
– volume: 424
  year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib76
  article-title: Vision-based food nutrition estimation via RGB-D fusion network
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2023.136309
– volume: 57
  start-page: 359
  issue: 3
  year: 2005
  ident: 10.1016/j.tifs.2025.105176_bib13
  article-title: CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature
  publication-title: Journal of the American Society for Information Science and Technology
  doi: 10.1002/asi.20317
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.tifs.2025.105176_bib42
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
  doi: 10.1145/3065386
– volume: 106
  year: 2019
  ident: 10.1016/j.tifs.2025.105176_bib23
  article-title: Assessment of HACCP plans in standardized food safety management systems – The case of small-sized Polish food businesses
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2019.106716
– volume: 15
  start-page: 3719
  issue: 1
  year: 2025
  ident: 10.1016/j.tifs.2025.105176_bib63
  article-title: Enhanced hybrid attention deep learning for avocado ripeness classification on resource constrained devices
  publication-title: Scientific Reports
  doi: 10.1038/s41598-025-87173-7
– volume: 141
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib92
  article-title: Deep learning for thermal-RGB image-to-image translation
  publication-title: Infrared Physics & Technology
  doi: 10.1016/j.infrared.2024.105442
– volume: 14
  start-page: 6589
  issue: 1
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib44
  article-title: Automated detection and recognition system for chewable food items using advanced deep learning models
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-57077-z
– volume: 36
  start-page: 10794
  issue: 6
  year: 2025
  ident: 10.1016/j.tifs.2025.105176_bib12
  article-title: Random orthogonal additive filters: A solution to the vanishing/exploding gradient of deep neural networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2025.3538924
– volume: 113
  year: 2019
  ident: 10.1016/j.tifs.2025.105176_bib64
  article-title: Nemesyst: A hybrid parallelism deep learning-based framework applied for internet of things enabled food retailing refrigeration systems
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2019.103133
– volume: 90
  issue: 1
  year: 2025
  ident: 10.1016/j.tifs.2025.105176_bib101
  article-title: Causal inference of whole‐grain foods' risk based on a generative adversarial network and Bayesian network
  publication-title: Journal of Food Science
  doi: 10.1111/1750-3841.17620
– volume: 146
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib37
  article-title: Computer vision and deep learning-based approaches for detection of food nutrients/nutrition: New insights and advances
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2024.104408
– volume: 15
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib68
  article-title: YOLO-SDL: A lightweight wheat grain detection technology based on an improved YOLOv8n model
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2024.1495222
– volume: 6
  start-page: 47
  issue: 1
  year: 2022
  ident: 10.1016/j.tifs.2025.105176_bib89
  article-title: Transforming agrifood production systems and supply chains with digital twins
  publication-title: Npj Science of Food
  doi: 10.1038/s41538-022-00162-2
– year: 2017
  ident: 10.1016/j.tifs.2025.105176_bib33
  article-title: MobileNets: Efficient convolutional neural networks for Mobile vision applications
  publication-title: ArXiv, abs/1704.04861
– year: 2020
  ident: 10.1016/j.tifs.2025.105176_bib20
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: ArXiv, abs/2010.11929
– volume: 172
  issue: 4
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib62
  article-title: Smart agriculture: An intelligent approach for apple leaf disease identification based on convolutional neural network
  publication-title: Journal of Phytopathology
  doi: 10.1111/jph.13374
– volume: 12
  year: 2022
  ident: 10.1016/j.tifs.2025.105176_bib65
  article-title: On using artificial intelligence and the internet of things for crop disease detection: A contemporary survey
  publication-title: Agriculture
– volume: 62
  start-page: 1164
  issue: 6
  year: 2025
  ident: 10.1016/j.tifs.2025.105176_bib87
  article-title: Gluten identification from food images using advanced deep learning and transfer learning methods
  publication-title: Journal of Food Science and Technology
  doi: 10.1007/s13197-024-06158-y
– year: 2016
  ident: 10.1016/j.tifs.2025.105176_bib48
  article-title: DeepFood: Deep learning-based food image recognition for computer-aided dietary assessment
  publication-title: ArXiv, abs/1606.05675
– volume: 15
  start-page: 189
  issue: 1
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib98
  article-title: Non-destructive detection of foreign contaminants in toast bread with near infrared spectroscopy and computer vision techniques
  publication-title: Journal of Food Measurement and Characterization
  doi: 10.1007/s11694-020-00627-6
– volume: 45
  start-page: 13344
  issue: 11
  year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib102
  article-title: Transfer learning in deep reinforcement learning: A survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2023.3292075
– year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib49
  article-title: A food package recognition and sorting system based on structured light and deep learning
– year: 2019
  ident: 10.1016/j.tifs.2025.105176_bib59
  article-title: Ablation studies in artificial neural networks
  publication-title: ArXiv, abs/1901.08644
– year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib91
  article-title: Long short-term memory RNN
  publication-title: ArXiv, abs/2105.06756
– volume: 9
  year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib16
  article-title: Intelligent grading method for walnut kernels based on deep learning and physiological indicators
  publication-title: Frontiers in Nutrition
  doi: 10.3389/fnut.2022.1075781
– volume: 10
  start-page: 130048
  year: 2022
  ident: 10.1016/j.tifs.2025.105176_bib4
  article-title: Food state recognition using deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3228701
– volume: 358
  year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib24
  article-title: Detection of Atlantic salmon residues based on computer vision
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2023.111658
– volume: 13
  year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib105
  article-title: Digital twin of food supply chain for cyber exercises
  publication-title: Applied Sciences
  doi: 10.3390/app13127138
– volume: 17
  start-page: 127
  issue: 1
  year: 2025
  ident: 10.1016/j.tifs.2025.105176_bib81
  article-title: A comprehensive review of advanced deep learning approaches for food freshness detection
  publication-title: Food Engineering Reviews
  doi: 10.1007/s12393-024-09385-3
– volume: 9
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib43
  article-title: Design of an IOTA tangle-based intelligent food safety service platform for bubble tea
  publication-title: Processes
  doi: 10.3390/pr9111937
– volume: 250
  start-page: 1919
  issue: 7
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib97
  article-title: Fisheye freshness detection using common deep learning algorithms and machine learning methods with a developed Mobile application
  publication-title: European Food Research and Technology
  doi: 10.1007/s00217-024-04493-0
– volume: 62
  start-page: 4758
  year: 2022
  ident: 10.1016/j.tifs.2025.105176_bib32
  article-title: A smart agriculture framework for IoT based plant decay detection using smart croft algorithm
  publication-title: Materials Today: Proceedings
– volume: 8
  start-page: 15854
  issue: 18
  year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib88
  article-title: When machine learning and deep learning come to the big data in food chemistry
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c07722
– volume: 10
  start-page: 886
  issue: 2
  year: 2022
  ident: 10.1016/j.tifs.2025.105176_bib67
  article-title: Learning low resource consumption CNN through pruning and quantization
  publication-title: IEEE Transactions on Emerging Topics in Computing
– volume: 112
  year: 2022
  ident: 10.1016/j.tifs.2025.105176_bib18
  article-title: A rapid and effective method for species identification of edible boletes: FT-NIR spectroscopy combined with ResNet
  publication-title: Journal of Food Composition and Analysis
  doi: 10.1016/j.jfca.2022.104698
– volume: 19
  issue: 1
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib11
  article-title: Recognition of food images based on transfer learning and ensemble learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0296789
– volume: 2
  start-page: 329
  year: 2022
  ident: 10.1016/j.tifs.2025.105176_bib83
  article-title: Food safety management system (FSMS) model with application of the PDCA cycle and risk assessment as requirements of the ISO 22000:2018 standard
  publication-title: Standards
  doi: 10.3390/standards2030023
– volume: 7
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib9
  article-title: Food tray sealing fault detection in multi-spectral images using data fusion and deep learning techniques
  publication-title: Journal of Imaging
  doi: 10.3390/jimaging7090186
– volume: 231
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib50
  article-title: HACCP certification in food industry: Trade-offs in product safety and firm performance
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2020.107838
– volume: 158
  year: 2025
  ident: 10.1016/j.tifs.2025.105176_bib47
  article-title: Creation of novel animal protein substitutes with potato protein and gellan gum: Control of food texture, color, and shape
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2024.110510
– volume: 32
  start-page: 5171
  issue: 4
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib26
  article-title: Deep transfer learning-based computer vision for real-time harvest period classification and impurity detection of Porphyra haitnensis
  publication-title: Aquaculture International
  doi: 10.1007/s10499-024-01422-6
– volume: 2078
  issue: 1
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib34
  article-title: Research on model compression for embedded platform through quantization and pruning
  publication-title: Journal of Physics: Conference Series
– volume: 358
  year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib74
  article-title: Measuring food volume from RGB-depth image with point cloud conversion method using geometrical approach and robust ellipsoid fitting algorithm
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2023.111656
– volume: 3
  start-page: 657
  issue: 6
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib22
  article-title: AI-based soft-sensor for shelf life prediction of ‘Kesar’ mango
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-021-04657-7
– volume: 16
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib77
  article-title: A lightweight hybrid model with location-preserving ViT for efficient food recognition
  publication-title: Nutrients
  doi: 10.3390/nu16020200
– volume: 133
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib58
  article-title: Datasets and methods of product recognition on grocery shelf images using computer vision and machine learning approaches: An exhaustive literature review
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2024.108452
– volume: 11
  year: 2022
  ident: 10.1016/j.tifs.2025.105176_bib75
  article-title: Rapid non-destructive analysis of food nutrient content using swin-nutrition
  publication-title: Foods
  doi: 10.3390/foods11213429
– volume: 167
  year: 2025
  ident: 10.1016/j.tifs.2025.105176_bib30
  article-title: Optimization of optical spectroscopy classification algorithms for limited data scenarios in the food industry: Tomato sauce samples case
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2024.110819
– volume: 8
  start-page: 101
  issue: 1
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib80
  article-title: Text data augmentation for deep learning
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-021-00492-0
– year: 2015
  ident: 10.1016/j.tifs.2025.105176_bib71
  article-title: You only look once: Unified, real-time object detection
– volume: 12
  start-page: 2392
  issue: 1
  year: 2022
  ident: 10.1016/j.tifs.2025.105176_bib29
  article-title: Combining deep learning and fluorescence imaging to automatically identify fecal contamination on meat carcasses
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-06379-1
– volume: 122
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib66
  article-title: Deep transfer learning to verify quality and safety of ground coffee
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2020.107801
– volume: 34
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib53
  article-title: A deep neural network and random forests driven computer vision framework for identification and prediction of metanil yellow adulteration in turmeric powder
  publication-title: Concurrency and Computation: Practice and Experience
– volume: 108
  start-page: 49
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib7
  article-title: Foodomics: A new approach in food quality and safety
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2020.11.028
– volume: 36
  start-page: 5333
  issue: 10
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib35
  article-title: A lightweight deep neural network model and its applications based on channel pruning and group vector quantization
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-023-09332-z
– volume: 6
  start-page: 60
  issue: 1
  year: 2019
  ident: 10.1016/j.tifs.2025.105176_bib79
  article-title: A survey on image data augmentation for deep learning
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 118
  start-page: 106
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib56
  article-title: A concise review on food quality assessment using digital image processing
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2021.09.014
– volume: 20
  year: 2020
  ident: 10.1016/j.tifs.2025.105176_bib39
  article-title: IoT-Blockchain enabled optimized provenance System for food industry 4.0 using advanced deep learning
  publication-title: Sensors
– volume: 10
  issue: 42
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib69
  article-title: Remote sensing and computer vision for marine aquaculture
  publication-title: Science Advances
  doi: 10.1126/sciadv.adn4944
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib8
  article-title: Deep learning for the quality control of thermoforming food packages
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-01254-x
– volume: 172
  year: 2020
  ident: 10.1016/j.tifs.2025.105176_bib10
  article-title: Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105345
– volume: 50
  year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib78
  article-title: Nondestructive detection of the bioactive components and nutritional value in restructured functional foods
  publication-title: Current Opinion in Food Science
  doi: 10.1016/j.cofs.2022.100986
– volume: 147
  start-page: 70
  year: 2018
  ident: 10.1016/j.tifs.2025.105176_bib36
  article-title: Deep learning in agriculture: A survey
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2018.02.016
– volume: 32
  start-page: 79
  issue: 4
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib54
  article-title: Computer-aided automatic detection of acrylamide in deep-fried carbohydrate-rich food items using deep learning
  publication-title: Machine Vision and Applications
  doi: 10.1007/s00138-021-01204-7
– year: 2019
  ident: 10.1016/j.tifs.2025.105176_bib86
  article-title: EfficientNet: Rethinking model scaling for convolutional neural networks
  publication-title: ArXiv, abs/1905.11946
– volume: 122
  start-page: 223
  year: 2022
  ident: 10.1016/j.tifs.2025.105176_bib94
  article-title: A review on vision-based analysis for automatic dietary assessment
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2022.02.017
– volume: 148
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib95
  article-title: Unlocking the opportunities for creating sustainable, flavorful and healthy high-protein “blue foods”: Focusing on the impacts of protein-flavor interactions
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2024.104523
– volume: 14
  year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib73
  article-title: Smart farming application using knowledge embedded-graph convolutional neural network (KEGCNN) for banana quality detection
  publication-title: Journal of Agriculture and Food Research
  doi: 10.1016/j.jafr.2023.100767
– volume: 36
  start-page: 18705
  issue: 30
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib38
  article-title: Stacked ensemble learning based on deep transfer learning models for food ingredient classification and food quality determination
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-024-10233-y
– volume: 89
  start-page: 4359
  issue: 7
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib25
  article-title: Real‐time quantitative detection of hydrocolloid adulteration in meat based on swin transformer and smartphone
  publication-title: Journal of Food Science
  doi: 10.1111/1750-3841.17159
– volume: 24
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib103
  article-title: Carbon-efficient scheduling in fresh food supply chains with a time-window-constrained deep reinforcement learning model
  publication-title: Sensors
  doi: 10.3390/s24237461
– volume: 58
  start-page: 96
  issue: 4
  year: 2025
  ident: 10.1016/j.tifs.2025.105176_bib3
  article-title: A comprehensive review of deep learning-based hyperspectral image reconstruction for agri-food quality appraisal
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-024-11090-w
– volume: 45
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib21
  article-title: Sensors driven system coupled with artificial intelligence for quality monitoring and HACCP in dairy production
  publication-title: Sensing and Bio-Sensing Research
  doi: 10.1016/j.sbsr.2024.100683
– volume: 161
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib14
  article-title: Microscopic identification of foodborne bacterial pathogens based on deep learning method
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2024.110413
– volume: 15
  start-page: 449
  issue: 3
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib27
  article-title: A novel unified deep neural networks methodology for use by date recognition in retail food package image
  publication-title: Signal, Image and Video Processing
  doi: 10.1007/s11760-020-01764-7
– volume: 24
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib46
  article-title: Amount estimation method for food intake based on color and depth images through deep learning
  publication-title: Sensors
– volume: 462
  year: 2025
  ident: 10.1016/j.tifs.2025.105176_bib82
  article-title: Smartphone video imaging: A versatile, low-cost technology for food authentication
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2024.140911
– year: 2014
  ident: 10.1016/j.tifs.2025.105176_bib28
  article-title: Generative adversarial nets
– year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib57
  article-title: MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer
  publication-title: ArXiv, abs/2110.02178
– year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib70
  article-title: Efficient citrus fruit image classification via a hybrid hierarchical CNN and transfer learning framework
  publication-title: Journal of Food Measurement and Characterization
– volume: 27
  start-page: 3365
  issue: 9
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib72
  article-title: Deep learning based real-time industrial framework for rotten and fresh fruit detection using semantic segmentation
  publication-title: Microsystem Technologies
  doi: 10.1007/s00542-020-05123-x
– volume: 11
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib96
  article-title: Potato surface defect detection based on deep transfer learning
  publication-title: Agriculture
  doi: 10.3390/agriculture11090863
– volume: 138
  start-page: 297
  year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib93
  article-title: Recent advances in the optimization of the sensory attributes of fried foods: Appearance, flavor, and texture
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2023.06.012
– volume: 23
  year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib84
  article-title: CNN–LSTM neural network for identification of pre-cooked pasta products in different physical states using infrared spectroscopy
  publication-title: Sensors
– volume: 14
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib55
  article-title: A robust and light-weight transfer learning-based architecture for accurate detection of leaf diseases across multiple plants using less amount of images
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2023.1321877
– volume: 15
  start-page: 1561
  issue: 1
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib40
  article-title: An agricultural digital twin for mandarins demonstrates the potential for individualized agriculture
  publication-title: Nature Communications
  doi: 10.1038/s41467-024-45725-x
– year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib2
  article-title: Development of IoT enabled deep learning model for Indian food classification: An approach based on differential evaluation
  publication-title: Food Analytical Methods
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.tifs.2025.105176_bib45
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 52
  start-page: 927
  issue: 1
  year: 2022
  ident: 10.1016/j.tifs.2025.105176_bib85
  article-title: Citrus disease detection and classification using end-to-end anchor-based deep learning model
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-021-02452-w
– volume: 10
  start-page: 69605
  year: 2022
  ident: 10.1016/j.tifs.2025.105176_bib90
  article-title: Digital twins: A maturity model for their classification and evaluation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3186353
– volume: 21
  start-page: 5007
  issue: 5
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib5
  article-title: A novel technology to monitor effects of ethylene on the food products' supply chain: A deep learning approach
  publication-title: International journal of Environmental Science and Technology
  doi: 10.1007/s13762-023-05328-3
– volume: 173
  year: 2020
  ident: 10.1016/j.tifs.2025.105176_bib15
  article-title: Using deep transfer learning for image-based plant disease identification
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2020.105393
– volume: 86
  start-page: 40
  issue: 1
  year: 2020
  ident: 10.1016/j.tifs.2025.105176_bib17
  article-title: Implementation of food safety management systems that meets ISO 22000:2018 and HACCP: A case study of capsule biotechnology products of chaga mushroom
  publication-title: Journal of Food Science
  doi: 10.1111/1750-3841.15553
– volume: 13
  year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib31
  article-title: Research on lightweight model for rapid identification of chunky food based on machine vision
  publication-title: Applied Sciences
– volume: 10
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib41
  article-title: AI-Enabled efficient and safe food supply chain
  publication-title: Electronics
  doi: 10.3390/electronics10111223
– volume: 363
  year: 2024
  ident: 10.1016/j.tifs.2025.105176_bib51
  article-title: CNN-assisted accurate smartphone testing of μPAD for pork sausage freshness
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2023.111772
– year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib99
  article-title: FoodLMM: A versatile food assistant using large multi-modal model
  publication-title: ArXiv, abs/2312.14991
– volume: 1
  start-page: 641
  issue: 5
  year: 2023
  ident: 10.1016/j.tifs.2025.105176_bib61
  article-title: A comprehensive review on CRISPR and artificial intelligence based emerging food packaging technology to ensure “safe food”
  publication-title: Sustainable Food Technology
  doi: 10.1039/D3FB00059A
– volume: 112
  start-page: 252
  year: 2021
  ident: 10.1016/j.tifs.2025.105176_bib60
  article-title: Nutritional aspects, flavour profile and health benefits of crab meat based novel food products and valorisation of processing waste to wealth: A review
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2021.03.059
SSID ssj0005355
Score 2.4748447
SecondaryResourceType review_article
Snippet Ensuring food quality and safety is a key priority for public health and economic stability. Traditional methods of food quality assessment, while effective,...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105176
SubjectTerms Computer vision
Deep learning
Digital twin
Food quality and safety
IoT
Title Innovative integration of computer vision, IoT, and digital twin in food quality and safety assessment
URI https://dx.doi.org/10.1016/j.tifs.2025.105176
Volume 163
WOSCitedRecordID wos001548109200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0924-2244
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005355
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5BigQ9ICggSgHtgVtqKV3bu-tj1QcthwqJIHKz9uEF9-BUtRP685l92A4tQoDExYpW2U0082n2y-SbGYB3lWEzqpVMCip1kkmmEsF4lhxIJdWMGSqY8cMm-MWFWCyKj_Ef_NaPE-BNI25uiqv_6mpcQ2e70tm_cPdwKC7ga3Q6PtHt-Pwjx5_HOafraugFEUmhjhMcpqGg3IeH5bzXb5r6qxsgMu2-1179aF2_41BzGXo0tdI6faccenluEttRW-v39dVCDljdnez9-5VP0DpFbfttJetBFbR2y4t6AOyXmM0-HjF8FMtJzpbxzo0pC5oPmqyYR-traUbhkk9I0ixBQpH9FJtD9LsT50PK4RKvdet6rtPczSs-4Leaavtr-pM72J2LZA8jGOX3YYvyvBAT2Do8P1l8GBVBqR-SO3yRWGMV5IC3P-nXPGaDm8yfwOP4o4IcBjA8hXtVswMP-5rzdge2N9pOPgM7QoRsQIQsLekhQgJE9gkCZJ-g90mEB3HwwF3EuZlEePg3BHiQER7P4fPpyfzoLInzNhJN87RLuC10lQkmlMI4r5HMa2aVkTITxiITT21uKa8yZdAkljNuZoUsMAi4Dj-2UOkLmDTLpnoJRGkhUptSI4zCW4JKmxsjU22szhQ3bBemvfXKq9BWpez1hpels3XpbF0GW-9C3hu4jPgNhK9EPPxm36t_3LcHj0bYvoZJd72q3sADve7q9vpthM0POWKLqA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+integration+of+computer+vision%2C+IoT%2C+and+digital+twin+in+food+quality+and+safety+assessment&rft.jtitle=Trends+in+food+science+%26+technology&rft.au=Guo%2C+Mengshuai&rft.au=Lv%2C+Xin&rft.au=Wang%2C+Dan&rft.au=Chen%2C+Hong&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=0924-2244&rft.volume=163&rft_id=info:doi/10.1016%2Fj.tifs.2025.105176&rft.externalDocID=S0924224425003127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2244&client=summon