An expensive multi-objective evolutionary algorithm based on grid and relation learning

In many real-world applications, there is often a need to optimize multiple objectives, which are frequently and simultaneously conflicting. The evaluation process consumes computational resources or funds, making it difficult to provide adequate function evaluations for converging evolutionary algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied soft computing Jg. 186; S. 114135
Hauptverfasser: Cheng, Yan, Wang, Jiaqi, Yu, Gongcheng, Yao, Yuxiao, Chen, Yanyin, Li, Guowei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2026
Schlagworte:
ISSN:1568-4946
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!