An expensive multi-objective evolutionary algorithm based on grid and relation learning

In many real-world applications, there is often a need to optimize multiple objectives, which are frequently and simultaneously conflicting. The evaluation process consumes computational resources or funds, making it difficult to provide adequate function evaluations for converging evolutionary algo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied soft computing Ročník 186; s. 114135
Hlavní autoři: Cheng, Yan, Wang, Jiaqi, Yu, Gongcheng, Yao, Yuxiao, Chen, Yanyin, Li, Guowei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2026
Témata:
ISSN:1568-4946
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In many real-world applications, there is often a need to optimize multiple objectives, which are frequently and simultaneously conflicting. The evaluation process consumes computational resources or funds, making it difficult to provide adequate function evaluations for converging evolutionary algorithms. Surrogate models have become an effective solution for obtaining more virtual evaluations, particularly when computational resources are limited. Most existing surrogate models are either regression-based or classification-based, and their performance heavily depends on the quality of training data. Imbalanced datasets may significantly impact the quality of surrogate models. To address this, a relationship-based surrogate-assisted evolutionary algorithm is proposed in this paper. This algorithm utilizes the surrogate model to compare candidate solutions rather than directly predicting the fitness values of solutions. This can better balance positive and negative samples. Considering the characteristics of data generated during optimization, a grid-based data partitioning method is used to discretize the objective space into grids. A balanced training dataset is created based on the grid positions, and a classifier is built to learn relationships from the training dataset. A reference point selection mechanism is introduced to choose reference points using reference vectors, thereby filtering out promising solutions. The proposed method was validated using the Wilcoxon rank-sum test (α=0.05) on 88 benchmark test instances and one real-world engineering optimization problem. Experimental results demonstrate that the proposed method achieves statistically significant optimal results (p<0.05) in 62 instances compared to state-of-the-art surrogate-assisted evolutionary algorithms. •Propose a relationship-based surrogate model trained on pairwise solution comparisons.•Employ grid-based ranking to select superior solutions for constructing training pairs.•Propose GRE-MOEA to solve multi-objective problems with limited function evaluations.•Validate the algorithm on problems with up to 50 variables and 10 objectives.•Demonstrate superior performance on both benchmark and real-world problems.
AbstractList In many real-world applications, there is often a need to optimize multiple objectives, which are frequently and simultaneously conflicting. The evaluation process consumes computational resources or funds, making it difficult to provide adequate function evaluations for converging evolutionary algorithms. Surrogate models have become an effective solution for obtaining more virtual evaluations, particularly when computational resources are limited. Most existing surrogate models are either regression-based or classification-based, and their performance heavily depends on the quality of training data. Imbalanced datasets may significantly impact the quality of surrogate models. To address this, a relationship-based surrogate-assisted evolutionary algorithm is proposed in this paper. This algorithm utilizes the surrogate model to compare candidate solutions rather than directly predicting the fitness values of solutions. This can better balance positive and negative samples. Considering the characteristics of data generated during optimization, a grid-based data partitioning method is used to discretize the objective space into grids. A balanced training dataset is created based on the grid positions, and a classifier is built to learn relationships from the training dataset. A reference point selection mechanism is introduced to choose reference points using reference vectors, thereby filtering out promising solutions. The proposed method was validated using the Wilcoxon rank-sum test (α=0.05) on 88 benchmark test instances and one real-world engineering optimization problem. Experimental results demonstrate that the proposed method achieves statistically significant optimal results (p<0.05) in 62 instances compared to state-of-the-art surrogate-assisted evolutionary algorithms. •Propose a relationship-based surrogate model trained on pairwise solution comparisons.•Employ grid-based ranking to select superior solutions for constructing training pairs.•Propose GRE-MOEA to solve multi-objective problems with limited function evaluations.•Validate the algorithm on problems with up to 50 variables and 10 objectives.•Demonstrate superior performance on both benchmark and real-world problems.
ArticleNumber 114135
Author Cheng, Yan
Yao, Yuxiao
Yu, Gongcheng
Li, Guowei
Wang, Jiaqi
Chen, Yanyin
Author_xml – sequence: 1
  givenname: Yan
  surname: Cheng
  fullname: Cheng, Yan
  email: Chyan88888@jxnu.edu.cn
  organization: School of Artificial Intelligence, Jiangxi Normal University, 330022, Nanchang Jiangxi, China
– sequence: 2
  givenname: Jiaqi
  surname: Wang
  fullname: Wang, Jiaqi
  organization: Key Laboratory of Intelligent Information Processing and Emotional Computing of Jiangxi, 330022, Nanchang Jiangxi, China
– sequence: 3
  givenname: Gongcheng
  surname: Yu
  fullname: Yu, Gongcheng
  organization: Key Laboratory of Intelligent Information Processing and Emotional Computing of Jiangxi, 330022, Nanchang Jiangxi, China
– sequence: 4
  givenname: Yuxiao
  surname: Yao
  fullname: Yao, Yuxiao
  organization: Key Laboratory of Intelligent Information Processing and Emotional Computing of Jiangxi, 330022, Nanchang Jiangxi, China
– sequence: 5
  givenname: Yanyin
  surname: Chen
  fullname: Chen, Yanyin
  organization: Key Laboratory of Intelligent Information Processing and Emotional Computing of Jiangxi, 330022, Nanchang Jiangxi, China
– sequence: 6
  givenname: Guowei
  surname: Li
  fullname: Li, Guowei
  organization: Key Laboratory of Intelligent Information Processing and Emotional Computing of Jiangxi, 330022, Nanchang Jiangxi, China
BookMark eNp9kM1qwzAQhHVIoUnaF-hJL2BXkvVjQy8h9A8CvbT0KGRpnco4UpCc0L59bdJzYWFZmFlmvhVahBgAoTtKSkqovO9Lk6MtGWGipJTTSizQkgpZF7zh8hqtcu7JJGxYvUSfm4Dh-wgh-zPgw2kYfRHbHuw433COw2n0MZj0g82wj8mPXwfcmgwOx4D3yTtsgsMJBjPr8AAmBR_2N-iqM0OG27-9Rh9Pj-_bl2L39vy63ewKy0Q1FgoabhU30ghV16pTIIWlLVSdFcpZyyU1ddNOwSs3DSOk49wyVTlqpWtotUbs8temmHOCTh-TP0xxNSV6xqF7PePQMw59wTGZHi4mmJKdPSSdrYdgwfk0Ndcu-v_svwPbbi4
Cites_doi 10.1109/TEVC.2022.3152582
10.1016/j.asoc.2020.106429
10.1109/TEVC.2021.3051608
10.1109/TEVC.2019.2899030
10.1023/A:1022627411411
10.1016/j.asoc.2024.111857
10.1109/TEVC.2018.2802784
10.1109/TEVC.2021.3073648
10.1109/MCI.2009.933094
10.1109/TCDS.2021.3107555
10.1109/TEVC.2020.2986348
10.1109/TEVC.2012.2227145
10.1016/j.swevo.2024.101516
10.1080/00401706.2000.10485979
10.1016/j.knosys.2022.108416
10.1109/TSMC.2020.3044418
10.1016/j.swevo.2023.101323
10.1287/ijoc.1060.0182
10.1109/TEVC.2005.861417
10.1016/j.swevo.2024.101506
10.1109/TEVC.2018.2869001
10.48048/tis.2024.8528
10.1109/TEVC.2021.3098257
10.1016/0893-6080(90)90049-Q
10.1109/TEVC.2016.2519378
10.1109/4235.797969
10.1016/j.swevo.2023.101252
10.1016/j.swevo.2022.101170
10.1109/TEVC.2013.2262178
10.1016/j.asoc.2022.109287
10.1016/S0031-3203(02)00060-2
10.1109/TEVC.2013.2281534
10.1109/TEVC.2023.3243632
10.1109/TEVC.2022.3195668
10.1109/4235.996017
10.1007/s00500-017-2965-0
10.1109/TEVC.2017.2675628
10.1016/j.lwt.2024.116401
10.1109/TEVC.2016.2622301
10.1109/TCYB.2020.2985081
10.1016/j.swevo.2022.101081
10.1016/j.asoc.2017.08.024
10.1023/A:1010933404324
10.1016/j.neucom.2022.10.075
10.1109/TNNLS.2021.3106399
10.1109/TEVC.2003.810761
10.1109/TCYB.2018.2794503
10.1109/MCI.2017.2742868
10.1007/s10898-004-0570-0
10.1016/j.ins.2016.07.009
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2025.114135
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2025_114135
S1568494625014486
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9DU
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c253t-7e94c74a6a57887f7e65c1be3fc57dcc461a89b4943d43d200f44c273d1c6d913
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001618921200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 06:53:33 EST 2025
Wed Dec 10 14:40:33 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Evolutionary algorithms
Surrogate-assisted optimization
Relation learning
Expensive multi-objective optimization
Grid
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-7e94c74a6a57887f7e65c1be3fc57dcc461a89b4943d43d200f44c273d1c6d913
ParticipantIDs crossref_primary_10_1016_j_asoc_2025_114135
elsevier_sciencedirect_doi_10_1016_j_asoc_2025_114135
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hao, Zhou, Qian, Zhang (bib0160) 2022; 26
Horaguchi, Nishihara, Nakata (bib0110) 2024; 86
Breiman (bib0265) 2001; 45
Guo, Wei, Zhang, Chen (bib0285) 2024
Li, Wang, Dong, Shen, Chen (bib0125) 2022; 242
Tian, Hu, He, Ma, Zhang, Zhang (bib0165) 2023; 80
Zhang, Li, Zhao, Qi, Liu (bib0060) 2022; 72
Guo, Jin, Ding, Chai (bib0100) 2019; 49
Yang, Li, Liu, Zheng (bib0180) 2013; 17
Cheng, Jin, Olhofer, Sendhoff (bib0195) 2016; 20
Li, Zhan, Xu, Kwong, Zhang (bib0030) 2023; 34
Hao, Zhang, Lu, Zhou (bib0150) 2020; 24
Habib, Singh, Chugh, Ray, Miettinen (bib0095) 2019; 23
Song, Wang, He, Jin (bib0120) 2021; 25
Bosman, Thierens (bib0235) 2003; 7
Zitzler, Thiele (bib0275) 1999; 3
Regis, Shoemaker (bib0205) 2005; 31
Chugh, Sindhya, Hakanen, Miettinen (bib0040) 2019; 23
Tang, Wang, Xiong (bib0065) 2023; 77
Koley (bib0045) 2024; 21
He, Huang, Cheng, Tan, Jin (bib0130) 2020; 51
Cheng, Yen, Zhang (bib0175) 2016; 367
Guo, Wang, Gao, Jin, Ding, Chai (bib0090) 2022; 52
Deb, Thiele, Laumanns, Zitzler (bib0225) 2005
Pan, He, Tian, Wang, Zhang, Jin (bib0085) 2019; 23
Wang, Li, Chen, Zhang, Zhan (bib0035) 2023; 8
Specht (bib0185) 1990; 3
Huy, Nallagownden, Truong, Kannan, Vo, Ho (bib0005) 2022; 126
Yang, Li, Liu, Zheng (bib0170) 2013; 17
Tian, Peng, Yang, Zhang, Tan, Jin (bib0145) 2021; 14
Dong, Wang, Song, Zhang, An (bib0010) 2020; 94
Yang, Zhan, Liu, Li, Zhang (bib0135) 2023
Long, Wang, Dong, Li, Fu (bib0280) 2024
Yuan, Banzhaf (bib0155) 2022; 26
Deb, Pratap, Agarwal, Meyarivan (bib0255) 2002; 6
Li, Yang, Liu (bib0245) 2013; 18
Chugh, Jin, Miettinen, Hakanen, Sindhya (bib0075) 2018; 22
Zhang, Zhou, Zhang (bib0080) 2015
Loh (bib0260) 2011; 1
Sun, Jin, Cheng, Ding, Zeng (bib0055) 2017; 21
Li, Lu, Qian, Hong, Yang, Zhou (bib0115) 2024; 86
McKay, Beckman, Conover (bib0190) 2000; 42
Jain, Deb (bib0270) 2013; 18
Huband, Hingston, Barone, While (bib0230) 2006; 10
Jin, Sendhoff (bib0025) 2009; 4
Tian, Cheng, Zhang, Jin (bib0215) 2017; 12
Wu, Wang, Xu, Hu, Xu (bib0050) 2022; 75
Mohammadi, Esteki, Simal-Gandara (bib0240) 2024; 203
He, Tian, Jin, Zhang, Pan (bib0250) 2017; 61
Zhang, He, Ishibuchi (bib0140) 2022; 27
Cortes, Vapnik (bib0070) 1995; 20
Liu, Wang, Yao, Peng (bib0105) 2023; 28
Wu, Zhan, Zhang (bib0020) 2021; 25
Likas, Vlassis, Verbeek (bib0200) 2003; 36
Regis, Shoemaker (bib0210) 2007; 19
Tian, Zhu, Zhang, Jin (bib0220) 2023; 518
Jin, Wang, Chugh, Guo, Miettinen (bib0015) 2019; 23
Cheng (10.1016/j.asoc.2025.114135_bib0175) 2016; 367
Cheng (10.1016/j.asoc.2025.114135_bib0195) 2016; 20
Huband (10.1016/j.asoc.2025.114135_bib0230) 2006; 10
McKay (10.1016/j.asoc.2025.114135_bib0190) 2000; 42
Zhang (10.1016/j.asoc.2025.114135_bib0140) 2022; 27
Cortes (10.1016/j.asoc.2025.114135_bib0070) 1995; 20
Guo (10.1016/j.asoc.2025.114135_bib0285) 2024
Likas (10.1016/j.asoc.2025.114135_bib0200) 2003; 36
Song (10.1016/j.asoc.2025.114135_bib0120) 2021; 25
Zhang (10.1016/j.asoc.2025.114135_bib0060) 2022; 72
Tian (10.1016/j.asoc.2025.114135_bib0220) 2023; 518
Regis (10.1016/j.asoc.2025.114135_bib0210) 2007; 19
Hao (10.1016/j.asoc.2025.114135_bib0150) 2020; 24
Huy (10.1016/j.asoc.2025.114135_bib0005) 2022; 126
Bosman (10.1016/j.asoc.2025.114135_bib0235) 2003; 7
Zhang (10.1016/j.asoc.2025.114135_bib0080) 2015
Wu (10.1016/j.asoc.2025.114135_bib0050) 2022; 75
Guo (10.1016/j.asoc.2025.114135_bib0090) 2022; 52
Habib (10.1016/j.asoc.2025.114135_bib0095) 2019; 23
Horaguchi (10.1016/j.asoc.2025.114135_bib0110) 2024; 86
Yang (10.1016/j.asoc.2025.114135_bib0170) 2013; 17
Tian (10.1016/j.asoc.2025.114135_bib0215) 2017; 12
Liu (10.1016/j.asoc.2025.114135_bib0105) 2023; 28
Yang (10.1016/j.asoc.2025.114135_bib0135) 2023
Yang (10.1016/j.asoc.2025.114135_bib0180) 2013; 17
Guo (10.1016/j.asoc.2025.114135_bib0100) 2019; 49
Jain (10.1016/j.asoc.2025.114135_bib0270) 2013; 18
He (10.1016/j.asoc.2025.114135_bib0130) 2020; 51
Tian (10.1016/j.asoc.2025.114135_bib0165) 2023; 80
Chugh (10.1016/j.asoc.2025.114135_bib0075) 2018; 22
Tian (10.1016/j.asoc.2025.114135_bib0145) 2021; 14
Li (10.1016/j.asoc.2025.114135_bib0030) 2023; 34
Deb (10.1016/j.asoc.2025.114135_bib0225) 2005
Chugh (10.1016/j.asoc.2025.114135_bib0040) 2019; 23
Jin (10.1016/j.asoc.2025.114135_bib0015) 2019; 23
Specht (10.1016/j.asoc.2025.114135_bib0185) 1990; 3
Mohammadi (10.1016/j.asoc.2025.114135_bib0240) 2024; 203
Zitzler (10.1016/j.asoc.2025.114135_bib0275) 1999; 3
Jin (10.1016/j.asoc.2025.114135_bib0025) 2009; 4
Loh (10.1016/j.asoc.2025.114135_bib0260) 2011; 1
Yuan (10.1016/j.asoc.2025.114135_bib0155) 2022; 26
Wu (10.1016/j.asoc.2025.114135_bib0020) 2021; 25
Koley (10.1016/j.asoc.2025.114135_bib0045) 2024; 21
Sun (10.1016/j.asoc.2025.114135_bib0055) 2017; 21
Li (10.1016/j.asoc.2025.114135_bib0125) 2022; 242
Li (10.1016/j.asoc.2025.114135_bib0245) 2013; 18
Long (10.1016/j.asoc.2025.114135_bib0280) 2024
Regis (10.1016/j.asoc.2025.114135_bib0205) 2005; 31
Dong (10.1016/j.asoc.2025.114135_bib0010) 2020; 94
Tang (10.1016/j.asoc.2025.114135_bib0065) 2023; 77
Hao (10.1016/j.asoc.2025.114135_bib0160) 2022; 26
Wang (10.1016/j.asoc.2025.114135_bib0035) 2023; 8
Li (10.1016/j.asoc.2025.114135_bib0115) 2024; 86
Deb (10.1016/j.asoc.2025.114135_bib0255) 2002; 6
Breiman (10.1016/j.asoc.2025.114135_bib0265) 2001; 45
Pan (10.1016/j.asoc.2025.114135_bib0085) 2019; 23
He (10.1016/j.asoc.2025.114135_bib0250) 2017; 61
References_xml – volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: bib0215
  article-title: Platemo: a matlab platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 49
  start-page: 1012
  year: 2019
  end-page: 1025
  ident: bib0100
  article-title: Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems
  publication-title: IEEE Trans. Cybern.
– volume: 203
  year: 2024
  ident: bib0240
  article-title: Machine learning for authentication of black tea from narrow-geographic origins: combination of pca and pls with lda and svm classifiers
  publication-title: LWT
– volume: 34
  start-page: 2338
  year: 2023
  end-page: 2352
  ident: bib0030
  article-title: Surrogate-assisted hybrid-model estimation of distribution algorithm for mixed-variable hyperparameters optimization in convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 23
  start-page: 1000
  year: 2019
  end-page: 1014
  ident: bib0095
  article-title: A multiple surrogate assisted decomposition-based evolutionary algorithm for expensive multi/many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 497
  year: 2007
  end-page: 509
  ident: bib0210
  article-title: A stochastic radial basis function method for the global optimization of expensive functions
  publication-title: INFORMS J. Comput.
– volume: 18
  start-page: 348
  year: 2013
  end-page: 365
  ident: bib0245
  article-title: Shift-based density estimation for pareto-based algorithms in many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 17
  start-page: 721
  year: 2013
  end-page: 736
  ident: bib0180
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 644
  year: 2017
  end-page: 660
  ident: bib0055
  article-title: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 24
  start-page: 1125
  year: 2020
  end-page: 1139
  ident: bib0150
  article-title: Binary relation learning and classifying for preselection in evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 51
  start-page: 3129
  year: 2020
  end-page: 3142
  ident: bib0130
  article-title: Evolutionary multiobjective optimization driven by generative adversarial networks (gans)
  publication-title: IEEE Trans. Cybern.
– volume: 126
  year: 2022
  ident: bib0005
  article-title: Multi-objective search group algorithm for engineering design problems
  publication-title: Appl. Soft Comput.
– volume: 518
  start-page: 190
  year: 2023
  end-page: 205
  ident: bib0220
  article-title: A practical tutorial on solving optimization problems via platemo
  publication-title: Neurocomputing
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0265
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 23
  start-page: 3137
  year: 2019
  end-page: 3166
  ident: bib0040
  article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
  publication-title: Soft Comput.
– volume: 42
  start-page: 55
  year: 2000
  end-page: 61
  ident: bib0190
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– start-page: 2883
  year: 2015
  end-page: 2890
  ident: bib0080
  article-title: A classification and pareto domination based multiobjective evolutionary algorithm
  publication-title: 2015 IEEE congress on evolutionary computation (CEC)
– volume: 86
  year: 2024
  ident: bib0110
  article-title: Evolutionary multiobjective optimization assisted by scalarization function approximation for high-dimensional expensive problems
  publication-title: Swarm Evol. Comput.
– volume: 80
  year: 2023
  ident: bib0165
  article-title: A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
  publication-title: Swarm Evol. Comput.
– volume: 17
  start-page: 721
  year: 2013
  end-page: 736
  ident: bib0170
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 849
  year: 2023
  end-page: 862
  ident: bib0035
  article-title: Scale adaptive fitness evaluation-based particle swarm optimisation for hyperparameter and architecture optimisation in neural networks and deep learning
  publication-title: C.A.A.I. Trans. Intell. Technol.
– volume: 18
  start-page: 602
  year: 2013
  end-page: 622
  ident: bib0270
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0255
  article-title: A fast and elitist multiobjective genetic algorithm: nsga-ii
  publication-title: IEEE Trans. Evol. Comput.
– volume: 86
  year: 2024
  ident: bib0115
  article-title: Regularity model based offspring generation in surrogate-assisted evolutionary algorithms for expensive multi-objective optimization
  publication-title: Swarm Evol. Comput.
– volume: 23
  start-page: 74
  year: 2019
  end-page: 88
  ident: bib0085
  article-title: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 8528
  year: 2024
  ident: bib0045
  article-title: Critically reckoning spectrophotometric detection of asymptomatic cyanotoxins and faecal contamination in periurban agrarian ecosystems via convolutional neural networks
  publication-title: Trends In Sciences
– volume: 94
  year: 2020
  ident: bib0010
  article-title: Kriging-assisted discrete global optimization (kdgo) for black-box problems with costly objective and constraints
  publication-title: Appl. Soft Comput.
– volume: 31
  start-page: 153
  year: 2005
  end-page: 171
  ident: bib0205
  article-title: Constrained global optimization of expensive black box functions using radial basis functions
  publication-title: J. Glob. Optim.
– volume: 77
  year: 2023
  ident: bib0065
  article-title: Surrogate-assisted multi-objective optimization via knee-oriented pareto front estimation
  publication-title: Swarm Evol. Comput.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0070
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 28
  start-page: 132
  year: 2023
  end-page: 146
  ident: bib0105
  article-title: Surrogate-assisted environmental selection for fast hypervolume-based many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 26
  start-page: 1157
  year: 2022
  end-page: 1170
  ident: bib0160
  article-title: Expensive multiobjective optimization by relation learning and prediction
  publication-title: IEEE Trans. Evol. Comput.
– year: 2024
  ident: bib0280
  article-title: A data-driven co-evolutionary exploration algorithm for computationally expensive constrained multi-objective problems
  publication-title: Appl. Soft Comput.
– volume: 61
  start-page: 603
  year: 2017
  end-page: 621
  ident: bib0250
  article-title: A radial space division based evolutionary algorithm for many-objective optimization
  publication-title: Appl. Soft Comput.
– start-page: 105
  year: 2005
  end-page: 145
  ident: bib0225
  article-title: Scalable test problems for evolutionary multiobjective optimization
  publication-title: Evolutionary Multiobjective Optimization: Theoretical Advances and Applications
– volume: 23
  start-page: 442
  year: 2019
  end-page: 458
  ident: bib0015
  article-title: Data-driven evolutionary optimization: an overview and case studies
  publication-title: IEEE Trans. Evol. Comput.
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: bib0195
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 129
  year: 2018
  end-page: 142
  ident: bib0075
  article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 72
  year: 2022
  ident: bib0060
  article-title: A convolutional neural network-based surrogate model for multi-objective optimization evolutionary algorithm based on decomposition
  publication-title: Swarm Evol. Comput.
– volume: 25
  start-page: 1013
  year: 2021
  end-page: 1027
  ident: bib0120
  article-title: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2023
  ident: bib0135
  article-title: Grid classification-based surrogate-assisted particle swarm optimization for expensive multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 367
  start-page: 890
  year: 2016
  end-page: 908
  ident: bib0175
  article-title: A grid-based adaptive multi-objective differential evolution algorithm
  publication-title: Inf. Sci.
– year: 2024
  ident: bib0285
  article-title: A classifier-ensemble-based surrogate-assisted evolutionary algorithm for distributed data-driven optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 52
  start-page: 2084
  year: 2022
  end-page: 2097
  ident: bib0090
  article-title: Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network
  publication-title: IEEE Trans. Syst. Man Cybern.-Syst.
– volume: 3
  start-page: 109
  year: 1990
  end-page: 118
  ident: bib0185
  article-title: Probabilistic neural networks
  publication-title: Neural Networks
– volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  ident: bib0200
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recognit.
– volume: 4
  start-page: 62
  year: 2009
  end-page: 76
  ident: bib0025
  article-title: A systems approach to evolutionary multiobjective structural optimization and beyond
  publication-title: IEEE Comput. Intell. Mag.
– volume: 242
  year: 2022
  ident: bib0125
  article-title: A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization
  publication-title: Knowl.-Based Syst.
– volume: 27
  start-page: 1575
  year: 2022
  end-page: 1589
  ident: bib0140
  article-title: Dual-fuzzy-classifier-based evolutionary algorithm for expensive multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 14
  start-page: 1129
  year: 2021
  end-page: 1142
  ident: bib0145
  article-title: Action command encoding for surrogate-assisted neural architecture search
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 75
  year: 2022
  ident: bib0050
  article-title: Adaptive surrogate-assisted multi-objective evolutionary algorithm using an efficient infill technique
  publication-title: Swarm Evol. Comput.
– volume: 1
  start-page: 14
  year: 2011
  end-page: 23
  ident: bib0260
  article-title: Classification and regression trees
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– volume: 7
  start-page: 174
  year: 2003
  end-page: 188
  ident: bib0235
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: bib0275
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: bib0230
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
– volume: 26
  start-page: 159
  year: 2022
  end-page: 173
  ident: bib0155
  article-title: Expensive multiobjective evolutionary optimization assisted by dominance prediction
  publication-title: IEEE Trans. Evol. Comput.
– volume: 25
  start-page: 478
  year: 2021
  end-page: 491
  ident: bib0020
  article-title: Safe: scale-adaptive fitness evaluation method for expensive optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 26
  start-page: 1157
  year: 2022
  ident: 10.1016/j.asoc.2025.114135_bib0160
  article-title: Expensive multiobjective optimization by relation learning and prediction
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3152582
– volume: 94
  year: 2020
  ident: 10.1016/j.asoc.2025.114135_bib0010
  article-title: Kriging-assisted discrete global optimization (kdgo) for black-box problems with costly objective and constraints
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106429
– volume: 25
  start-page: 478
  year: 2021
  ident: 10.1016/j.asoc.2025.114135_bib0020
  article-title: Safe: scale-adaptive fitness evaluation method for expensive optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3051608
– volume: 23
  start-page: 1000
  year: 2019
  ident: 10.1016/j.asoc.2025.114135_bib0095
  article-title: A multiple surrogate assisted decomposition-based evolutionary algorithm for expensive multi/many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2899030
– volume: 1
  start-page: 14
  year: 2011
  ident: 10.1016/j.asoc.2025.114135_bib0260
  article-title: Classification and regression trees
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.asoc.2025.114135_bib0070
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– year: 2023
  ident: 10.1016/j.asoc.2025.114135_bib0135
  article-title: Grid classification-based surrogate-assisted particle swarm optimization for expensive multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2024
  ident: 10.1016/j.asoc.2025.114135_bib0280
  article-title: A data-driven co-evolutionary exploration algorithm for computationally expensive constrained multi-objective problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111857
– volume: 23
  start-page: 74
  year: 2019
  ident: 10.1016/j.asoc.2025.114135_bib0085
  article-title: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2802784
– volume: 25
  start-page: 1013
  year: 2021
  ident: 10.1016/j.asoc.2025.114135_bib0120
  article-title: A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3073648
– volume: 4
  start-page: 62
  year: 2009
  ident: 10.1016/j.asoc.2025.114135_bib0025
  article-title: A systems approach to evolutionary multiobjective structural optimization and beyond
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2009.933094
– volume: 14
  start-page: 1129
  year: 2021
  ident: 10.1016/j.asoc.2025.114135_bib0145
  article-title: Action command encoding for surrogate-assisted neural architecture search
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2021.3107555
– volume: 24
  start-page: 1125
  year: 2020
  ident: 10.1016/j.asoc.2025.114135_bib0150
  article-title: Binary relation learning and classifying for preselection in evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2986348
– volume: 17
  start-page: 721
  year: 2013
  ident: 10.1016/j.asoc.2025.114135_bib0170
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2227145
– volume: 17
  start-page: 721
  year: 2013
  ident: 10.1016/j.asoc.2025.114135_bib0180
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2227145
– volume: 86
  year: 2024
  ident: 10.1016/j.asoc.2025.114135_bib0110
  article-title: Evolutionary multiobjective optimization assisted by scalarization function approximation for high-dimensional expensive problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101516
– volume: 42
  start-page: 55
  year: 2000
  ident: 10.1016/j.asoc.2025.114135_bib0190
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
  doi: 10.1080/00401706.2000.10485979
– start-page: 2883
  year: 2015
  ident: 10.1016/j.asoc.2025.114135_bib0080
  article-title: A classification and pareto domination based multiobjective evolutionary algorithm
– year: 2024
  ident: 10.1016/j.asoc.2025.114135_bib0285
  article-title: A classifier-ensemble-based surrogate-assisted evolutionary algorithm for distributed data-driven optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 242
  year: 2022
  ident: 10.1016/j.asoc.2025.114135_bib0125
  article-title: A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108416
– volume: 52
  start-page: 2084
  year: 2022
  ident: 10.1016/j.asoc.2025.114135_bib0090
  article-title: Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network
  publication-title: IEEE Trans. Syst. Man Cybern.-Syst.
  doi: 10.1109/TSMC.2020.3044418
– volume: 80
  year: 2023
  ident: 10.1016/j.asoc.2025.114135_bib0165
  article-title: A pairwise comparison based surrogate-assisted evolutionary algorithm for expensive multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101323
– volume: 19
  start-page: 497
  year: 2007
  ident: 10.1016/j.asoc.2025.114135_bib0210
  article-title: A stochastic radial basis function method for the global optimization of expensive functions
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1060.0182
– volume: 10
  start-page: 477
  year: 2006
  ident: 10.1016/j.asoc.2025.114135_bib0230
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.861417
– volume: 86
  year: 2024
  ident: 10.1016/j.asoc.2025.114135_bib0115
  article-title: Regularity model based offspring generation in surrogate-assisted evolutionary algorithms for expensive multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101506
– volume: 23
  start-page: 442
  year: 2019
  ident: 10.1016/j.asoc.2025.114135_bib0015
  article-title: Data-driven evolutionary optimization: an overview and case studies
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2869001
– volume: 21
  start-page: 8528
  year: 2024
  ident: 10.1016/j.asoc.2025.114135_bib0045
  article-title: Critically reckoning spectrophotometric detection of asymptomatic cyanotoxins and faecal contamination in periurban agrarian ecosystems via convolutional neural networks
  publication-title: Trends In Sciences
  doi: 10.48048/tis.2024.8528
– volume: 26
  start-page: 159
  year: 2022
  ident: 10.1016/j.asoc.2025.114135_bib0155
  article-title: Expensive multiobjective evolutionary optimization assisted by dominance prediction
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3098257
– volume: 3
  start-page: 109
  year: 1990
  ident: 10.1016/j.asoc.2025.114135_bib0185
  article-title: Probabilistic neural networks
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(90)90049-Q
– volume: 20
  start-page: 773
  year: 2016
  ident: 10.1016/j.asoc.2025.114135_bib0195
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– start-page: 105
  year: 2005
  ident: 10.1016/j.asoc.2025.114135_bib0225
  article-title: Scalable test problems for evolutionary multiobjective optimization
– volume: 3
  start-page: 257
  year: 1999
  ident: 10.1016/j.asoc.2025.114135_bib0275
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– volume: 77
  year: 2023
  ident: 10.1016/j.asoc.2025.114135_bib0065
  article-title: Surrogate-assisted multi-objective optimization via knee-oriented pareto front estimation
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101252
– volume: 75
  year: 2022
  ident: 10.1016/j.asoc.2025.114135_bib0050
  article-title: Adaptive surrogate-assisted multi-objective evolutionary algorithm using an efficient infill technique
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101170
– volume: 18
  start-page: 348
  year: 2013
  ident: 10.1016/j.asoc.2025.114135_bib0245
  article-title: Shift-based density estimation for pareto-based algorithms in many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2262178
– volume: 126
  year: 2022
  ident: 10.1016/j.asoc.2025.114135_bib0005
  article-title: Multi-objective search group algorithm for engineering design problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109287
– volume: 8
  start-page: 849
  year: 2023
  ident: 10.1016/j.asoc.2025.114135_bib0035
  article-title: Scale adaptive fitness evaluation-based particle swarm optimisation for hyperparameter and architecture optimisation in neural networks and deep learning
  publication-title: C.A.A.I. Trans. Intell. Technol.
– volume: 36
  start-page: 451
  year: 2003
  ident: 10.1016/j.asoc.2025.114135_bib0200
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(02)00060-2
– volume: 18
  start-page: 602
  year: 2013
  ident: 10.1016/j.asoc.2025.114135_bib0270
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281534
– volume: 28
  start-page: 132
  year: 2023
  ident: 10.1016/j.asoc.2025.114135_bib0105
  article-title: Surrogate-assisted environmental selection for fast hypervolume-based many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2023.3243632
– volume: 27
  start-page: 1575
  year: 2022
  ident: 10.1016/j.asoc.2025.114135_bib0140
  article-title: Dual-fuzzy-classifier-based evolutionary algorithm for expensive multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3195668
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.asoc.2025.114135_bib0255
  article-title: A fast and elitist multiobjective genetic algorithm: nsga-ii
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 23
  start-page: 3137
  year: 2019
  ident: 10.1016/j.asoc.2025.114135_bib0040
  article-title: A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
  publication-title: Soft Comput.
  doi: 10.1007/s00500-017-2965-0
– volume: 21
  start-page: 644
  year: 2017
  ident: 10.1016/j.asoc.2025.114135_bib0055
  article-title: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2675628
– volume: 203
  year: 2024
  ident: 10.1016/j.asoc.2025.114135_bib0240
  article-title: Machine learning for authentication of black tea from narrow-geographic origins: combination of pca and pls with lda and svm classifiers
  publication-title: LWT
  doi: 10.1016/j.lwt.2024.116401
– volume: 22
  start-page: 129
  year: 2018
  ident: 10.1016/j.asoc.2025.114135_bib0075
  article-title: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2622301
– volume: 51
  start-page: 3129
  year: 2020
  ident: 10.1016/j.asoc.2025.114135_bib0130
  article-title: Evolutionary multiobjective optimization driven by generative adversarial networks (gans)
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2985081
– volume: 72
  year: 2022
  ident: 10.1016/j.asoc.2025.114135_bib0060
  article-title: A convolutional neural network-based surrogate model for multi-objective optimization evolutionary algorithm based on decomposition
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101081
– volume: 61
  start-page: 603
  year: 2017
  ident: 10.1016/j.asoc.2025.114135_bib0250
  article-title: A radial space division based evolutionary algorithm for many-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.024
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.asoc.2025.114135_bib0265
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 518
  start-page: 190
  year: 2023
  ident: 10.1016/j.asoc.2025.114135_bib0220
  article-title: A practical tutorial on solving optimization problems via platemo
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.10.075
– volume: 34
  start-page: 2338
  year: 2023
  ident: 10.1016/j.asoc.2025.114135_bib0030
  article-title: Surrogate-assisted hybrid-model estimation of distribution algorithm for mixed-variable hyperparameters optimization in convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3106399
– volume: 7
  start-page: 174
  year: 2003
  ident: 10.1016/j.asoc.2025.114135_bib0235
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810761
– volume: 49
  start-page: 1012
  year: 2019
  ident: 10.1016/j.asoc.2025.114135_bib0100
  article-title: Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2794503
– volume: 12
  start-page: 73
  year: 2017
  ident: 10.1016/j.asoc.2025.114135_bib0215
  article-title: Platemo: a matlab platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– volume: 31
  start-page: 153
  year: 2005
  ident: 10.1016/j.asoc.2025.114135_bib0205
  article-title: Constrained global optimization of expensive black box functions using radial basis functions
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-004-0570-0
– volume: 367
  start-page: 890
  year: 2016
  ident: 10.1016/j.asoc.2025.114135_bib0175
  article-title: A grid-based adaptive multi-objective differential evolution algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.07.009
SSID ssj0016928
Score 2.4568064
Snippet In many real-world applications, there is often a need to optimize multiple objectives, which are frequently and simultaneously conflicting. The evaluation...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114135
SubjectTerms Evolutionary algorithms
Expensive multi-objective optimization
Grid
Relation learning
Surrogate-assisted optimization
Title An expensive multi-objective evolutionary algorithm based on grid and relation learning
URI https://dx.doi.org/10.1016/j.asoc.2025.114135
Volume 186
WOSCitedRecordID wos001618921200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBVbu4e97Hu021r0sLegUcuyZD2G0bGWUgbraPpkZFnOHFq7S5ySn7-rLzdkZWyFQjBBRHK4R74-ujq6F6GPVFGjgQkToeqaMCUoKXPOyAE1HBbQZV1qlzL_RJye5pOJ_BbKHS1cOQHRtvlqJa8fFGpoA7Dt0dn_gHsYFBrgO4AOV4Adrv8E_Nin7fe6dKcXJF05835tZG7Cva1YTl1Ou3nT_7wa2XdZZfcNpvOm8pLzIJKLZSWm6yw2UtcF-HAnSl_28RdOKWC8A7m4nXnnISx93KhfzeBpli4q37VTbbsMzcqFby-Wq0Z161EJuhmV-PO4jPeuPCdMhpjj4H75na7cRxVmnxTMUljH08ymNU58bpONFNnf7cB2XGp3SVnOH6NtKjIJjnp7fHQ4OR72lbh01XaHPxKOUXnF3-ad7qYqa_Tj7AV6FtYNeOzxfokemfYVeh5rcuDgol-j83GLB_jxBvx4HX48wI8d_LhrsYUfA_w4wo8j_G_Qjy-HZ5-_klA8g2iapT0RRjItmOIqs4LRWhie6aQ0aa0zUWnNeKJyWYIR0go-8ATVjGkgs1WieSWT9C3aarvW7CAsOaurXB5oYMdM2mTSdSpELrVONFVK7qJRtFNx7XOkFFE8OCusVQtr1cJbdRdl0ZRFYHmevRWA_F_6vbtnv_fo6e0E_YC2-vnS7KEn-qZvFvP9MEF-AyzReOc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+expensive+multi-objective+evolutionary+algorithm+based+on+grid+and+relation+learning&rft.jtitle=Applied+soft+computing&rft.au=Cheng%2C+Yan&rft.au=Wang%2C+Jiaqi&rft.au=Yu%2C+Gongcheng&rft.au=Yao%2C+Yuxiao&rft.date=2026-01-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=186&rft_id=info:doi/10.1016%2Fj.asoc.2025.114135&rft.externalDocID=S1568494625014486
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon