Intelligent computing for magnetohydrodynamic micropolar nanofluid with stratification using Levenberg–Marquardt backpropagation algorithm

The magnetohydrodynamic (MHD) micropolar nanofluid with stratification is evaluated in this work by integrated numerical computing using the Levenberg Marquardt backpropagation (LMBB) optimization technique, an artificial neural network (ANN) approach. After that, model is condensed to a set of prob...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational science Vol. 92; p. 102727
Main Authors: Haq, Ikram Ul, Shukat, Saira, Ullah, Ikram, Hassan, Waqar Ul, Zhang, Hong-Na, Li, Xiao-Bin, Li, Feng-Chen
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2025
Subjects:
ISSN:1877-7503
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The magnetohydrodynamic (MHD) micropolar nanofluid with stratification is evaluated in this work by integrated numerical computing using the Levenberg Marquardt backpropagation (LMBB) optimization technique, an artificial neural network (ANN) approach. After that, model is condensed to a set of problems with boundary values, which are resolved utilizing the proposed method LMBB algorithm and a numerical technique BVP4c. The LMBB approach is an iterative approach for figuring out the least of a function that is not linear, is distinct as the addition of squares. The outcomes are also cross-checked against those of earlier studies and the MATLAB’s BVP4c solver for validation. The mapping of velocity, concentration and temperature profiles from the input to results is another use of neural networking. These results show the accuracy level of the predictions and improvements made by ANN. To generalize a dataset, the BVP4c techniques’ performance is utilized to lower error of mean square. Data based on the ratio of training (80 %), validation (10 %) and testing (10 %) is used by the ANN-based LMBB backpropagation optimization technique. Histograms and function fitness are utilized to verify the algorithm’s dependability. For fluid dynamics, numerical methods and ANN perform incredibly well together, and this could result in new developments across a wide range of fields. The results of this study may aid in the optimization of fluid systems, leading to higher productivity and efficiency in a range of engineering applications.
AbstractList The magnetohydrodynamic (MHD) micropolar nanofluid with stratification is evaluated in this work by integrated numerical computing using the Levenberg Marquardt backpropagation (LMBB) optimization technique, an artificial neural network (ANN) approach. After that, model is condensed to a set of problems with boundary values, which are resolved utilizing the proposed method LMBB algorithm and a numerical technique BVP4c. The LMBB approach is an iterative approach for figuring out the least of a function that is not linear, is distinct as the addition of squares. The outcomes are also cross-checked against those of earlier studies and the MATLAB’s BVP4c solver for validation. The mapping of velocity, concentration and temperature profiles from the input to results is another use of neural networking. These results show the accuracy level of the predictions and improvements made by ANN. To generalize a dataset, the BVP4c techniques’ performance is utilized to lower error of mean square. Data based on the ratio of training (80 %), validation (10 %) and testing (10 %) is used by the ANN-based LMBB backpropagation optimization technique. Histograms and function fitness are utilized to verify the algorithm’s dependability. For fluid dynamics, numerical methods and ANN perform incredibly well together, and this could result in new developments across a wide range of fields. The results of this study may aid in the optimization of fluid systems, leading to higher productivity and efficiency in a range of engineering applications.
ArticleNumber 102727
Author Ullah, Ikram
Hassan, Waqar Ul
Zhang, Hong-Na
Li, Feng-Chen
Shukat, Saira
Haq, Ikram Ul
Li, Xiao-Bin
Author_xml – sequence: 1
  givenname: Ikram Ul
  surname: Haq
  fullname: Haq, Ikram Ul
  organization: State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
– sequence: 2
  givenname: Saira
  surname: Shukat
  fullname: Shukat, Saira
  organization: Department of Mathematics, University of Sialkot, Sialkot 51040, Pakistan
– sequence: 3
  givenname: Ikram
  surname: Ullah
  fullname: Ullah, Ikram
  organization: Department of Natural Sciences and Humanities, University of Engineering and Technology, Mardan 23200, Pakistan
– sequence: 4
  givenname: Waqar Ul
  surname: Hassan
  fullname: Hassan, Waqar Ul
  organization: State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
– sequence: 5
  givenname: Hong-Na
  surname: Zhang
  fullname: Zhang, Hong-Na
  organization: State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
– sequence: 6
  givenname: Xiao-Bin
  surname: Li
  fullname: Li, Xiao-Bin
  organization: State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
– sequence: 7
  givenname: Feng-Chen
  orcidid: 0000-0003-3271-7949
  surname: Li
  fullname: Li, Feng-Chen
  email: lifch@tju.edu.cn
  organization: State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
BookMark eNp9kE1OwzAQhb0oEqX0Aqx8gZbYaetYYoMqfioVsYG15diT1CGxi-0WdccB2HFDToKjsGakmZFG8z7NvAs0ss4CQlckm5OMrK6beeNUmNOMLtOAMspGaEwKxmZsmeXnaBpCk6XIi4KTfIy-NjZC25oabMTKdftDNLbGlfO4k7WF6HYn7Z0-WdkZhVN6t3et9NhK66r2YDT-MHGHQ_QymsqoVJ3Fh9BjtnAEW4Kvfz6_n6R_P0ivIy6letsnjKyHXdnWzidGd4nOKtkGmP71CXq9v3tZP862zw-b9e12pugyjzO20BRoqSnLOZegOfAFEA4VKVlR0RWtJC9XC54RKIjOMyhLlTorpKY58CKfIDpw0zMheKjE3ptO-pMgmehtFI3obRS9jWKwMYluBhGky44GvAjKgFWgjQcVhXbmP_kvddaGaA
Cites_doi 10.1108/HFF-02-2021-0103
10.1063/1.4935649
10.1002/adfm.201906041
10.1007/s10973-018-7482-6
10.1038/s41598-022-06458-3
10.1155/2022/9888379
10.3390/fluids7030116
10.1142/S0217979223502375
10.1080/10407782.2023.2212861
10.1007/s00162-020-00542-y
10.1016/0020-7225(64)90005-9
10.1007/s10409-021-01154-3
10.1038/s41598-021-97458-2
10.1186/1556-276X-6-300
10.1080/17458080.2017.1285445
10.1007/s10973-019-08434-y
10.3390/en15010316
10.1016/j.aej.2024.10.003
10.3390/cryst11111315
10.1016/j.csite.2024.104378
10.1016/0022-247X(72)90106-0
10.1016/j.petrol.2018.04.019
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jocs.2025.102727
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Business
ExternalDocumentID 10_1016_j_jocs_2025_102727
S1877750325002042
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9DU
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFKBS
EFLBG
EJD
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
P2P
PC.
Q38
ROL
SDF
SES
SPC
SPCBC
SSV
SSZ
T5K
UNMZH
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c253t-74d2e2bd27399aed9e94e19ef1b78f262fa9b64901e81d30ebbc1d378ad23e983
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001591847900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-7503
IngestDate Sat Nov 29 07:21:14 EST 2025
Wed Dec 10 14:34:08 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Levenberg-Marquardt
Riga plate
Nanofluid
Double stratification, Suction/Injection
Machine learning
MHD
Artificial neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-74d2e2bd27399aed9e94e19ef1b78f262fa9b64901e81d30ebbc1d378ad23e983
ORCID 0000-0003-3271-7949
ParticipantIDs crossref_primary_10_1016_j_jocs_2025_102727
elsevier_sciencedirect_doi_10_1016_j_jocs_2025_102727
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Journal of computational science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Noack (bib26) 2021; 37
Kouki, Shukat, Ullah, Alam, Ali (bib12) 2025; 111
Geng, Al-Rashed, Mahmoudi, Alsagri, Shahsavar, Talebizadehsardari (bib4) 2020; 139
Sofos, Stavrogiannis, Exarchou-Kouveli, Akabua, Charilas, Karakasidis (bib24) 2022; 7
Shoaib, Nisar, Raja, Saad, Tabassum, Rafiq, Ullah (bib27) 2022
Eringen (bib15) 1966
Brunton, Hemati, Taira (bib23) 2020; 34
Pattnaik, Bhatti, Mishra, Abbas, Bég (bib17) 2022; 2022
Agwu, Akpabio, Alabi, Dosunmu (bib25) 2018; 167
Jakeer, Rupa, Reddy, Rashad (bib28) 2023; 12
Ullah, Waqas, Hayat, Alsaedi, Ijaz Khan (bib9) 2019; 135
Eringen (bib14) 1964; 2
Fedele, Colla, Bobbo, Barison, Agresti (bib6) 2011; 6
Ullah, Shukat, Albakri, Khan, Galal, Jamshed (bib11) 2023; 37
Uddin, Ullah, Raja, Shoaib, Islam, Zobaer, Alshahrani (bib29) 2021; 11
Zhang, Nazar, Bhatti, Michaelides (bib3) 2022; 32
Choudhary, Khurana, Kumar, Subudhi (bib5) 2017; 12
Rafique, Alotaibi, Ibrar, Khan (bib19) 2022; 15
Hayat, Rashid, Imtiaz, Alsaedi (bib7) 2015; 5
Mohapatra, Panda, Mishra (bib8) 2024
Eringen (bib16) 1972; 38
Khan, Zuhra, Islam, Raja, Ali (bib10) 2023; 138
Akbar, Zamir, Muhammad (bib30) 2024; 50
Ali, Ali, Asogwa, Apsari (bib21) 2024; 85
Amin, Ullah, Shukat, Kouki, Ahmad, Alam, Khan (bib13) 2024; 58
Wang, Zhang, Snoussi, Zhang (bib22) 2020; 30
Bilal, Saeed, Gul, Kumam, Mukhtar, Kumam (bib18) 2022; 12
Choi (bib1) 1998
Manna (bib2) 2009; 89
Alotaibi, Rafique (bib20) 2021; 11
Jakeer (10.1016/j.jocs.2025.102727_bib28) 2023; 12
Sofos (10.1016/j.jocs.2025.102727_bib24) 2022; 7
Choi (10.1016/j.jocs.2025.102727_bib1) 1998
Choudhary (10.1016/j.jocs.2025.102727_bib5) 2017; 12
Ali (10.1016/j.jocs.2025.102727_bib21) 2024; 85
Eringen (10.1016/j.jocs.2025.102727_bib14) 1964; 2
Amin (10.1016/j.jocs.2025.102727_bib13) 2024; 58
Khan (10.1016/j.jocs.2025.102727_bib10) 2023; 138
Kouki (10.1016/j.jocs.2025.102727_bib12) 2025; 111
Zhang (10.1016/j.jocs.2025.102727_bib3) 2022; 32
Wang (10.1016/j.jocs.2025.102727_bib22) 2020; 30
Pattnaik (10.1016/j.jocs.2025.102727_bib17) 2022; 2022
Eringen (10.1016/j.jocs.2025.102727_bib15) 1966
Hayat (10.1016/j.jocs.2025.102727_bib7) 2015; 5
Alotaibi (10.1016/j.jocs.2025.102727_bib20) 2021; 11
Agwu (10.1016/j.jocs.2025.102727_bib25) 2018; 167
Akbar (10.1016/j.jocs.2025.102727_bib30) 2024; 50
Rafique (10.1016/j.jocs.2025.102727_bib19) 2022; 15
Mohapatra (10.1016/j.jocs.2025.102727_bib8) 2024
Ullah (10.1016/j.jocs.2025.102727_bib11) 2023; 37
Brunton (10.1016/j.jocs.2025.102727_bib23) 2020; 34
Shoaib (10.1016/j.jocs.2025.102727_bib27) 2022
Geng (10.1016/j.jocs.2025.102727_bib4) 2020; 139
Fedele (10.1016/j.jocs.2025.102727_bib6) 2011; 6
Manna (10.1016/j.jocs.2025.102727_bib2) 2009; 89
Bilal (10.1016/j.jocs.2025.102727_bib18) 2022; 12
Zhang (10.1016/j.jocs.2025.102727_bib26) 2021; 37
Ullah (10.1016/j.jocs.2025.102727_bib9) 2019; 135
Eringen (10.1016/j.jocs.2025.102727_bib16) 1972; 38
Uddin (10.1016/j.jocs.2025.102727_bib29) 2021; 11
References_xml – start-page: 1
  year: 2024
  end-page: 15
  ident: bib8
  article-title: Exploring heat transfer enhancement: machine learning predictions using artificial neural network for Water-Based cu and CuO micropolar nanofluid transportation over a radiating surface
  publication-title: BioNanoScience
– volume: 89
  start-page: 21
  year: 2009
  end-page: 33
  ident: bib2
  article-title: Synthesis, characterization and application of nanofluid—an overview
  publication-title: J. Indian Inst. Sci.
– volume: 2
  start-page: 205
  year: 1964
  end-page: 217
  ident: bib14
  article-title: Simple microfluids
  publication-title: Int. J. Eng. Sci.
– volume: 32
  start-page: 740
  year: 2022
  end-page: 760
  ident: bib3
  article-title: Stability analysis on the kerosene nanofluid flow with hybrid zinc/aluminum-oxide (ZnO-Al2O3) nanoparticles under lorentz force
  publication-title: Int. J. Numer. Methods Heat. Fluid Flow.
– volume: 6
  start-page: 300
  year: 2011
  ident: bib6
  article-title: Experimental stability analysis of different water-based nanofluids
  publication-title: Nanoscale Res. Lett.
– start-page: 1
  year: 1966
  end-page: 18
  ident: bib15
  article-title: Theory of micropolar fluids
  publication-title: J. Math. Mech.
– volume: 85
  start-page: 1889
  year: 2024
  end-page: 1902
  ident: bib21
  article-title: Transient rotating three-dimensional flow of micropolar fluid induced by Riga plate: finite element approach
  publication-title: Numer. Heat. Transf. Part A Appl.
– volume: 30
  start-page: 1906041
  year: 2020
  ident: bib22
  article-title: Machine learning approaches for thermoelectric materials research
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 316
  year: 2022
  ident: bib19
  article-title: Stratified flow of micropolar nanofluid over Riga plate: numerical analysis
  publication-title: Energies
– volume: 167
  start-page: 300
  year: 2018
  end-page: 315
  ident: bib25
  article-title: Artificial intelligence techniques and their applications in drilling fluid engineering: a review
  publication-title: J. Pet. Sci. Eng.
– volume: 34
  start-page: 333
  year: 2020
  end-page: 337
  ident: bib23
  article-title: Special issue on machine learning and data-driven methods in fluid dynamics
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 2022
  start-page: 9888379
  year: 2022
  ident: bib17
  article-title: Mixed convective-radiative dissipative magnetized micropolar nanofluid flow over a stretching surface in porous media with double stratification and chemical reaction effects: ADM-Padé computation
  publication-title: J. Math.
– volume: 12
  start-page: 410
  year: 2023
  end-page: 427
  ident: bib28
  article-title: Artificial neural network model of non-Darcy MHD sutterby hybrid nanofluid flow over a curved permeable surface: solar energy applications.
  publication-title: Research
– volume: 37
  start-page: 2350237
  year: 2023
  ident: bib11
  article-title: Thermal performance of aqueous alumina–titania hybrid nanomaterials dispersed in rotating channel
  publication-title: Int. J. Mod. Phys. B
– volume: 38
  start-page: 480
  year: 1972
  end-page: 496
  ident: bib16
  article-title: Theory of thermomicrofluids
  publication-title: J. Math. Anal. Appl.
– volume: 7
  start-page: 116
  year: 2022
  ident: bib24
  article-title: Current trends in fluid research in the era of artificial intelligence: a review
  publication-title: Fluids
– year: 1998
  ident: bib1
  article-title: Nanofluid technology: current status and future research (No. ANL/ET/CP-97466)
– volume: 139
  start-page: 1553
  year: 2020
  end-page: 1564
  ident: bib4
  article-title: Characterization of the nanoparticles, the stability analysis and the evaluation of a new hybrid nano-oil thermal conductivity
  publication-title: J. Therm. Anal. Calorim.
– volume: 111
  start-page: 160
  year: 2025
  end-page: 170
  ident: bib12
  article-title: Keller-box based computational investigation of magnetized gravity-driven micropolar nanofluid flow past an exponentially contracting surface with cross diffusion effect and engineering applications
  publication-title: Alex. Eng. J.
– volume: 11
  start-page: 1315
  year: 2021
  ident: bib20
  article-title: Numerical analysis of micro-rotation effect on nanofluid flow for vertical Riga plate
  publication-title: Crystals
– volume: 138
  start-page: 107
  year: 2023
  ident: bib10
  article-title: Modeling and simulation of Maxwell nanofluid flows in the presence of lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN)
  publication-title: Eur. Phys. J.
– volume: 12
  start-page: 140
  year: 2017
  end-page: 151
  ident: bib5
  article-title: Stability analysis of Al2O3/water nanofluids
  publication-title: J. Exp. Nanosci.
– volume: 135
  start-page: 1021
  year: 2019
  end-page: 1030
  ident: bib9
  article-title: Thermally radiated squeezed flow of magneto-nanofluid between two parallel disks with chemical reaction
  publication-title: J. Therm. Anal. Calorim.
– volume: 58
  year: 2024
  ident: bib13
  article-title: Lorentz force and solar energy case study on CNTs and pollytetrafluoroethylene (PTFE) paraffin oil-based hybrid nanofluid flow through a porous divergent/convergent channel
  publication-title: Case Stud. Therm. Eng.
– volume: 50
  year: 2024
  ident: bib30
  article-title: Levenberg-Marquardt technique analysis of thermal and concentration storage in cone-disk apparatus with neural network-enhancement
  publication-title: Therm. Sci. Eng. Prog.
– start-page: 1
  year: 2022
  end-page: 29
  ident: bib27
  article-title: Intelligent networks knacks for numerical treatment of three-dimensional Darcy–Forchheimer williamson nanofluid model past a stretching surface
  publication-title: Waves Random Complex Media
– volume: 11
  start-page: 19239
  year: 2021
  ident: bib29
  article-title: The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface
  publication-title: Sci. Rep.
– volume: 5
  year: 2015
  ident: bib7
  article-title: Magnetohydrodynamic (MHD) stretched flow of nanofluid with power-law velocity and chemical reaction
  publication-title: AIP Adv.
– volume: 12
  start-page: 2542
  year: 2022
  ident: bib18
  article-title: Parametric simulation of micropolar fluid with thermal radiation across a porous stretching surface
  publication-title: Sci. Rep.
– volume: 37
  start-page: 1715
  year: 2021
  end-page: 1717
  ident: bib26
  article-title: Artificial intelligence in fluid mechanics
  publication-title: Acta Mech. Sin.
– volume: 32
  start-page: 740
  issue: 2
  year: 2022
  ident: 10.1016/j.jocs.2025.102727_bib3
  article-title: Stability analysis on the kerosene nanofluid flow with hybrid zinc/aluminum-oxide (ZnO-Al2O3) nanoparticles under lorentz force
  publication-title: Int. J. Numer. Methods Heat. Fluid Flow.
  doi: 10.1108/HFF-02-2021-0103
– volume: 5
  issue: 11
  year: 2015
  ident: 10.1016/j.jocs.2025.102727_bib7
  article-title: Magnetohydrodynamic (MHD) stretched flow of nanofluid with power-law velocity and chemical reaction
  publication-title: AIP Adv.
  doi: 10.1063/1.4935649
– volume: 30
  start-page: 1906041
  issue: 5
  year: 2020
  ident: 10.1016/j.jocs.2025.102727_bib22
  article-title: Machine learning approaches for thermoelectric materials research
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906041
– volume: 135
  start-page: 1021
  year: 2019
  ident: 10.1016/j.jocs.2025.102727_bib9
  article-title: Thermally radiated squeezed flow of magneto-nanofluid between two parallel disks with chemical reaction
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-018-7482-6
– volume: 12
  start-page: 2542
  issue: 1
  year: 2022
  ident: 10.1016/j.jocs.2025.102727_bib18
  article-title: Parametric simulation of micropolar fluid with thermal radiation across a porous stretching surface
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-06458-3
– volume: 2022
  start-page: 9888379
  issue: 1
  year: 2022
  ident: 10.1016/j.jocs.2025.102727_bib17
  article-title: Mixed convective-radiative dissipative magnetized micropolar nanofluid flow over a stretching surface in porous media with double stratification and chemical reaction effects: ADM-Padé computation
  publication-title: J. Math.
  doi: 10.1155/2022/9888379
– volume: 7
  start-page: 116
  issue: 3
  year: 2022
  ident: 10.1016/j.jocs.2025.102727_bib24
  article-title: Current trends in fluid research in the era of artificial intelligence: a review
  publication-title: Fluids
  doi: 10.3390/fluids7030116
– volume: 37
  start-page: 2350237
  issue: 24
  year: 2023
  ident: 10.1016/j.jocs.2025.102727_bib11
  article-title: Thermal performance of aqueous alumina–titania hybrid nanomaterials dispersed in rotating channel
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979223502375
– volume: 85
  start-page: 1889
  issue: 11
  year: 2024
  ident: 10.1016/j.jocs.2025.102727_bib21
  article-title: Transient rotating three-dimensional flow of micropolar fluid induced by Riga plate: finite element approach
  publication-title: Numer. Heat. Transf. Part A Appl.
  doi: 10.1080/10407782.2023.2212861
– volume: 34
  start-page: 333
  issue: 4
  year: 2020
  ident: 10.1016/j.jocs.2025.102727_bib23
  article-title: Special issue on machine learning and data-driven methods in fluid dynamics
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s00162-020-00542-y
– volume: 2
  start-page: 205
  issue: 2
  year: 1964
  ident: 10.1016/j.jocs.2025.102727_bib14
  article-title: Simple microfluids
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/0020-7225(64)90005-9
– volume: 37
  start-page: 1715
  issue: 12
  year: 2021
  ident: 10.1016/j.jocs.2025.102727_bib26
  article-title: Artificial intelligence in fluid mechanics
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-021-01154-3
– volume: 12
  start-page: 410
  issue: 3
  year: 2023
  ident: 10.1016/j.jocs.2025.102727_bib28
  article-title: Artificial neural network model of non-Darcy MHD sutterby hybrid nanofluid flow over a curved permeable surface: solar energy applications. propulsion and power
  publication-title: Research
– volume: 138
  start-page: 107
  issue: 1
  year: 2023
  ident: 10.1016/j.jocs.2025.102727_bib10
  article-title: Modeling and simulation of Maxwell nanofluid flows in the presence of lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN)
  publication-title: Eur. Phys. J.
– start-page: 1
  year: 2022
  ident: 10.1016/j.jocs.2025.102727_bib27
  article-title: Intelligent networks knacks for numerical treatment of three-dimensional Darcy–Forchheimer williamson nanofluid model past a stretching surface
  publication-title: Waves Random Complex Media
– volume: 11
  start-page: 19239
  issue: 1
  year: 2021
  ident: 10.1016/j.jocs.2025.102727_bib29
  article-title: The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-97458-2
– volume: 50
  year: 2024
  ident: 10.1016/j.jocs.2025.102727_bib30
  article-title: Levenberg-Marquardt technique analysis of thermal and concentration storage in cone-disk apparatus with neural network-enhancement
  publication-title: Therm. Sci. Eng. Prog.
– volume: 6
  start-page: 300
  year: 2011
  ident: 10.1016/j.jocs.2025.102727_bib6
  article-title: Experimental stability analysis of different water-based nanofluids
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-300
– volume: 12
  start-page: 140
  issue: 1
  year: 2017
  ident: 10.1016/j.jocs.2025.102727_bib5
  article-title: Stability analysis of Al2O3/water nanofluids
  publication-title: J. Exp. Nanosci.
  doi: 10.1080/17458080.2017.1285445
– volume: 139
  start-page: 1553
  year: 2020
  ident: 10.1016/j.jocs.2025.102727_bib4
  article-title: Characterization of the nanoparticles, the stability analysis and the evaluation of a new hybrid nano-oil thermal conductivity
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08434-y
– volume: 15
  start-page: 316
  issue: 1
  year: 2022
  ident: 10.1016/j.jocs.2025.102727_bib19
  article-title: Stratified flow of micropolar nanofluid over Riga plate: numerical analysis
  publication-title: Energies
  doi: 10.3390/en15010316
– start-page: 1
  year: 1966
  ident: 10.1016/j.jocs.2025.102727_bib15
  article-title: Theory of micropolar fluids
  publication-title: J. Math. Mech.
– volume: 111
  start-page: 160
  year: 2025
  ident: 10.1016/j.jocs.2025.102727_bib12
  article-title: Keller-box based computational investigation of magnetized gravity-driven micropolar nanofluid flow past an exponentially contracting surface with cross diffusion effect and engineering applications
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2024.10.003
– volume: 11
  start-page: 1315
  issue: 11
  year: 2021
  ident: 10.1016/j.jocs.2025.102727_bib20
  article-title: Numerical analysis of micro-rotation effect on nanofluid flow for vertical Riga plate
  publication-title: Crystals
  doi: 10.3390/cryst11111315
– volume: 58
  year: 2024
  ident: 10.1016/j.jocs.2025.102727_bib13
  article-title: Lorentz force and solar energy case study on CNTs and pollytetrafluoroethylene (PTFE) paraffin oil-based hybrid nanofluid flow through a porous divergent/convergent channel
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2024.104378
– volume: 38
  start-page: 480
  issue: 2
  year: 1972
  ident: 10.1016/j.jocs.2025.102727_bib16
  article-title: Theory of thermomicrofluids
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(72)90106-0
– volume: 89
  start-page: 21
  issue: 1
  year: 2009
  ident: 10.1016/j.jocs.2025.102727_bib2
  article-title: Synthesis, characterization and application of nanofluid—an overview
  publication-title: J. Indian Inst. Sci.
– start-page: 1
  year: 2024
  ident: 10.1016/j.jocs.2025.102727_bib8
  article-title: Exploring heat transfer enhancement: machine learning predictions using artificial neural network for Water-Based cu and CuO micropolar nanofluid transportation over a radiating surface
  publication-title: BioNanoScience
– year: 1998
  ident: 10.1016/j.jocs.2025.102727_bib1
– volume: 167
  start-page: 300
  year: 2018
  ident: 10.1016/j.jocs.2025.102727_bib25
  article-title: Artificial intelligence techniques and their applications in drilling fluid engineering: a review
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.04.019
SSID ssj0000388913
Score 2.3570824
Snippet The magnetohydrodynamic (MHD) micropolar nanofluid with stratification is evaluated in this work by integrated numerical computing using the Levenberg...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 102727
SubjectTerms Artificial neural network
Double stratification, Suction/Injection
Levenberg-Marquardt
Machine learning
MHD
Nanofluid
Riga plate
Title Intelligent computing for magnetohydrodynamic micropolar nanofluid with stratification using Levenberg–Marquardt backpropagation algorithm
URI https://dx.doi.org/10.1016/j.jocs.2025.102727
Volume 92
WOSCitedRecordID wos001591847900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1877-7503
  databaseCode: AIEXJ
  dateStart: 20100501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000388913
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaWFiEuiBYQ5U8-cABFqbrOj-NjhYooggqJrthb5CR29zfZzSZVufEA3HgY3ocnYRw7znZpET1wyUZWMvHufJkZz36eQegloVJwP4ncMKKZ66csdFkmmRtwtSSi_aRPZdNsgp6cRMMh-9Tr_Wz3wpzPaJ5HFxds8V9VDWOgbLV19gbqtkJhAM5B6XAEtcPxnxR_bItsVg1hvK5asuScn-WiKkZfM7CauhO9M1eEvIVa3zo5zws5q8eGj64L6kqT03PqJqnwQRV8aihhhiThfeTlUsGschKeTsEeg4XSd_DZWVGCpPk1AbCeXJuMNK64s4jLxnxNSz53BpYG8nlUT3mlU9nj0rqUAYB5ZK_vZKxWOr_7hS_hCxoxJsdBgjW-iDbLEaWu-sd13W7rHnrG8EKcRHWRgT98gk5PTPYnRarqs5Ngv7v4cgHuDcdo6YotE24SKxmxkhFrGbfQNqEBA4-wfXh8NHxv03uqyA5rmnPbuZstW5pduDmZq8OitVDn9D66Z1SEDzW2dlBP5LvoTrtFYhftGIewwq9M1fLXD9D3NdxhizsMuMNX4A53uMMWd1jhDl_GHW5why3ufn37YRGHNxCHLeIeosHbo9M371zT6sNNSeBVLvUzIkiSQTDNGBcZE8wXfSZkP6GRJCGRnCWhD8GrgAWWdyCSJIVPGvGMeIJF3iO0lRe5eIxwRvtS-IzKhEc-xGWcsRRGwJGyAx5SuYec9peOF7qiS3y9gvdQ0CojNi-CjjVjgNdf7ntyo6c8RXc72D9DW1VZi-fodnpejVflC4Ot3wvet8s
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+computing+for+magnetohydrodynamic+micropolar+nanofluid+with+stratification+using+Levenberg%E2%80%93Marquardt+backpropagation+algorithm&rft.jtitle=Journal+of+computational+science&rft.au=Haq%2C+Ikram+Ul&rft.au=Shukat%2C+Saira&rft.au=Ullah%2C+Ikram&rft.au=Hassan%2C+Waqar+Ul&rft.date=2025-12-01&rft.issn=1877-7503&rft.volume=92&rft.spage=102727&rft_id=info:doi/10.1016%2Fj.jocs.2025.102727&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jocs_2025_102727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7503&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7503&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7503&client=summon