Vis/NIR spectroscopy and machine learning model for counterfeit Citri Reticulatae Pericarpium identification

Citri Reticulatae Pericarpium(CRP), due to its market demand and high price, is commonly subject to counterfeiting, with various methods of counterfeiting. In this study, visible/near-infrared (Vis/NIR) spectral images of authentic and counterfeited CRP were collected using a Vis/NIR spectrometer. S...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of food composition and analysis Ročník 148; s. 108240
Hlavní autoři: Zhang, Mingkun, Ma, Chao, Ma, Jianwei, Yuan, Yunxia, Huang, Jiayu, Yan, Yongyi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.12.2025
Témata:
ISSN:0889-1575
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Citri Reticulatae Pericarpium(CRP), due to its market demand and high price, is commonly subject to counterfeiting, with various methods of counterfeiting. In this study, visible/near-infrared (Vis/NIR) spectral images of authentic and counterfeited CRP were collected using a Vis/NIR spectrometer. Spectral data processing and machine learning classification models were utilized for classification. Preprocessing, dimensionality reduction, feature wavelength extraction, and machine learning were applied to classify CRP spectral data to address this issue. We apply the Seagull Optimization Algorithm to optimize SVM parameters, thereby proposing the SOASVM model. The results demonstrated that the proposed model could effectively and accurately distinguish between authentic and counterfeited CRP, as well as different methods of counterfeiting. Linear discriminant analysis(LDA) after data processing achieved the best performance, with the classification accuracy of up to 99.3% in test set when combined with the SOASVM model via cross-validation. This study provides optimized models for CRP counterfeiting classification, offering a non-destructive, precise, and effective method for distinguishing authentic from counterfeited CRP. [Display omitted] •The Spectra model non-destructively detects Citri Reticulatae Pericarpium counterfeits.•MSC and LDA are the optimal preprocessing and dimensionality reduction methods.•MSC-LDA-SOASVM combined with Vis/NIR achieves effective accuracy detection.
AbstractList Citri Reticulatae Pericarpium(CRP), due to its market demand and high price, is commonly subject to counterfeiting, with various methods of counterfeiting. In this study, visible/near-infrared (Vis/NIR) spectral images of authentic and counterfeited CRP were collected using a Vis/NIR spectrometer. Spectral data processing and machine learning classification models were utilized for classification. Preprocessing, dimensionality reduction, feature wavelength extraction, and machine learning were applied to classify CRP spectral data to address this issue. We apply the Seagull Optimization Algorithm to optimize SVM parameters, thereby proposing the SOASVM model. The results demonstrated that the proposed model could effectively and accurately distinguish between authentic and counterfeited CRP, as well as different methods of counterfeiting. Linear discriminant analysis(LDA) after data processing achieved the best performance, with the classification accuracy of up to 99.3% in test set when combined with the SOASVM model via cross-validation. This study provides optimized models for CRP counterfeiting classification, offering a non-destructive, precise, and effective method for distinguishing authentic from counterfeited CRP. [Display omitted] •The Spectra model non-destructively detects Citri Reticulatae Pericarpium counterfeits.•MSC and LDA are the optimal preprocessing and dimensionality reduction methods.•MSC-LDA-SOASVM combined with Vis/NIR achieves effective accuracy detection.
ArticleNumber 108240
Author Yuan, Yunxia
Ma, Chao
Ma, Jianwei
Yan, Yongyi
Zhang, Mingkun
Huang, Jiayu
Author_xml – sequence: 1
  givenname: Mingkun
  orcidid: 0000-0003-2797-8781
  surname: Zhang
  fullname: Zhang, Mingkun
  email: zhangmkluoy@163.com
  organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, 471023, China
– sequence: 2
  givenname: Chao
  orcidid: 0000-0003-2597-1316
  surname: Ma
  fullname: Ma, Chao
  organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, 471023, China
– sequence: 3
  givenname: Jianwei
  surname: Ma
  fullname: Ma, Jianwei
  email: majianwei_haust@163.com
  organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, 471023, China
– sequence: 4
  givenname: Yunxia
  surname: Yuan
  fullname: Yuan, Yunxia
  organization: College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
– sequence: 5
  givenname: Jiayu
  orcidid: 0009-0007-4778-6361
  surname: Huang
  fullname: Huang, Jiayu
  organization: College of Electronics and Information Technology, South China University of Technology, Guangzhou, 510641, China
– sequence: 6
  givenname: Yongyi
  surname: Yan
  fullname: Yan, Yongyi
  organization: College of Information Engineering, Henan University of Science and Technology, Luoyang, 471023, China
BookMark eNp9kF1LwzAUhnMxwU39A17lD3RL0iZtwRsZfgyGylBvQ5qe6CltOpJM2L-3Y157dTgvPC_nPAsy86MHQm45W3LG1apbds6apWBCTkElCjYjc1ZVdcZlKS_JIsaOMSZFUc1J_4lx9bLZ0bgHm8IY7bg_UuNbOhj7jR5oDyZ49F90GFvoqRsDtePBJwgOMNE1poB0BwntoTfJAH2DgNaEPR4Gii34hG7aE47-mlw400e4-ZtX5OPx4X39nG1fnzbr-21mhcxTphyvizLPueKCFWVtneXcSqWsKKFRQkpeqtq0rKmFdE1TNqqWUIKShk9xk18Rce6100MxgNP7gIMJR82ZPjnSnT450idH-uxogu7OEEyX_SAEHS2Ct9BimNTodsT_8F8ZQHVR
Cites_doi 10.1016/j.foodchem.2024.138531
10.1016/j.jfca.2024.105996
10.3390/foods10051042
10.1016/j.lwt.2024.116518
10.3389/fnut.2022.973457
10.3390/foods13233856
10.1016/j.foodchem.2024.138408
10.1177/09670335231194737
10.1016/j.foodchem.2024.141631
10.1016/j.jfca.2024.106765
10.1016/j.biosystemseng.2023.12.011
10.1016/j.saa.2024.125426
10.15586/qas.v16i1.1392
10.1016/j.foodcont.2023.110189
10.1016/j.foodchem.2021.131822
10.1016/j.tifs.2024.104377
10.1002/fsn3.2059
10.3390/foods12112192
10.1002/fsn3.4154
10.1016/j.knosys.2018.11.024
10.3390/foods13223630
10.1016/j.postharvbio.2024.112990
10.1016/j.microc.2023.109190
10.1016/j.compag.2024.109037
10.1016/j.saa.2024.125215
10.1016/j.foodchem.2022.135210
10.1080/10408398.2023.2222834
10.3390/foods13213469
10.1016/j.jfca.2024.106637
10.1016/j.foodchem.2025.142930
10.1038/s41538-025-00376-0
10.1016/j.saa.2022.120936
10.1016/j.postharvbio.2023.112706
10.1007/s11947-011-0697-1
10.1016/j.compag.2024.108730
10.3390/foods12152904
10.1016/j.jfca.2024.106700
10.1016/j.jfca.2024.106259
10.1117/1.JBO.20.3.030901
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jfca.2025.108240
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
ExternalDocumentID 10_1016_j_jfca_2025_108240
S0889157525010555
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFRF
ABGRD
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADFGL
ADHUB
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AFZHZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAB
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SSK
SSZ
T5K
UHS
UNMZH
WUQ
XPP
ZMT
ZU3
~G-
~HD
~KM
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c253t-6f19473316120479cfc11c566c27eb62551769ad0b925fbb7b695e7e65a19adb3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001567905200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0889-1575
IngestDate Sat Nov 29 07:32:58 EST 2025
Sat Oct 04 17:00:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Spectral
Counterfeit identification
Vis-NIR
Citri Reticulatae Pericarpium
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-6f19473316120479cfc11c566c27eb62551769ad0b925fbb7b695e7e65a19adb3
ORCID 0000-0003-2597-1316
0009-0007-4778-6361
0000-0003-2797-8781
ParticipantIDs crossref_primary_10_1016_j_jfca_2025_108240
elsevier_sciencedirect_doi_10_1016_j_jfca_2025_108240
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Journal of food composition and analysis
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Fatchurrahman, Marini, Nosrati, Peruzzi, Castellano, Amodio, Colelli (b9) 2024; 13
Wilson, Nadeau, Jaworski, Tromberg, Durkin (b41) 2015; 20
Chen, Fu, Shi, Liu, Yang, Su, Lu, Zhou, He, Guo (b3) 2024; 442
Yang, Jiang, Wen, Wu, Zha, Xu, Zhang (b43) 2022; 9
Xu, Lu, He, Liang (b42) 2024; 214
Geană, Isopescu, Ciucure, Gîjiu, Joşceanu (b11) 2024; 13
Deng, Zheng, Lan, Zhang, Yun, Song (b6) 2025; 472
Shi, Peng, Chen, Qiao, Wang, Xu, Cheng (b35) 2024; 12
Wang, Qiu, Chen, Song, Zhou, Cao, Xiao, Xiao, Song (b40) 2024; 64
Guo, Yu, Hong, Cai, Xu, Gu (b15) 2023; 31
Malavi, Nikkhah, Alighaleh, Einafshar, Raes, Van Haute (b26) 2024; 157
Magwaza, Opara, Nieuwoudt, Cronje, Saeys, Nicolaï (b25) 2012; 5
Jiang, Lv, Zhong, Yang, Xu, Li, Liu, Fan, Shao, Zhang (b17) 2023; 12
Kganyago, Adjorlolo, Mhangara, Tsoeleng (b19) 2024; 218
Dhiman, Kumar (b7) 2019; 165
Li, Zhang, Zheng, Yang, Jiang, Liu, Ding, Shan (b22) 2021; 9
Chen, Li, Jia, Sun, Cui, Xu, Shi, Tang (b4) 2024; 24
Qiu, Dong, Jiang, Fan, Du, Li (b31) 2024; 205
Peng, Yu, Lu, Ye, Zhong, Hu, Chen, Song, Cai, Yin (b29) 2025; 326
Pandiselvam, Prithviraj, Manikantan, Kothakota, Rusu, Trif, Mousavi Khaneghah (b28) 2022; 9
Alighaleh, Pakdel, Ghanei Ghooshkhaneh, Einafshar, Rohani, Saeidirad (b1) 2023; 12
Dai, Wu, Zhao, Guan, Zeng, Zong, Fu, Du (b5) 2023; 408
Gul, Muzaffar, Shah, Assad, Makroo, Dar (b14) 2024; 16
Tang, Li, Huang, Zhang, Li (b38) 2024; 23
Jiang, Zhong, Xue, Lv, Zhou, Zhou, Xu, Shao, Zhang (b18) 2023; 193
Tan, Liu, Tang, Fan, Jiang, Li (b37) 2024; 13
Grassi, Jolayemi, Giovenzana, Tugnolo, Squeo, Conte, De Bruno, Flamminii, Casiraghi, Alamprese (b13) 2021; 10
Qin, Zhao, Zhou, Shi, Shou, Li, Zhang, Jiang (b30) 2024; 21
Donald, Emil (b8) 2001
Zhang, Ma, Yi, Wu (b44) 2024; 136
Ram, Oduor, Igathinathane, Howatt, Sun (b32) 2024; 222
Pan, Zhang, Xu, Yin, Gu, Yu (b27) 2022; 271
Semyalo, Kwon, Wakholi, Min, Cho (b34) 2024; 209
Li, Tang, Li, Qiu, Yang, Zhang, Zhang, Guo, Li (b21) 2025; 9
Wang, Bai, Long, Wan, Zhao, Fu, Yang (b39) 2025; 327
Ruggiero, Amalfitano, Di Vaio, Adamo (b33) 2022; 375
Cevoli, Iaccheri, Fabbri, Ragni (b2) 2024; 237
Fu, Wang, Gao, Liao, Peng, Fu, Li, Su, Guo, Shan (b10) 2025; 464
Goyal, Singha, Singh (b12) 2024; 146
Steidle Neto, Lopes (b36) 2024; 135
Jiang, Liu, Yan, Cao, Chen, Wei, Wang, Xing (b16) 2024; 132
Lanjewar, Asolkar, Parab, Morajkar (b20) 2024; 136
Luo, Xu, Xing, Yang, Sun (b24) 2024; 128
Li, Zhao, Qian, Wen, Bai, Zeng, Wang, Xian, Dong (b23) 2024; 442
Tan (10.1016/j.jfca.2025.108240_b37) 2024; 13
Guo (10.1016/j.jfca.2025.108240_b15) 2023; 31
Chen (10.1016/j.jfca.2025.108240_b3) 2024; 442
Li (10.1016/j.jfca.2025.108240_b22) 2021; 9
Li (10.1016/j.jfca.2025.108240_b23) 2024; 442
Pan (10.1016/j.jfca.2025.108240_b27) 2022; 271
Fu (10.1016/j.jfca.2025.108240_b10) 2025; 464
Luo (10.1016/j.jfca.2025.108240_b24) 2024; 128
Lanjewar (10.1016/j.jfca.2025.108240_b20) 2024; 136
Shi (10.1016/j.jfca.2025.108240_b35) 2024; 12
Steidle Neto (10.1016/j.jfca.2025.108240_b36) 2024; 135
Jiang (10.1016/j.jfca.2025.108240_b17) 2023; 12
Qiu (10.1016/j.jfca.2025.108240_b31) 2024; 205
Wilson (10.1016/j.jfca.2025.108240_b41) 2015; 20
Grassi (10.1016/j.jfca.2025.108240_b13) 2021; 10
Ram (10.1016/j.jfca.2025.108240_b32) 2024; 222
Magwaza (10.1016/j.jfca.2025.108240_b25) 2012; 5
Alighaleh (10.1016/j.jfca.2025.108240_b1) 2023; 12
Li (10.1016/j.jfca.2025.108240_b21) 2025; 9
Tang (10.1016/j.jfca.2025.108240_b38) 2024; 23
Peng (10.1016/j.jfca.2025.108240_b29) 2025; 326
Cevoli (10.1016/j.jfca.2025.108240_b2) 2024; 237
Goyal (10.1016/j.jfca.2025.108240_b12) 2024; 146
Gul (10.1016/j.jfca.2025.108240_b14) 2024; 16
Wang (10.1016/j.jfca.2025.108240_b40) 2024; 64
Jiang (10.1016/j.jfca.2025.108240_b18) 2023; 193
Geană (10.1016/j.jfca.2025.108240_b11) 2024; 13
Zhang (10.1016/j.jfca.2025.108240_b44) 2024; 136
Xu (10.1016/j.jfca.2025.108240_b42) 2024; 214
Dai (10.1016/j.jfca.2025.108240_b5) 2023; 408
Wang (10.1016/j.jfca.2025.108240_b39) 2025; 327
Malavi (10.1016/j.jfca.2025.108240_b26) 2024; 157
Yang (10.1016/j.jfca.2025.108240_b43) 2022; 9
Chen (10.1016/j.jfca.2025.108240_b4) 2024; 24
Semyalo (10.1016/j.jfca.2025.108240_b34) 2024; 209
Donald (10.1016/j.jfca.2025.108240_b8) 2001
Jiang (10.1016/j.jfca.2025.108240_b16) 2024; 132
Qin (10.1016/j.jfca.2025.108240_b30) 2024; 21
Ruggiero (10.1016/j.jfca.2025.108240_b33) 2022; 375
Fatchurrahman (10.1016/j.jfca.2025.108240_b9) 2024; 13
Dhiman (10.1016/j.jfca.2025.108240_b7) 2019; 165
Pandiselvam (10.1016/j.jfca.2025.108240_b28) 2022; 9
Deng (10.1016/j.jfca.2025.108240_b6) 2025; 472
Kganyago (10.1016/j.jfca.2025.108240_b19) 2024; 218
References_xml – volume: 12
  year: 2023
  ident: b17
  article-title: Rapid prediction of adulteration content in atractylodis rhizoma based on data and image features fusions from near-infrared spectroscopy and hyperspectral imaging techniques
  publication-title: Foods
– volume: 128
  year: 2024
  ident: b24
  article-title: Principles and applications of convolutional neural network for spectral analysis in food quality evaluation: A review
  publication-title: J. Food Comp. Anal.
– volume: 408
  year: 2023
  ident: b5
  article-title: Classification of Pericarpium Citri Reticulatae (Chenpi) age using surface-enhanced Raman spectroscopy
  publication-title: Food Chem.
– volume: 472
  year: 2025
  ident: b6
  article-title: Detection of camellia oil adulteration based on near-infrared spectroscopy and smartphone combined with deep learning and multimodal fusion
  publication-title: Food Chem.
– volume: 464
  year: 2025
  ident: b10
  article-title: Microbes: Drivers of chenpi manufacturing, biotransformation, and physiological effects
  publication-title: Food Chem.
– volume: 135
  year: 2024
  ident: b36
  article-title: Chemometrics coupled with near infrared spectroscopy for detecting adulteration levels in herbal teas
  publication-title: J. Food Comp. Anal.
– volume: 13
  year: 2024
  ident: b11
  article-title: Honey adulteration detection via ultraviolet–Visible spectral investigation coupled with chemometric analysis
  publication-title: Foods
– volume: 132
  year: 2024
  ident: b16
  article-title: Hyperspectral imaging combined with spectral-imagery feature fusion convolutional neural network to discriminate different geographical origins of wolfberries
  publication-title: J. Food Comp. Anal.
– volume: 209
  year: 2024
  ident: b34
  article-title: Nondestructive online measurement of pineapple maturity and soluble solids content using visible and near-infrared spectral analysis
  publication-title: Postharvest Biology Technol.
– volume: 136
  year: 2024
  ident: b44
  article-title: Research on the adulteration of
  publication-title: J. Food Comp. Anal.
– volume: 24
  year: 2024
  ident: b4
  article-title: FT-NIR combined with machine learning was used to rapidly detect the adulteration of Pericarpium Citri Reticulatae (Chenpi) and predict the adulteration concentration
  publication-title: Food Chem.: X
– volume: 165
  start-page: 169
  year: 2019
  end-page: 196
  ident: b7
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
– volume: 442
  year: 2024
  ident: b23
  article-title: Recent advances in the authentication (geographical origins, varieties and aging time) of tangerine peel (Citri reticulatae pericarpium):A review
  publication-title: Food Chem.
– volume: 16
  start-page: 78
  year: 2024
  end-page: 97
  ident: b14
  article-title: Deep learning hyperspectral imaging: a rapid and reliable alternative to conventional techniques in the testing of food quality and safety
  publication-title: Qual. Assur. Saf. Crop. & Foods
– volume: 157
  year: 2024
  ident: b26
  article-title: Detection of saffron adulteration with crocus sativus style using NIR-hyperspectral imaging and chemometrics
  publication-title: Food Control
– volume: 20
  year: 2015
  ident: b41
  article-title: Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization
  publication-title: J. Biomed. Opt.
– volume: 12
  start-page: 5036
  year: 2024
  end-page: 5051
  ident: b35
  article-title: Evaluation of chemical components and quality in Xinhui Chenpi (Citrus reticulata ‘Chachi’) with two different storage times by GC–MS and UPLC
  publication-title: Food Sci. Nutr.
– volume: 21
  year: 2024
  ident: b30
  article-title: Application of flash GC e-nose and FT-NIR combined with deep learning algorithm in preventing age fraud and quality evaluation of pericarpium citri reticulatae
  publication-title: Food Chem.: X
– volume: 214
  year: 2024
  ident: b42
  article-title: Non-destructive determination of internal soluble solid content in pomelo using visible/near infrared full-transmission spectroscopy
  publication-title: Postharvest Biology Technol.
– volume: 222
  year: 2024
  ident: b32
  article-title: A systematic review of hyperspectral imaging in precision agriculture: Analysis of its current state and future prospects
  publication-title: Comput. Electron. Agric.
– volume: 237
  start-page: 157
  year: 2024
  end-page: 169
  ident: b2
  article-title: Data fusion of FT-NIR spectroscopy and Vis/NIR hyperspectral imaging to predict quality parameters of yellow flesh ’Jintao’ kiwifruit
  publication-title: Biosyst. Eng.
– volume: 442
  year: 2024
  ident: b3
  article-title: Optimizing BP neural network algorithm for Pericarpium Citri Reticulatae (Chenpi) origin traceability based on computer vision and ultra-fast gas-phase electronic nose data fusion
  publication-title: Food Chem.
– volume: 9
  start-page: 943
  year: 2021
  end-page: 951
  ident: b22
  article-title: A novel method for the nondestructive classification of different-age Citri Reticulatae Pericarpium based on data combination technique
  publication-title: Food Sci. Nutr.
– volume: 5
  start-page: 425
  year: 2012
  end-page: 444
  ident: b25
  article-title: NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review
  publication-title: Food Bioprocess Technol.
– year: 2001
  ident: b8
  article-title: Handbook of Near-Infrared Analysis
– volume: 9
  year: 2022
  ident: b28
  article-title: Recent advancements in NIR spectroscopy for assessing the quality and safety of horticultural products: A comprehensive review
  publication-title: Front. Nutr.
– volume: 31
  start-page: 263
  year: 2023
  end-page: 270
  ident: b15
  article-title: On-site rapid detection of aging of Pericarpium Citri Reticulatae using multispectral imaging
  publication-title: J. Near Infrared Spectrosc.
– volume: 12
  year: 2023
  ident: b1
  article-title: Detection and classification of saffron adulterants by vis-nir imaging, chemical analysis, and soft computing
  publication-title: Foods
– volume: 13
  year: 2024
  ident: b9
  article-title: The potential application of visible-near infrared (Vis-NIR) hyperspectral imaging for classifying typical defective goji berry (
  publication-title: Foods
– volume: 136
  year: 2024
  ident: b20
  article-title: Detecting starch-adulterated turmeric using Vis-NIR spectroscopy and multispectral imaging with machine learning
  publication-title: J. Food Comp. Anal.
– volume: 375
  year: 2022
  ident: b33
  article-title: Use of near-infrared spectroscopy combined with chemometrics for authentication and traceability of intact lemon fruits
  publication-title: Food Chem.
– volume: 218
  year: 2024
  ident: b19
  article-title: Optical remote sensing of crop biophysical and biochemical parameters: An overview of advances in sensor technologies and machine learning algorithms for precision agriculture
  publication-title: Comput. Electron. Agric.
– volume: 9
  start-page: 17
  year: 2025
  ident: b21
  article-title: Geographical origin discrimination of Chenpi using machine learning and enhanced mid-level data fusion
  publication-title: Npj Sci. Food
– volume: 13
  start-page: 3856
  year: 2024
  ident: b37
  article-title: Accurate discrimination of mold-damaged Citri Reticulatae Pericarpium using partial least-squares discriminant analysis and selected wavelengths
  publication-title: Foods
– volume: 64
  start-page: 10332
  year: 2024
  end-page: 10360
  ident: b40
  article-title: Review of recent advances on health benefits, microbial transformations, and authenticity identification of Citri reticulatae Pericarpium bioactive compounds
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 9
  year: 2022
  ident: b43
  article-title: Chemical variation of Chenpi (Citrus peels) and corresponding correlated bioactive compounds by LC-MS metabolomics and multibioassay analysis
  publication-title: Front. Nutr.
– volume: 10
  start-page: 1042
  year: 2021
  ident: b13
  article-title: Near infrared spectroscopy as a green technology for the quality prediction of intact olives
  publication-title: Foods
– volume: 193
  year: 2023
  ident: b18
  article-title: Data fusion based on near-infrared spectroscopy and hyperspectral imaging technology for rapid adulteration detection of Ganoderma lucidum spore powder
  publication-title: Microchem. J.
– volume: 205
  year: 2024
  ident: b31
  article-title: Portable near-infrared spectroscopy with variable selection-linear discriminant analysis technology for accurate and nondestructive detection of sulfur-fumigated Citri Reticulatae Pericarpium
  publication-title: LWT
– volume: 327
  year: 2025
  ident: b39
  article-title: Rapid qualitative and quantitative detection for adulteration of atractylodis rhizoma using hyperspectral imaging combined with chemometric methods
  publication-title: Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
– volume: 146
  year: 2024
  ident: b12
  article-title: Spectroscopic food adulteration detection using machine learning: Current challenges and future prospects
  publication-title: Trends Food Sci. Technol.
– volume: 23
  year: 2024
  ident: b38
  article-title: Accurate and visualiable discrimination of Chenpi age using 2D-CNN and grad-cam++ based on infrared spectral images
  publication-title: Food Chem.: X
– volume: 271
  year: 2022
  ident: b27
  article-title: Rapid on-site identification of geographical origin and storage age of tangerine peel by Near-infrared spectroscopy
  publication-title: Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
– volume: 326
  year: 2025
  ident: b29
  article-title: Application of handheld near infrared spectrometer in quality control of traditional Chinese medicine: Rapid screening and quantitative analysis of Lonicerae Japonicae Flos adulteration
  publication-title: Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
– volume: 442
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b23
  article-title: Recent advances in the authentication (geographical origins, varieties and aging time) of tangerine peel (Citri reticulatae pericarpium):A review
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2024.138531
– volume: 128
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b24
  article-title: Principles and applications of convolutional neural network for spectral analysis in food quality evaluation: A review
  publication-title: J. Food Comp. Anal.
  doi: 10.1016/j.jfca.2024.105996
– volume: 10
  start-page: 1042
  issue: 5
  year: 2021
  ident: 10.1016/j.jfca.2025.108240_b13
  article-title: Near infrared spectroscopy as a green technology for the quality prediction of intact olives
  publication-title: Foods
  doi: 10.3390/foods10051042
– volume: 205
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b31
  article-title: Portable near-infrared spectroscopy with variable selection-linear discriminant analysis technology for accurate and nondestructive detection of sulfur-fumigated Citri Reticulatae Pericarpium
  publication-title: LWT
  doi: 10.1016/j.lwt.2024.116518
– volume: 9
  year: 2022
  ident: 10.1016/j.jfca.2025.108240_b28
  article-title: Recent advancements in NIR spectroscopy for assessing the quality and safety of horticultural products: A comprehensive review
  publication-title: Front. Nutr.
  doi: 10.3389/fnut.2022.973457
– volume: 13
  start-page: 3856
  issue: 23
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b37
  article-title: Accurate discrimination of mold-damaged Citri Reticulatae Pericarpium using partial least-squares discriminant analysis and selected wavelengths
  publication-title: Foods
  doi: 10.3390/foods13233856
– volume: 442
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b3
  article-title: Optimizing BP neural network algorithm for Pericarpium Citri Reticulatae (Chenpi) origin traceability based on computer vision and ultra-fast gas-phase electronic nose data fusion
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2024.138408
– year: 2001
  ident: 10.1016/j.jfca.2025.108240_b8
– volume: 31
  start-page: 263
  issue: 5
  year: 2023
  ident: 10.1016/j.jfca.2025.108240_b15
  article-title: On-site rapid detection of aging of Pericarpium Citri Reticulatae using multispectral imaging
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1177/09670335231194737
– volume: 464
  year: 2025
  ident: 10.1016/j.jfca.2025.108240_b10
  article-title: Microbes: Drivers of chenpi manufacturing, biotransformation, and physiological effects
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2024.141631
– volume: 136
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b44
  article-title: Research on the adulteration of Lycium barbarum based on hyperspectral imaging technology combined with deep learning algorithm
  publication-title: J. Food Comp. Anal.
  doi: 10.1016/j.jfca.2024.106765
– volume: 237
  start-page: 157
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b2
  article-title: Data fusion of FT-NIR spectroscopy and Vis/NIR hyperspectral imaging to predict quality parameters of yellow flesh ’Jintao’ kiwifruit
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2023.12.011
– volume: 327
  year: 2025
  ident: 10.1016/j.jfca.2025.108240_b39
  article-title: Rapid qualitative and quantitative detection for adulteration of atractylodis rhizoma using hyperspectral imaging combined with chemometric methods
  publication-title: Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2024.125426
– volume: 16
  start-page: 78
  issue: 1
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b14
  article-title: Deep learning hyperspectral imaging: a rapid and reliable alternative to conventional techniques in the testing of food quality and safety
  publication-title: Qual. Assur. Saf. Crop. & Foods
  doi: 10.15586/qas.v16i1.1392
– volume: 157
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b26
  article-title: Detection of saffron adulteration with crocus sativus style using NIR-hyperspectral imaging and chemometrics
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2023.110189
– volume: 375
  year: 2022
  ident: 10.1016/j.jfca.2025.108240_b33
  article-title: Use of near-infrared spectroscopy combined with chemometrics for authentication and traceability of intact lemon fruits
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.131822
– volume: 146
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b12
  article-title: Spectroscopic food adulteration detection using machine learning: Current challenges and future prospects
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2024.104377
– volume: 9
  start-page: 943
  issue: 2
  year: 2021
  ident: 10.1016/j.jfca.2025.108240_b22
  article-title: A novel method for the nondestructive classification of different-age Citri Reticulatae Pericarpium based on data combination technique
  publication-title: Food Sci. Nutr.
  doi: 10.1002/fsn3.2059
– volume: 12
  year: 2023
  ident: 10.1016/j.jfca.2025.108240_b1
  article-title: Detection and classification of saffron adulterants by vis-nir imaging, chemical analysis, and soft computing
  publication-title: Foods
  doi: 10.3390/foods12112192
– volume: 12
  start-page: 5036
  issue: 7
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b35
  article-title: Evaluation of chemical components and quality in Xinhui Chenpi (Citrus reticulata ‘Chachi’) with two different storage times by GC–MS and UPLC
  publication-title: Food Sci. Nutr.
  doi: 10.1002/fsn3.4154
– volume: 165
  start-page: 169
  year: 2019
  ident: 10.1016/j.jfca.2025.108240_b7
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.11.024
– volume: 13
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b11
  article-title: Honey adulteration detection via ultraviolet–Visible spectral investigation coupled with chemometric analysis
  publication-title: Foods
  doi: 10.3390/foods13223630
– volume: 214
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b42
  article-title: Non-destructive determination of internal soluble solid content in pomelo using visible/near infrared full-transmission spectroscopy
  publication-title: Postharvest Biology Technol.
  doi: 10.1016/j.postharvbio.2024.112990
– volume: 21
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b30
  article-title: Application of flash GC e-nose and FT-NIR combined with deep learning algorithm in preventing age fraud and quality evaluation of pericarpium citri reticulatae
  publication-title: Food Chem.: X
– volume: 193
  year: 2023
  ident: 10.1016/j.jfca.2025.108240_b18
  article-title: Data fusion based on near-infrared spectroscopy and hyperspectral imaging technology for rapid adulteration detection of Ganoderma lucidum spore powder
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2023.109190
– volume: 222
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b32
  article-title: A systematic review of hyperspectral imaging in precision agriculture: Analysis of its current state and future prospects
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.109037
– volume: 326
  year: 2025
  ident: 10.1016/j.jfca.2025.108240_b29
  article-title: Application of handheld near infrared spectrometer in quality control of traditional Chinese medicine: Rapid screening and quantitative analysis of Lonicerae Japonicae Flos adulteration
  publication-title: Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2024.125215
– volume: 408
  year: 2023
  ident: 10.1016/j.jfca.2025.108240_b5
  article-title: Classification of Pericarpium Citri Reticulatae (Chenpi) age using surface-enhanced Raman spectroscopy
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.135210
– volume: 64
  start-page: 10332
  issue: 28
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b40
  article-title: Review of recent advances on health benefits, microbial transformations, and authenticity identification of Citri reticulatae Pericarpium bioactive compounds
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2023.2222834
– volume: 13
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b9
  article-title: The potential application of visible-near infrared (Vis-NIR) hyperspectral imaging for classifying typical defective goji berry (Lycium barbarum L.)
  publication-title: Foods
  doi: 10.3390/foods13213469
– volume: 135
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b36
  article-title: Chemometrics coupled with near infrared spectroscopy for detecting adulteration levels in herbal teas
  publication-title: J. Food Comp. Anal.
  doi: 10.1016/j.jfca.2024.106637
– volume: 24
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b4
  article-title: FT-NIR combined with machine learning was used to rapidly detect the adulteration of Pericarpium Citri Reticulatae (Chenpi) and predict the adulteration concentration
  publication-title: Food Chem.: X
– volume: 472
  year: 2025
  ident: 10.1016/j.jfca.2025.108240_b6
  article-title: Detection of camellia oil adulteration based on near-infrared spectroscopy and smartphone combined with deep learning and multimodal fusion
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2025.142930
– volume: 9
  start-page: 17
  issue: 1
  year: 2025
  ident: 10.1016/j.jfca.2025.108240_b21
  article-title: Geographical origin discrimination of Chenpi using machine learning and enhanced mid-level data fusion
  publication-title: Npj Sci. Food
  doi: 10.1038/s41538-025-00376-0
– volume: 271
  year: 2022
  ident: 10.1016/j.jfca.2025.108240_b27
  article-title: Rapid on-site identification of geographical origin and storage age of tangerine peel by Near-infrared spectroscopy
  publication-title: Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2022.120936
– volume: 209
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b34
  article-title: Nondestructive online measurement of pineapple maturity and soluble solids content using visible and near-infrared spectral analysis
  publication-title: Postharvest Biology Technol.
  doi: 10.1016/j.postharvbio.2023.112706
– volume: 23
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b38
  article-title: Accurate and visualiable discrimination of Chenpi age using 2D-CNN and grad-cam++ based on infrared spectral images
  publication-title: Food Chem.: X
– volume: 5
  start-page: 425
  year: 2012
  ident: 10.1016/j.jfca.2025.108240_b25
  article-title: NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-011-0697-1
– volume: 218
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b19
  article-title: Optical remote sensing of crop biophysical and biochemical parameters: An overview of advances in sensor technologies and machine learning algorithms for precision agriculture
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108730
– volume: 9
  year: 2022
  ident: 10.1016/j.jfca.2025.108240_b43
  article-title: Chemical variation of Chenpi (Citrus peels) and corresponding correlated bioactive compounds by LC-MS metabolomics and multibioassay analysis
  publication-title: Front. Nutr.
– volume: 12
  year: 2023
  ident: 10.1016/j.jfca.2025.108240_b17
  article-title: Rapid prediction of adulteration content in atractylodis rhizoma based on data and image features fusions from near-infrared spectroscopy and hyperspectral imaging techniques
  publication-title: Foods
  doi: 10.3390/foods12152904
– volume: 136
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b20
  article-title: Detecting starch-adulterated turmeric using Vis-NIR spectroscopy and multispectral imaging with machine learning
  publication-title: J. Food Comp. Anal.
  doi: 10.1016/j.jfca.2024.106700
– volume: 132
  year: 2024
  ident: 10.1016/j.jfca.2025.108240_b16
  article-title: Hyperspectral imaging combined with spectral-imagery feature fusion convolutional neural network to discriminate different geographical origins of wolfberries
  publication-title: J. Food Comp. Anal.
  doi: 10.1016/j.jfca.2024.106259
– volume: 20
  issue: 3
  year: 2015
  ident: 10.1016/j.jfca.2025.108240_b41
  article-title: Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.20.3.030901
SSID ssj0005248
Score 2.4592571
Snippet Citri Reticulatae Pericarpium(CRP), due to its market demand and high price, is commonly subject to counterfeiting, with various methods of counterfeiting. In...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108240
SubjectTerms Citri Reticulatae Pericarpium
Counterfeit identification
Machine learning
Spectral
Vis-NIR
Title Vis/NIR spectroscopy and machine learning model for counterfeit Citri Reticulatae Pericarpium identification
URI https://dx.doi.org/10.1016/j.jfca.2025.108240
Volume 148
WOSCitedRecordID wos001567905200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0889-1575
  databaseCode: AIEXJ
  dateStart: 19950301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005248
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Pb9MwHLVKhwSXCQaIMkA-IC5VRpPUSXycyiY2aRVCA5VTZLsOcunSqktGvwdfmJ__pekKiB24JJWVuFbek_uL-_weQm8E4VmRcRkMsjQKhhlLgkyELEhNsUymRRILEzaRjsfZZEI_djo__V6Ym3laltl6TZf_FWpoA7D11tk7wN10Cg3wGUCHI8AOx38C_ot2DTgdn33qm12U2q1ysbQuS1dGOSl9VMQ3m4NjlIYmM0KuCqmq_khVKwUP3vhysIpJrZNX-p8aVV_11dQJjDaY7ha3hTZL1nJ1pwlznrDWAGVnsfoCxvK9bmh6wZwQYLHdcg5U_iFVM1HVdvH2a12uFWsvX0SkJQXxsxwNQmLjU5op2bpvukk1hDLFejrtzPd26WF2NCuENpGKyNHm4m1z7Vs_eo0U0avcZrnuI9d95LaPe2gvSgnNumjv-Oxkct5SDplQtmbkbi-WlQ3eHsnv651WDXP5CO07fPCxJc1j1JHlAXow8pl_B6j3XskKv8XOLXaOxz6sAa7ze9ivn6A5kOwdUAy3KYYBY-wohj3FsKEYBorhFsWwoRhuUQy3KIa3KfYUfT49uRx9CFxuRyAiEldBUoR0qLNAoXrWCQaiEGEo4L1BRDqBB15iwzShbDrgNCIF5ylPKJGpTAgLoZnHz1C3XJTyOcKCsgEbJnEsp2IIZ17wacJSmvA4FoOC9lDfP918ae1Z8j8j2kPEA5C7AtMWjjnw6S_3vbjTtxyihxuiv0TdalXLV-i-uKnU9eq1I9MvKuCfEw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vis%2FNIR+spectroscopy+and+machine+learning+model+for+counterfeit+Citri+Reticulatae+Pericarpium+identification&rft.jtitle=Journal+of+food+composition+and+analysis&rft.au=Zhang%2C+Mingkun&rft.au=Ma%2C+Chao&rft.au=Ma%2C+Jianwei&rft.au=Yuan%2C+Yunxia&rft.date=2025-12-01&rft.issn=0889-1575&rft.volume=148&rft.spage=108240&rft_id=info:doi/10.1016%2Fj.jfca.2025.108240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfca_2025_108240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-1575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-1575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-1575&client=summon