Multi-branch global Transformer‐assisted network for fault diagnosis

Fault Diagnosis (FD) is critical in smart manufacturing, enabling predictive maintenance, reducing operational costs, and enhancing system reliability. To deal with this task more accurately, this paper proposes a generative, effective, and novel framework, a multi-branch global Transformer-assisted...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 182; p. 113572
Main Authors: Shao, Xiaorui, Kim, Chang-Soo
Format: Journal Article
Language:English
Published: Elsevier B.V 01.10.2025
Subjects:
ISSN:1568-4946
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fault Diagnosis (FD) is critical in smart manufacturing, enabling predictive maintenance, reducing operational costs, and enhancing system reliability. To deal with this task more accurately, this paper proposes a generative, effective, and novel framework, a multi-branch global Transformer-assisted network (MBGTNet), for accurate FD. First, a multi-branch global-wide one-dimension convolution operation (MBG-WideConv1D) is proposed to obtain global features in different views. Meanwhile, a Transformer assist scheme (TAS) is designed to leverage the Transformer's global feature extraction capacity. The features extracted by the Transformer are fused with those extracted with MBG-WideConv1D by minimizing their pairwise correlation alignment (CORAL) distances. Benefiting from the well-designed MBG-WideConv1D and TAS, the global features hidden in the raw signals are fully extracted from multiple viewpoints. Each branch of global features is then fed into a one-dimension convolutional neural network (1DCNN) to extract local features in a multi-supervised scheme (MSS) that helps each branch learn thoroughly. Furthermore, the proposed method employs a local feature correlation enhancement scheme (LFCS) to reduce distribution differences and increase robustness among the local features of each branch. As a result, the final features used for FD are a fusion of multi-view global and local features with strong robustness, enabling accurate FD in noisy environments. Comparative experiments on four datasets, including CWRU, MFPT, SU Bearing, and SU Gear, validate the proposed method's effectiveness, achieving over 99.6 % accuracy across four datasets. Moreover, the TAS and LFCS's generalities have been demonstrated on two 1DCNNs and hybrid CNN-LSTMs with four subsets. Also, the effectiveness of each component in the proposed framework has been thoroughly analyzed. •The TAS ensures global feature extraction without meta-information loss.•The MB-WideConv1D extracts multi-global features.•The MSS guides each 1DCNN to learn local features thoroughly.•The LFCS increases the robustness of local features.•MBGTNet achieves an average accuracy of over 99.6 % for fault diagnosis.
AbstractList Fault Diagnosis (FD) is critical in smart manufacturing, enabling predictive maintenance, reducing operational costs, and enhancing system reliability. To deal with this task more accurately, this paper proposes a generative, effective, and novel framework, a multi-branch global Transformer-assisted network (MBGTNet), for accurate FD. First, a multi-branch global-wide one-dimension convolution operation (MBG-WideConv1D) is proposed to obtain global features in different views. Meanwhile, a Transformer assist scheme (TAS) is designed to leverage the Transformer's global feature extraction capacity. The features extracted by the Transformer are fused with those extracted with MBG-WideConv1D by minimizing their pairwise correlation alignment (CORAL) distances. Benefiting from the well-designed MBG-WideConv1D and TAS, the global features hidden in the raw signals are fully extracted from multiple viewpoints. Each branch of global features is then fed into a one-dimension convolutional neural network (1DCNN) to extract local features in a multi-supervised scheme (MSS) that helps each branch learn thoroughly. Furthermore, the proposed method employs a local feature correlation enhancement scheme (LFCS) to reduce distribution differences and increase robustness among the local features of each branch. As a result, the final features used for FD are a fusion of multi-view global and local features with strong robustness, enabling accurate FD in noisy environments. Comparative experiments on four datasets, including CWRU, MFPT, SU Bearing, and SU Gear, validate the proposed method's effectiveness, achieving over 99.6 % accuracy across four datasets. Moreover, the TAS and LFCS's generalities have been demonstrated on two 1DCNNs and hybrid CNN-LSTMs with four subsets. Also, the effectiveness of each component in the proposed framework has been thoroughly analyzed. •The TAS ensures global feature extraction without meta-information loss.•The MB-WideConv1D extracts multi-global features.•The MSS guides each 1DCNN to learn local features thoroughly.•The LFCS increases the robustness of local features.•MBGTNet achieves an average accuracy of over 99.6 % for fault diagnosis.
ArticleNumber 113572
Author Kim, Chang-Soo
Shao, Xiaorui
Author_xml – sequence: 1
  givenname: Xiaorui
  orcidid: 0000-0001-5454-6920
  surname: Shao
  fullname: Shao, Xiaorui
  email: xrshao@gzu.edu.cn
  organization: Text Computing & Cognitive Intelligence Engineering Research Center of National Education Ministry, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, Guizhou 550025, China
– sequence: 2
  givenname: Chang-Soo
  orcidid: 0000-0003-2168-7983
  surname: Kim
  fullname: Kim, Chang-Soo
  email: cskim@pknu.ac.kr
  organization: Information Systems, Pukyong National University, Busan 608737, South Korea
BookMark eNp9j0FOwzAQRb0oEm3hAqxygQTbiVNHYoMqCkhFbMraGtvj4pLGyA4gdhyBM3ISXJU1q9Ho_zeaNyOTIQxIyAWjFaOsvdxVkIKpOOWiYqwWCz4hUyZaWTZd056SWUo7mosdl1OyenjrR1_qCIN5LrZ90NAXm7wlF-Ie48_XN6Tk04i2GHD8CPGlyEnhIHOF9bAdQo7PyImDPuH535yTp9XNZnlXrh9v75fX69JwUY9lK0EwwaSuBW24lrCwsNC65s4KCdgwl0PrOAAFi1R3wLQxbcu47EAzW88JP941MaQU0anX6PcQPxWj6mCvdupgrw726mifoasjhPmzd49RJeNxMGh9RDMqG_x_-C8BgGmb
Cites_doi 10.1016/j.compind.2018.11.003
10.1109/TIM.2021.3118090
10.1007/s12206-008-0603-6
10.1016/j.ins.2024.121126
10.1016/j.engappai.2022.105794
10.21629/JSEE.2017.01.18
10.1109/TIE.2018.2844805
10.1016/j.eswa.2022.119057
10.1016/j.knosys.2024.111609
10.1016/j.asoc.2024.112324
10.1016/S0888-3270(03)00071-2
10.1016/j.jprocont.2023.103069
10.1016/j.ress.2024.110198
10.1006/mssp.2001.1462
10.1016/j.asoc.2021.107702
10.4324/9781003116929-18
10.1016/j.jmsy.2023.02.018
10.1016/j.neucom.2022.04.111
10.1109/TIE.2015.2417501
10.1007/s10845-020-01600-2
10.1109/TFUZZ.2024.3411389
10.1007/s10845-013-0772-8
10.1109/TII.2017.2672988
10.1016/j.compind.2018.12.001
10.1016/j.compind.2020.103378
10.1016/j.eswa.2023.121216
10.1007/s10462-021-09993-z
10.1109/TSMC.2017.2754287
10.1109/TII.2018.2864759
10.1016/j.apenergy.2023.122252
10.1016/j.ymssp.2015.04.021
10.1038/nature14539
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2025.113572
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2025_113572
S156849462500883X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9DU
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c253t-68a51518b35042b8a7da7bb32fd58ae41f518df2aa0ade0b9a1bcc661289ab1d3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001533753500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Sat Nov 29 06:50:28 EST 2025
Wed Dec 10 14:40:34 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords LN
PV
TAS
MHA
DSMT-1DCNN
multi-view global features
DL-MSCNN
RNN
MBGTNet
FFT
DWT
WARS
WDCNNProposed
IR
GMP
RF
FD
MSCNN
WDCNN
ANN
Transformer
CORAL
GFC
LFCS
SVM
BN
SA
AWF
Fault diagnosis
2DCNN
NLP
CBAM
SNR
ACEL
ProposedWo-MSS
multi-supervised algorithm
ViT
CWT
1DCNN
CE
SU
LSTM
OR
ProposedWo-LFCS
MBLF
MSS
MGF
CNN-LSTMProposed
WSCNN-GMPProposed
MBG-WideConv1D
MFPT
MSCNN-LSTMPropsoed
CNNCombine
DB
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-68a51518b35042b8a7da7bb32fd58ae41f518df2aa0ade0b9a1bcc661289ab1d3
ORCID 0000-0001-5454-6920
0000-0003-2168-7983
ParticipantIDs crossref_primary_10_1016_j_asoc_2025_113572
elsevier_sciencedirect_doi_10_1016_j_asoc_2025_113572
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE, ICLR 2021 - 9th Int. Conf. Learn. Represent. (2021).
Wang, Xiahou, Zhang, He, Yang, Niu, Liu, Liu (bib44) 2024; 249
Shao, McAleer, Yan, Baldi (bib5) 2019; 15
Li, Lian, Guo, Zhao (bib2) 2015; 26
Qu, Sun, Qian, Wei, Zareipour (bib19) 2024; 355
Smith, Randall (bib50) 2015; 64–65
Chen, Huang, Yang, Xu, Zhang, Zhang (bib14) 2019; 106
Shao, Wang, Kim, Ra (bib33) 2021; 15
Lu, Cui, Hu, Yin (bib34) 2023; 213
Ge, Du, Zhang, Xu (bib9) 2004; 18
Jia, Chow, Yuan (bib35) 2023; 119
E. Bechhoefer, Condition Based Maintenance Fault Database for Testing Diagnostics and Prognostic Algorithms
Huang, Zhang, Tang, Zhao (bib18) 2022; 55
Jin, Hou, Chen (bib42) 2022; 494
Zhang, Wang, Si, Wang (bib22) 2022; 71
(2013).
.
Lecun, Bengio, Hinton (bib13) 2015; 521
Shao, Soo Kim, Geun Kim (bib24) 2020; 65
Liu, Wang, Liu, Qin, Peng (bib12) 2021; 70
Shao, Kim (bib53) 2024; 679
An, Lu, Zhu, Wang, De Silva, Xia, Lu (bib15) 2023; 72
Shao, Li, Ra, Kim (bib26) 2024; 292
Sun, Zhao, Yan, Shao, Chen (bib4) 2017; 13
Jiang, Yang, Wang, Xu, Wang, Cheng (bib16) 2021; 110
Veltman, Pulle, De Doncker (bib38) 2017
Acheampong, Nunoo-Mensah, Chen (bib40) 2021
Liu, Huang, Jia (bib17) 2024
Wu, Jiang, Ding, Feng, Chen (bib20) 2019; 108
Zhao, Duan, Roy, Zhang (bib30) 2024; 249
Wen, Gao, Li (bib32) 2019; 49
Wu, Zheng (bib29) 2024; 79
Devlin, Chang, Lee, Toutanova (bib39) 2019; 1
Shao, Yan, Lu, Wang, Gao (bib3) 2020; 18
Jiang, He, Yan, Xie (bib23) 2019; 66
Shao, Lee, Kim (bib25) 2023
He, Zhang, Ren, Sun (bib46) 2016
Zhu, Qian, Zhang, He, Xu (bib45) 2023; 130
Chen, Zhang, Gao (bib28) 2021; 32
Z. Cui, W. Chen, Y. Chen, Multi-Scale Convolutional neural networks for time series classification, ArXiv:1603.06995. (n.d.) 169.
Gao, Cecati, Ding (bib7) 2015; 62
Yang, Di, Han (bib10) 2008; 22
Wu, Triebe, Sutherland (bib36) 2023; 67
Sun, Feng, Saenko (bib47) 2016; 2016
Li, Zhang, Liu, Feng, Zhou, Duan (bib43) 2024
Sun, Saenko (bib48) 2016
Wang, Liu, Luo, Yang (bib37) 2023; 34
Gao, Cecati, Ding (bib6) 2015; 62
Shao, Kim (bib8) 2024; 236
Jiang, Wu, Zhu, Gao (bib31) 2024; 32
Zhang, Peng, Li, Chen, Zhang (bib21) 2017; 17
Wei, Chen, Yuan, Huang, Wen, Jiao (bib1) 2024; 167
Kingma, Ba (bib49) 2015
Jalayer, Orsenigo, Vercellis (bib27) 2021; 125
Samanta, Al-Balushi (bib11) 2003; 17
Wang (10.1016/j.asoc.2025.113572_bib37) 2023; 34
Zhu (10.1016/j.asoc.2025.113572_bib45) 2023; 130
Jin (10.1016/j.asoc.2025.113572_bib42) 2022; 494
Liu (10.1016/j.asoc.2025.113572_bib17) 2024
Jiang (10.1016/j.asoc.2025.113572_bib23) 2019; 66
Wu (10.1016/j.asoc.2025.113572_bib36) 2023; 67
10.1016/j.asoc.2025.113572_bib41
Wu (10.1016/j.asoc.2025.113572_bib20) 2019; 108
Devlin (10.1016/j.asoc.2025.113572_bib39) 2019; 1
Acheampong (10.1016/j.asoc.2025.113572_bib40) 2021
Shao (10.1016/j.asoc.2025.113572_bib8) 2024; 236
Chen (10.1016/j.asoc.2025.113572_bib14) 2019; 106
Qu (10.1016/j.asoc.2025.113572_bib19) 2024; 355
Shao (10.1016/j.asoc.2025.113572_bib24) 2020; 65
Wu (10.1016/j.asoc.2025.113572_bib29) 2024; 79
Lu (10.1016/j.asoc.2025.113572_bib34) 2023; 213
Shao (10.1016/j.asoc.2025.113572_bib3) 2020; 18
Li (10.1016/j.asoc.2025.113572_bib2) 2015; 26
Chen (10.1016/j.asoc.2025.113572_bib28) 2021; 32
Kingma (10.1016/j.asoc.2025.113572_bib49) 2015
Jiang (10.1016/j.asoc.2025.113572_bib16) 2021; 110
He (10.1016/j.asoc.2025.113572_bib46) 2016
Veltman (10.1016/j.asoc.2025.113572_bib38) 2017
10.1016/j.asoc.2025.113572_bib52
10.1016/j.asoc.2025.113572_bib51
Zhao (10.1016/j.asoc.2025.113572_bib30) 2024; 249
Shao (10.1016/j.asoc.2025.113572_bib5) 2019; 15
Liu (10.1016/j.asoc.2025.113572_bib12) 2021; 70
An (10.1016/j.asoc.2025.113572_bib15) 2023; 72
Gao (10.1016/j.asoc.2025.113572_bib7) 2015; 62
Shao (10.1016/j.asoc.2025.113572_bib33) 2021; 15
Sun (10.1016/j.asoc.2025.113572_bib4) 2017; 13
Samanta (10.1016/j.asoc.2025.113572_bib11) 2003; 17
Ge (10.1016/j.asoc.2025.113572_bib9) 2004; 18
Jia (10.1016/j.asoc.2025.113572_bib35) 2023; 119
Smith (10.1016/j.asoc.2025.113572_bib50) 2015; 64–65
Shao (10.1016/j.asoc.2025.113572_bib53) 2024; 679
Sun (10.1016/j.asoc.2025.113572_bib48) 2016
Wang (10.1016/j.asoc.2025.113572_bib44) 2024; 249
Lecun (10.1016/j.asoc.2025.113572_bib13) 2015; 521
Huang (10.1016/j.asoc.2025.113572_bib18) 2022; 55
Gao (10.1016/j.asoc.2025.113572_bib6) 2015; 62
Zhang (10.1016/j.asoc.2025.113572_bib22) 2022; 71
Jalayer (10.1016/j.asoc.2025.113572_bib27) 2021; 125
Zhang (10.1016/j.asoc.2025.113572_bib21) 2017; 17
Wei (10.1016/j.asoc.2025.113572_bib1) 2024; 167
Shao (10.1016/j.asoc.2025.113572_bib25) 2023
Wen (10.1016/j.asoc.2025.113572_bib32) 2019; 49
Li (10.1016/j.asoc.2025.113572_bib43) 2024
Shao (10.1016/j.asoc.2025.113572_bib26) 2024; 292
Sun (10.1016/j.asoc.2025.113572_bib47) 2016; 2016
Jiang (10.1016/j.asoc.2025.113572_bib31) 2024; 32
Yang (10.1016/j.asoc.2025.113572_bib10) 2008; 22
References_xml – volume: 249
  year: 2024
  ident: bib44
  article-title: Convolutional preprocessing Transformer-based fault diagnosis for rectifier-filter circuits in nuclear power plants
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 2016
  start-page: 2058
  year: 2016
  end-page: 2065
  ident: bib47
  article-title: Return of frustratingly easy domain adaptation
  publication-title: 30th AAAI Conf. Artif. Intell. AAAI
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib46
  article-title: Deep residual learning for image recognition, Proc. IEEE Comput. Soc. Conf. Comput. Vis
  publication-title: Pattern Recognit. 2016Decem
– volume: 119
  year: 2023
  ident: bib35
  article-title: GTFE-Net: a Gramian time frequency enhancement CNN for bearing fault diagnosis
  publication-title: Eng. Appl. Artif. Intell.
– volume: 355
  year: 2024
  ident: bib19
  article-title: Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules
  publication-title: Appl. Energy
– volume: 130
  year: 2023
  ident: bib45
  article-title: Multi-scale Transformer-CNN domain adaptation network for complex processes fault diagnosis
  publication-title: J. Process Control
– reference: A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE, ICLR 2021 - 9th Int. Conf. Learn. Represent. (2021).
– volume: 32
  start-page: 971
  year: 2021
  end-page: 987
  ident: bib28
  article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model
  publication-title: J. Intell. Manuf.
– start-page: 582
  year: 2024
  end-page: 590
  ident: bib43
  article-title: Research on transformer fault diagnosis method based on NRS-PSO-ANFIS, Meas
  publication-title: Sci. Technol. 1168 LNEE
– reference: Z. Cui, W. Chen, Y. Chen, Multi-Scale Convolutional neural networks for time series classification, ArXiv:1603.06995. (n.d.) 169.
– volume: 66
  start-page: 3196
  year: 2019
  end-page: 3207
  ident: bib23
  article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox
  publication-title: IEEE Trans. Ind. Electron
– volume: 32
  start-page: 4735
  year: 2024
  end-page: 4746
  ident: bib31
  article-title: Multimodel fusion health assessment for multistate industrial robot via fuzzy deep residual shrinkage network and versatile cluster
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 22
  start-page: 1716
  year: 2008
  end-page: 1725
  ident: bib10
  article-title: Random forests classifier for machine fault diagnosis, J
  publication-title: Mech. Sci. Technol.
– volume: 72
  start-page: 1
  year: 2023
  end-page: 12
  ident: bib15
  article-title: Edge solution for real-time motor fault diagnosis based on efficient convolutional neural network
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 494
  start-page: 379
  year: 2022
  end-page: 395
  ident: bib42
  article-title: A Time Series Transformer based method for the rotating machinery fault diagnosis
  publication-title: Neurocomputing
– volume: 71
  start-page: 1
  year: 2022
  end-page: 15
  ident: bib22
  article-title: An improved convolutional neural network for three-phase inverter fault diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 292
  start-page: 1
  year: 2024
  end-page: 13
  ident: bib26
  article-title: DSMT-1DCNN: densely supervised multitask 1DCNN for fault diagnosis
  publication-title: Knowl. Based Syst.
– volume: 13
  start-page: 1350
  year: 2017
  end-page: 1359
  ident: bib4
  article-title: Convolutional discriminative feature learning for induction motor fault diagnosis, IEEE Trans
  publication-title: Ind. Inform.
– volume: 79
  start-page: 4395
  year: 2024
  end-page: 4411
  ident: bib29
  article-title: Fault diagnosis method of rolling bearing based on MSCNN-LSTM, Comput
  publication-title: Mater. Contin.
– volume: 167
  year: 2024
  ident: bib1
  article-title: Novel imbalanced multi-class fault diagnosis method using transfer learning and oversampling strategies-based multi-layer support vector machines (ML-SVMs)
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 2446
  year: 2019
  end-page: 2455
  ident: bib5
  article-title: Highly accurate machine fault diagnosis using deep transfer learning, IEEE Trans
  publication-title: Ind. Inform.
– volume: 18
  start-page: 1527
  year: 2020
  end-page: 1554
  ident: bib3
  article-title: DCNN-based multi-signal induction motor fault diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 15
  start-page: 1610
  year: 2021
  end-page: 1629
  ident: bib33
  article-title: Fault diagnosis of bearing based on convolutional neural network using multi-domain features, KSII Trans
  publication-title: Internet Inf. Syst.
– volume: 679
  year: 2024
  ident: bib53
  article-title: TFFS: a trainable federal fusion strategy for multistep time series forecasting
  publication-title: Inf. Sci.
– volume: 17
  start-page: 317
  year: 2003
  end-page: 328
  ident: bib11
  article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
  publication-title: Mech. Syst. Signal Process
– reference: E. Bechhoefer, Condition Based Maintenance Fault Database for Testing Diagnostics and Prognostic Algorithms,
– volume: 67
  start-page: 439
  year: 2023
  end-page: 452
  ident: bib36
  article-title: A transformer-based approach for novel fault detection and fault classification/diagnosis in manufacturing: a rotary system application, J
  publication-title: Manuf. Syst.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib13
  article-title: Deep learning
  publication-title: Nature
– volume: 249
  year: 2024
  ident: bib30
  article-title: A deep learning methodology based on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault diagnosis, Reliab
  publication-title: Eng. Syst. Saf.
– volume: 62
  start-page: 3757
  year: 2015
  end-page: 3767
  ident: bib7
  article-title: A survey of fault diagnosis and fault-tolerant techniques—part II: fault diagnosis with knowledge-based and hybrid/active approaches
  publication-title: IEEE Trans. Ind. Electron
– volume: 110
  year: 2021
  ident: bib16
  article-title: OrbitNet: a new CNN model for automatic fault diagnostics of turbomachines
  publication-title: Appl. Soft Comput.
– volume: 18
  start-page: 143
  year: 2004
  end-page: 159
  ident: bib9
  article-title: Fault diagnosis using support vector machine with an application in sheet metal stamping operations
  publication-title: Mech. Syst. Signal Process
– volume: 65
  start-page: 543
  year: 2020
  end-page: 561
  ident: bib24
  article-title: Accurate multi-scale feature fusion CNN for time series classification in smart factory
  publication-title: Comput. Mater. Contin.
– start-page: 1
  year: 2015
  end-page: 15
  ident: bib49
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd Int. Conf. Learn. Represent. ICLR 2015 Conf. Track Proc.
– volume: 125
  year: 2021
  ident: bib27
  article-title: Fault detection and diagnosis for rotating machinery: a model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms
  publication-title: Comput. Ind.
– volume: 62
  start-page: 3757
  year: 2015
  end-page: 3767
  ident: bib6
  article-title: A survey of fault diagnosis and fault-tolerant techniques-part I: fault diagnosis with model-based and signal-based approaches
  publication-title: IEEE Trans. Ind. Electron
– year: 2023
  ident: bib25
  article-title: DL-MSCNN: a general and lightweight framework for fault diagnosis with limited training samples
  publication-title: J. Intell. Manuf.
– volume: 64–65
  start-page: 100
  year: 2015
  end-page: 131
  ident: bib50
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
  publication-title: Mech. Syst. Signal Process
– volume: 108
  start-page: 53
  year: 2019
  end-page: 61
  ident: bib20
  article-title: Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network
  publication-title: Comput. Ind.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib12
  article-title: Multitask learning based on lightweight 1DCNN for fault diagnosis of wheelset bearings
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 2400828
  year: 2024
  ident: bib17
  article-title: Knowledge distillation-based zero-shot learning for process fault diagnosis, Adv
  publication-title: Intell. Syst.
– volume: 1
  start-page: 4171
  year: 2019
  end-page: 4186
  ident: bib39
  article-title: BERT: pre-training of deep bidirectional transformers for language understanding, NAACL HLT 2019 - 2019 Conf
  publication-title: North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. Proc. Conf.
– start-page: 47
  year: 2017
  end-page: 82
  ident: bib38
  article-title: Attention is all you need
  publication-title: 31st Conf. Neural Inf. Process. Syst. (NIPS 2017)
– start-page: 443
  year: 2016
  end-page: 450
  ident: bib48
  article-title: Deep CORAL: Correlation Alignment for Deep Domain Adaptation, Comput
  publication-title: Vis. ECCV 2016 Work
– volume: 213
  year: 2023
  ident: bib34
  article-title: Multi-view and multi-level network for fault diagnosis accommodating feature transferability
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 189
  year: 2015
  end-page: 198
  ident: bib2
  article-title: Investigation on early fault classification for rolling element bearing based on the optimal frequency band determination, J
  publication-title: Intell. Manuf.
– volume: 49
  start-page: 136
  year: 2019
  end-page: 144
  ident: bib32
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 17
  year: 2017
  ident: bib21
  article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals
  publication-title: Sens. (Switz. )
– volume: 55
  start-page: 1289
  year: 2022
  end-page: 1315
  ident: bib18
  article-title: A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems
  publication-title: Artif. Intell. Rev.
– year: 2021
  ident: bib40
  article-title: Transformer models for text-based emotion detection: a review of BERT-based approaches
– volume: 34
  year: 2023
  ident: bib37
  article-title: Identification of engine faults based on acoustic emission signals using a 1DCNN-ViT ensemble model
  publication-title: Meas. Sci. Technol.
– reference: .
– reference: . (2013).
– volume: 106
  start-page: 48
  year: 2019
  end-page: 59
  ident: bib14
  article-title: Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform
  publication-title: Comput. Ind.
– volume: 236
  year: 2024
  ident: bib8
  article-title: Adaptive multi-scale attention convolution neural network for cross-domain fault diagnosis
  publication-title: Expert Syst. Appl.
– volume: 106
  start-page: 48
  year: 2019
  ident: 10.1016/j.asoc.2025.113572_bib14
  article-title: Intelligent fault diagnosis method of planetary gearboxes based on convolution neural network and discrete wavelet transform
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.11.003
– start-page: 582
  year: 2024
  ident: 10.1016/j.asoc.2025.113572_bib43
  article-title: Research on transformer fault diagnosis method based on NRS-PSO-ANFIS, Meas
  publication-title: Sci. Technol. 1168 LNEE
– volume: 249
  year: 2024
  ident: 10.1016/j.asoc.2025.113572_bib30
  article-title: A deep learning methodology based on adaptive multiscale CNN and enhanced highway LSTM for industrial process fault diagnosis, Reliab
  publication-title: Eng. Syst. Saf.
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2025.113572_bib12
  article-title: Multitask learning based on lightweight 1DCNN for fault diagnosis of wheelset bearings
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3118090
– start-page: 770
  year: 2016
  ident: 10.1016/j.asoc.2025.113572_bib46
  article-title: Deep residual learning for image recognition, Proc. IEEE Comput. Soc. Conf. Comput. Vis
  publication-title: Pattern Recognit. 2016Decem
– volume: 18
  start-page: 1527
  year: 2020
  ident: 10.1016/j.asoc.2025.113572_bib3
  article-title: DCNN-based multi-signal induction motor fault diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 22
  start-page: 1716
  year: 2008
  ident: 10.1016/j.asoc.2025.113572_bib10
  article-title: Random forests classifier for machine fault diagnosis, J
  publication-title: Mech. Sci. Technol.
  doi: 10.1007/s12206-008-0603-6
– start-page: 47
  year: 2017
  ident: 10.1016/j.asoc.2025.113572_bib38
  article-title: Attention is all you need
  publication-title: 31st Conf. Neural Inf. Process. Syst. (NIPS 2017)
– volume: 679
  year: 2024
  ident: 10.1016/j.asoc.2025.113572_bib53
  article-title: TFFS: a trainable federal fusion strategy for multistep time series forecasting
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.121126
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.asoc.2025.113572_bib15
  article-title: Edge solution for real-time motor fault diagnosis based on efficient convolutional neural network
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 119
  year: 2023
  ident: 10.1016/j.asoc.2025.113572_bib35
  article-title: GTFE-Net: a Gramian time frequency enhancement CNN for bearing fault diagnosis
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105794
– ident: 10.1016/j.asoc.2025.113572_bib52
  doi: 10.21629/JSEE.2017.01.18
– volume: 79
  start-page: 4395
  year: 2024
  ident: 10.1016/j.asoc.2025.113572_bib29
  article-title: Fault diagnosis method of rolling bearing based on MSCNN-LSTM, Comput
  publication-title: Mater. Contin.
– start-page: 443
  year: 2016
  ident: 10.1016/j.asoc.2025.113572_bib48
  article-title: Deep CORAL: Correlation Alignment for Deep Domain Adaptation, Comput
  publication-title: Vis. ECCV 2016 Work
– volume: 66
  start-page: 3196
  year: 2019
  ident: 10.1016/j.asoc.2025.113572_bib23
  article-title: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox
  publication-title: IEEE Trans. Ind. Electron
  doi: 10.1109/TIE.2018.2844805
– volume: 213
  year: 2023
  ident: 10.1016/j.asoc.2025.113572_bib34
  article-title: Multi-view and multi-level network for fault diagnosis accommodating feature transferability
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119057
– year: 2023
  ident: 10.1016/j.asoc.2025.113572_bib25
  article-title: DL-MSCNN: a general and lightweight framework for fault diagnosis with limited training samples
  publication-title: J. Intell. Manuf.
– volume: 292
  start-page: 1
  year: 2024
  ident: 10.1016/j.asoc.2025.113572_bib26
  article-title: DSMT-1DCNN: densely supervised multitask 1DCNN for fault diagnosis
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2024.111609
– volume: 2016
  start-page: 2058
  year: 2016
  ident: 10.1016/j.asoc.2025.113572_bib47
  article-title: Return of frustratingly easy domain adaptation
  publication-title: 30th AAAI Conf. Artif. Intell. AAAI
– volume: 167
  year: 2024
  ident: 10.1016/j.asoc.2025.113572_bib1
  article-title: Novel imbalanced multi-class fault diagnosis method using transfer learning and oversampling strategies-based multi-layer support vector machines (ML-SVMs)
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112324
– volume: 18
  start-page: 143
  year: 2004
  ident: 10.1016/j.asoc.2025.113572_bib9
  article-title: Fault diagnosis using support vector machine with an application in sheet metal stamping operations
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/S0888-3270(03)00071-2
– volume: 130
  year: 2023
  ident: 10.1016/j.asoc.2025.113572_bib45
  article-title: Multi-scale Transformer-CNN domain adaptation network for complex processes fault diagnosis
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2023.103069
– volume: 249
  year: 2024
  ident: 10.1016/j.asoc.2025.113572_bib44
  article-title: Convolutional preprocessing Transformer-based fault diagnosis for rectifier-filter circuits in nuclear power plants
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2024.110198
– volume: 17
  start-page: 317
  year: 2003
  ident: 10.1016/j.asoc.2025.113572_bib11
  article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
  publication-title: Mech. Syst. Signal Process
  doi: 10.1006/mssp.2001.1462
– volume: 110
  year: 2021
  ident: 10.1016/j.asoc.2025.113572_bib16
  article-title: OrbitNet: a new CNN model for automatic fault diagnostics of turbomachines
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107702
– year: 2021
  ident: 10.1016/j.asoc.2025.113572_bib40
– start-page: 2400828
  year: 2024
  ident: 10.1016/j.asoc.2025.113572_bib17
  article-title: Knowledge distillation-based zero-shot learning for process fault diagnosis, Adv
  publication-title: Intell. Syst.
– ident: 10.1016/j.asoc.2025.113572_bib51
  doi: 10.4324/9781003116929-18
– volume: 67
  start-page: 439
  year: 2023
  ident: 10.1016/j.asoc.2025.113572_bib36
  article-title: A transformer-based approach for novel fault detection and fault classification/diagnosis in manufacturing: a rotary system application, J
  publication-title: Manuf. Syst.
  doi: 10.1016/j.jmsy.2023.02.018
– start-page: 1
  year: 2015
  ident: 10.1016/j.asoc.2025.113572_bib49
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd Int. Conf. Learn. Represent. ICLR 2015 Conf. Track Proc.
– volume: 494
  start-page: 379
  year: 2022
  ident: 10.1016/j.asoc.2025.113572_bib42
  article-title: A Time Series Transformer based method for the rotating machinery fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.111
– volume: 62
  start-page: 3757
  year: 2015
  ident: 10.1016/j.asoc.2025.113572_bib6
  article-title: A survey of fault diagnosis and fault-tolerant techniques-part I: fault diagnosis with model-based and signal-based approaches
  publication-title: IEEE Trans. Ind. Electron
  doi: 10.1109/TIE.2015.2417501
– volume: 65
  start-page: 543
  year: 2020
  ident: 10.1016/j.asoc.2025.113572_bib24
  article-title: Accurate multi-scale feature fusion CNN for time series classification in smart factory
  publication-title: Comput. Mater. Contin.
– volume: 15
  start-page: 1610
  year: 2021
  ident: 10.1016/j.asoc.2025.113572_bib33
  article-title: Fault diagnosis of bearing based on convolutional neural network using multi-domain features, KSII Trans
  publication-title: Internet Inf. Syst.
– volume: 32
  start-page: 971
  year: 2021
  ident: 10.1016/j.asoc.2025.113572_bib28
  article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01600-2
– volume: 32
  start-page: 4735
  year: 2024
  ident: 10.1016/j.asoc.2025.113572_bib31
  article-title: Multimodel fusion health assessment for multistate industrial robot via fuzzy deep residual shrinkage network and versatile cluster
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2024.3411389
– volume: 26
  start-page: 189
  year: 2015
  ident: 10.1016/j.asoc.2025.113572_bib2
  article-title: Investigation on early fault classification for rolling element bearing based on the optimal frequency band determination, J
  publication-title: Intell. Manuf.
  doi: 10.1007/s10845-013-0772-8
– ident: 10.1016/j.asoc.2025.113572_bib41
– volume: 34
  year: 2023
  ident: 10.1016/j.asoc.2025.113572_bib37
  article-title: Identification of engine faults based on acoustic emission signals using a 1DCNN-ViT ensemble model
  publication-title: Meas. Sci. Technol.
– volume: 1
  start-page: 4171
  year: 2019
  ident: 10.1016/j.asoc.2025.113572_bib39
  article-title: BERT: pre-training of deep bidirectional transformers for language understanding, NAACL HLT 2019 - 2019 Conf
  publication-title: North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. Proc. Conf.
– volume: 13
  start-page: 1350
  year: 2017
  ident: 10.1016/j.asoc.2025.113572_bib4
  article-title: Convolutional discriminative feature learning for induction motor fault diagnosis, IEEE Trans
  publication-title: Ind. Inform.
  doi: 10.1109/TII.2017.2672988
– volume: 108
  start-page: 53
  year: 2019
  ident: 10.1016/j.asoc.2025.113572_bib20
  article-title: Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.12.001
– volume: 125
  year: 2021
  ident: 10.1016/j.asoc.2025.113572_bib27
  article-title: Fault detection and diagnosis for rotating machinery: a model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2020.103378
– volume: 236
  year: 2024
  ident: 10.1016/j.asoc.2025.113572_bib8
  article-title: Adaptive multi-scale attention convolution neural network for cross-domain fault diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121216
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2025.113572_bib22
  article-title: An improved convolutional neural network for three-phase inverter fault diagnosis
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 55
  start-page: 1289
  year: 2022
  ident: 10.1016/j.asoc.2025.113572_bib18
  article-title: A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-09993-z
– volume: 49
  start-page: 136
  year: 2019
  ident: 10.1016/j.asoc.2025.113572_bib32
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2017.2754287
– volume: 15
  start-page: 2446
  year: 2019
  ident: 10.1016/j.asoc.2025.113572_bib5
  article-title: Highly accurate machine fault diagnosis using deep transfer learning, IEEE Trans
  publication-title: Ind. Inform.
  doi: 10.1109/TII.2018.2864759
– volume: 355
  year: 2024
  ident: 10.1016/j.asoc.2025.113572_bib19
  article-title: Fault diagnosis for PV arrays considering dust impact based on transformed graphical features of characteristic curves and convolutional neural network with CBAM modules
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.122252
– volume: 62
  start-page: 3757
  year: 2015
  ident: 10.1016/j.asoc.2025.113572_bib7
  article-title: A survey of fault diagnosis and fault-tolerant techniques—part II: fault diagnosis with knowledge-based and hybrid/active approaches
  publication-title: IEEE Trans. Ind. Electron
  doi: 10.1109/TIE.2015.2417501
– volume: 17
  year: 2017
  ident: 10.1016/j.asoc.2025.113572_bib21
  article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals
  publication-title: Sens. (Switz. )
– volume: 64–65
  start-page: 100
  year: 2015
  ident: 10.1016/j.asoc.2025.113572_bib50
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2015.04.021
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.asoc.2025.113572_bib13
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
SSID ssj0016928
Score 2.449378
Snippet Fault Diagnosis (FD) is critical in smart manufacturing, enabling predictive maintenance, reducing operational costs, and enhancing system reliability. To deal...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113572
SubjectTerms 1DCNN
Fault diagnosis
multi-supervised algorithm
multi-view global features
Transformer
Title Multi-branch global Transformer‐assisted network for fault diagnosis
URI https://dx.doi.org/10.1016/j.asoc.2025.113572
Volume 182
WOSCitedRecordID wos001533753500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Jat0wFBVt0kU36ZSSdEKL7oJCLFm2vAwloQ0hBPJavDNXkt2-QPzCG0qW_YR-Y7-kV5Nj0lDSQjbG2Eg294jj46s7EPK-sxw_7LZghRA5c-zHdK4NKwvJOwDFha-z_eW4PDlRdV2dxo56C99OoOx7dXVVXd4r1HgNwXaps_8A9zApXsBzBB2PCDse7wS8T6ll2jXM-JbqfUySPEWAUnQDqmYHsd3pQyS4DzjsAEc7h6yLv5suxtI16dUFErePRF8t02fPl3gE73StpzCbr6bXW_sXcVO__8rOZrOxk4HLIVwter7-yH4JZFkollfRhTiwKb-VmYOT4HwXcNHtuke4bjIytO25UfH6zE3s5kV5hiQo6odknZeyQt5d3_90UB8N20RF5ZvnDi8Ss6JCAN_NJ92uPEZqYvKUbMTfALof4HtGHrT9c_IktdigkXFfkMMxmjSgSUdo_vrxM-FII44U71CPIx1w3CSfDw8mHz6y2PqCGS7FkhUKUGhmSguJrKoVlBZKrQXvrFTQ5lmHN23HAfbAtnu6gkwbg1oL_59BZ1a8JGv9rG-3CHWZzVpK1Yo2y01mlAVZCpUbEJ0tc7NNdpJZmstQ4aRJoX_njTNi44zYBCNuE5ks10SNFrRXg0D_Zdyr_xz3mjy-Xo9vyNpyvmrfkkfm-3K6mL-L6-E3Trxhow
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-branch+global+Transformer%E2%80%90assisted+network+for+fault+diagnosis&rft.jtitle=Applied+soft+computing&rft.au=Shao%2C+Xiaorui&rft.au=Kim%2C+Chang-Soo&rft.date=2025-10-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=182&rft_id=info:doi/10.1016%2Fj.asoc.2025.113572&rft.externalDocID=S156849462500883X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon