Towards the digitalization of water treatment facilities: A case study on machine learning-enabled digital twins

The digital transformation of water treatment facilities through machine learning-enabled Digital Twins (ML-DTs) offers a paradigm shift in sustainable water management. This work introduces an embedded DT framework that seamlessly integrates water treatment facility equipment, middleware, cloud com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of water process engineering Jg. 77; S. 108316
Hauptverfasser: Ma, Zeyu, Zhu, Yunyi, Chen, Chunsheng, Li, Ting, Li, Yanan, Li, Xiaoding, Wang, Yuan, Waite, T. David, Guan, Jing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.09.2025
Schlagworte:
ISSN:2214-7144, 2214-7144
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The digital transformation of water treatment facilities through machine learning-enabled Digital Twins (ML-DTs) offers a paradigm shift in sustainable water management. This work introduces an embedded DT framework that seamlessly integrates water treatment facility equipment, middleware, cloud computing, and predictive analytics. A case study on centralized membrane bioreactor (MBR) wastewater treatment plants demonstrates ML-DTs' capability for proactive process control and maintenance (PC&M): specifically, a knowledge-based multi-objective particle swarm optimization (KBMOPSO) fuzzy controller reducing aeration energy consumption of the aerobic zone from 0.12 to 0.15 kWh/t to 0.06–0.12 kWh/t, while maintaining required effluent quality. In parallel, a long short-term memory (LSTM) encoder-decoder model achieved accurate forecasting of MBR membrane fouling (MAPE < 6.45 %, R2 > 0.87), enabling operators to proactively determine the need for online chemical cleaning under dynamic operating conditions. Despite these promising outcomes, the broader adoption of ML-DTs faces several barriers, including limited data availability, technical integration challenges, and organizational and human resource constraints. This work also provides actionable insights to help facilitate the transition towards intelligent water treatment facilities through the implementation of ML-DTs. •An embedded framework was proposed for Digital Twins of water treatment facilities•Different remote access options for water treatment systems were evaluated•A case study on ML-DTs of full-scale MBR WWTPs were reviewed•ML-DTs enabled proactive PC&M using both historical and real-time data
AbstractList The digital transformation of water treatment facilities through machine learning-enabled Digital Twins (ML-DTs) offers a paradigm shift in sustainable water management. This work introduces an embedded DT framework that seamlessly integrates water treatment facility equipment, middleware, cloud computing, and predictive analytics. A case study on centralized membrane bioreactor (MBR) wastewater treatment plants demonstrates ML-DTs' capability for proactive process control and maintenance (PC&M): specifically, a knowledge-based multi-objective particle swarm optimization (KBMOPSO) fuzzy controller reducing aeration energy consumption of the aerobic zone from 0.12 to 0.15 kWh/t to 0.06–0.12 kWh/t, while maintaining required effluent quality. In parallel, a long short-term memory (LSTM) encoder-decoder model achieved accurate forecasting of MBR membrane fouling (MAPE < 6.45 %, R2 > 0.87), enabling operators to proactively determine the need for online chemical cleaning under dynamic operating conditions. Despite these promising outcomes, the broader adoption of ML-DTs faces several barriers, including limited data availability, technical integration challenges, and organizational and human resource constraints. This work also provides actionable insights to help facilitate the transition towards intelligent water treatment facilities through the implementation of ML-DTs. •An embedded framework was proposed for Digital Twins of water treatment facilities•Different remote access options for water treatment systems were evaluated•A case study on ML-DTs of full-scale MBR WWTPs were reviewed•ML-DTs enabled proactive PC&M using both historical and real-time data
ArticleNumber 108316
Author Li, Xiaoding
Zhu, Yunyi
Waite, T. David
Ma, Zeyu
Chen, Chunsheng
Li, Ting
Guan, Jing
Wang, Yuan
Li, Yanan
Author_xml – sequence: 1
  givenname: Zeyu
  surname: Ma
  fullname: Ma, Zeyu
  organization: Beijing OriginWater Technology Co., Ltd., Beijing, China
– sequence: 2
  givenname: Yunyi
  surname: Zhu
  fullname: Zhu, Yunyi
  organization: UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, China
– sequence: 3
  givenname: Chunsheng
  surname: Chen
  fullname: Chen, Chunsheng
  organization: Beijing OriginWater Technology Co., Ltd., Beijing, China
– sequence: 4
  givenname: Ting
  surname: Li
  fullname: Li, Ting
  organization: Beijing OriginWater Technology Co., Ltd., Beijing, China
– sequence: 5
  givenname: Yanan
  surname: Li
  fullname: Li, Yanan
  organization: Beijing OriginWater Technology Co., Ltd., Beijing, China
– sequence: 6
  givenname: Xiaoding
  surname: Li
  fullname: Li, Xiaoding
  organization: Beijing OriginWater Technology Co., Ltd., Beijing, China
– sequence: 7
  givenname: Yuan
  surname: Wang
  fullname: Wang, Yuan
  organization: UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, China
– sequence: 8
  givenname: T. David
  surname: Waite
  fullname: Waite, T. David
  organization: UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, China
– sequence: 9
  givenname: Jing
  surname: Guan
  fullname: Guan, Jing
  email: Jing.guan@originwaterinternational.com
  organization: Beijing OriginWater Technology Co., Ltd., Beijing, China
BookMark eNp9kMtqwzAQRUVJoWmaH-hKP-BUDyu2Szch9AWBbtK1mEjjRMaRg6TWpF9fh7TQVVczDPdchnNNRr7zSMgtZzPO-PyumTX9AWeCCTUcSsnnF2QsBM-zguf56M9-RaYxNowxUSmmynJMDuuuh2AjTTuk1m1dgtZ9QXKdp11Ne0gYaAoIaY8-0RqMa11yGO_pghqISGP6sEc6xPdgds4jbRGCd36boYdNi_a3lqbe-XhDLmtoI05_5oS8Pz2uly_Z6u35dblYZUYomTJl0daylljnYHNTmJKhlFywquJFwbhFZatcWg6l5UxBXXDFKqlAimpjxFxOiDj3mtDFGLDWh-D2EI6aM33Spht90qZP2vRZ2wA9nCEcPvt0GHQ0Dr1B6wKapG3n_sO_AZCdeZY
Cites_doi 10.1016/j.eng.2024.04.012
10.1016/j.cirp.2018.04.055
10.1016/j.jup.2014.12.006
10.1021/acs.est.9b04251
10.1016/j.jwpe.2024.105523
10.1007/s11783-023-1735-8
10.1007/s00253-003-1384-6
10.3390/w14091384
10.1002/(SICI)1097-0290(19970120)53:2<168::AID-BIT6>3.0.CO;2-M
10.1016/j.jwpe.2022.102974
10.1007/s11783-013-0623-z
10.1007/s11783-023-1752-7
10.1080/01944363.2014.935673
10.1177/0954405420970517
10.1007/s11783-025-1954-2
10.1016/j.desal.2023.116647
10.1109/TII.2018.2873186
10.1007/s11783-024-1780-y
10.1007/s11783-024-1832-3
10.1038/s43588-024-00603-w
10.1016/j.jhydrol.2024.131808
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jwpe.2025.108316
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2214-7144
ExternalDocumentID 10_1016_j_jwpe_2025_108316
S2214714425013881
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
HZ~
KOM
M41
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c253t-5dedf3f3ef4ad4c7c80e331209917701de5d943d1a8d105af7150935a329bc263
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001541627300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2214-7144
IngestDate Sat Nov 29 07:26:31 EST 2025
Sun Oct 19 01:45:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Water and wastewater treatment plants
Digital twin
Artificial intelligence (AI)
Digital water
Internet of things (IoT)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-5dedf3f3ef4ad4c7c80e331209917701de5d943d1a8d105af7150935a329bc263
ParticipantIDs crossref_primary_10_1016_j_jwpe_2025_108316
elsevier_sciencedirect_doi_10_1016_j_jwpe_2025_108316
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Journal of water process engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wei, Law, Yang, Tang (bb0060) 2022; 14
Khorsheed (bb0075) 2020; 235
Sedlak (bb0010) 2014
Bales, Lian, Zhu, Zhou, Wang, Fletcher, Waite (bb0070) 2023; 559
Sezgin, Jenkins, Parker (bb0145) 1978; 50
Qiao, Han, Zhou (bb0155) 2017; 43
Wang, Li, He, Tao, Wang, Yang, Savic, Daigger, Ren (bb0050) 2024; 36
Zhu, Wang, Zhu, Ma, Wang, Chen, Guan, Waite (bb0160) 2025
Beal, Flynn (bb0090) 2015; 32
Mai, Chen, Li, Yi, Zhao, He, Xu, Huang (bb0040) 2023; 18
Guo, Liu, Chen, Liu, Yang (bb0030) 2014; 8
Park, Chang, Lee (bb0150) 2015
Li, Huang, Shi, Han, Lü, Lin, Meng, Xu, Hou (bb0085) 2023; 17
Safeer, Pandey, Rehman, Safdar, Ahmad, Hasan, Ullah (bb0095) 2022; 49
United Nations (bb0005) 2025
Chen, van Loosdrecht, Ekama, Brdjanovic (bb0130) 2023
Tao, Zhang, Liu, Nee (bb0115) 2019; 15
Elmer (bb0015) 2014; 80
Zhou, Li, Zhang, Snowling, Barclay (bb0080) 2023; 17
Glaessgen, Stargel (bb0110) 2012
Garrido-Baserba, Corominas, Cortés, Rosso, Poch (bb0035) 2020; 54
Boleydei, Vaneeckhaute (bb0025) 2024; 63
Rousso, Do, Gao, Monks, Wu, Stewart, Lambert, Gong (bb0020) 2024; 641
Lai, Xiao, He, Liu, Tan, Xue, Zhang, Huang (bb0045) 2024; 19
Gemmill, Fischer, Rohmana (bb0165) 2021
Huang, Ma, Ren (bb0100) 2024; 18
Garrido, van Benthum, van Loosdrecht, Heijnen (bb0135) 1997; 53
Grieves, Vickers (bb0105) 2017
Tao, Zhang, Liu, Nee (bb0125) 2018; 67
Martins, Heijnen, van Loosdrecht (bb0140) 2003; 62
Tao, Zhang, Zhang (bb0120) 2024; 4
Wei, Law, Yang (bb0055) 2022; 14
Lowe, Qin, Mao (bb0065) 2022; 14
Huang (10.1016/j.jwpe.2025.108316_bb0100) 2024; 18
United Nations (10.1016/j.jwpe.2025.108316_bb0005)
Lai (10.1016/j.jwpe.2025.108316_bb0045) 2024; 19
Garrido-Baserba (10.1016/j.jwpe.2025.108316_bb0035) 2020; 54
Wei (10.1016/j.jwpe.2025.108316_bb0055) 2022; 14
Tao (10.1016/j.jwpe.2025.108316_bb0120) 2024; 4
Zhu (10.1016/j.jwpe.2025.108316_bb0160) 2025
Beal (10.1016/j.jwpe.2025.108316_bb0090) 2015; 32
Glaessgen (10.1016/j.jwpe.2025.108316_bb0110) 2012
Guo (10.1016/j.jwpe.2025.108316_bb0030) 2014; 8
Boleydei (10.1016/j.jwpe.2025.108316_bb0025) 2024; 63
Garrido (10.1016/j.jwpe.2025.108316_bb0135) 1997; 53
Safeer (10.1016/j.jwpe.2025.108316_bb0095) 2022; 49
Chen (10.1016/j.jwpe.2025.108316_bb0130) 2023
Sezgin (10.1016/j.jwpe.2025.108316_bb0145) 1978; 50
Martins (10.1016/j.jwpe.2025.108316_bb0140) 2003; 62
Rousso (10.1016/j.jwpe.2025.108316_bb0020) 2024; 641
Wang (10.1016/j.jwpe.2025.108316_bb0050) 2024; 36
Lowe (10.1016/j.jwpe.2025.108316_bb0065) 2022; 14
Zhou (10.1016/j.jwpe.2025.108316_bb0080) 2023; 17
Grieves (10.1016/j.jwpe.2025.108316_bb0105) 2017
Tao (10.1016/j.jwpe.2025.108316_bb0125) 2018; 67
Wei (10.1016/j.jwpe.2025.108316_bb0060) 2022; 14
Tao (10.1016/j.jwpe.2025.108316_bb0115) 2019; 15
Gemmill (10.1016/j.jwpe.2025.108316_bb0165)
Li (10.1016/j.jwpe.2025.108316_bb0085) 2023; 17
Mai (10.1016/j.jwpe.2025.108316_bb0040) 2023; 18
Qiao (10.1016/j.jwpe.2025.108316_bb0155) 2017; 43
Elmer (10.1016/j.jwpe.2025.108316_bb0015) 2014; 80
Bales (10.1016/j.jwpe.2025.108316_bb0070) 2023; 559
Park (10.1016/j.jwpe.2025.108316_bb0150) 2015
Khorsheed (10.1016/j.jwpe.2025.108316_bb0075) 2020; 235
Sedlak (10.1016/j.jwpe.2025.108316_bb0010) 2014
References_xml – start-page: 85
  year: 2017
  end-page: 113
  ident: bb0105
  article-title: Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems
  publication-title: Transdiscipl. Perspect. Complex Syst.
– volume: 63
  year: 2024
  ident: bb0025
  article-title: Advancements and challenges in membrane bioreactor performance for decentralized and low-temperature applications: a comprehensive review
  publication-title: J Water Process Eng
– year: 2023
  ident: bb0130
  article-title: Biological Wastewater Treatment: Principles, Modelling and Design
– volume: 80
  start-page: 94
  year: 2014
  end-page: 95
  ident: bb0015
  article-title: A review of “Water 4.0: The past, present, and future of the world's most vital resource,”
  publication-title: J. Am. Plan. Assoc.
– year: 2014
  ident: bb0010
  article-title: Water 4.0: The Past, Present, and Future of the World's most Vital Resource
– volume: 19
  start-page: 34
  year: 2024
  ident: bb0045
  article-title: Machine learning for membrane bioreactor research: principles, methods, applications, and a tutorial
  publication-title: Front. Environ. Sci. Eng.
– volume: 18
  start-page: 20
  year: 2023
  ident: bb0040
  article-title: Online soft measurement for wastewater treatment system based on hybrid deep learning
  publication-title: Front. Environ. Sci. Eng.
– volume: 18
  year: 2024
  ident: bb0100
  article-title: Scientific and technological innovations of wastewater treatment in China
  publication-title: Front. Environ. Sci. Eng.
– year: 2025
  ident: bb0005
  article-title: UN-Water
– volume: 32
  start-page: 29
  year: 2015
  end-page: 37
  ident: bb0090
  article-title: Toward the digital water age: survey and case studies of Australian water utility smart-metering programs
  publication-title: Util. Policy
– volume: 50
  start-page: 362
  year: 1978
  end-page: 381
  ident: bb0145
  article-title: A unified theory of filamentous activated sludge bulking
  publication-title: J. Water Pollut. Control Fed.
– year: 2021
  ident: bb0165
  article-title: Towards a National Standard and Guidelines for Reporting Wastewater Treatment Plant Outfall Data
– volume: 14
  year: 2022
  ident: bb0055
  article-title: Real-time data-processing framework with model updating for digital twins of water treatment facilities
  publication-title: Water
– volume: 559
  year: 2023
  ident: bb0070
  article-title: Photovoltaic powered operational scale membrane capacitive deionization (MCDI) desalination with energy recovery for treated domestic wastewater reuse
  publication-title: Desalination
– volume: 43
  year: 2017
  ident: bb0155
  article-title: Knowledge-based intelligent optimal control for wastewater biochemical treatment process
  publication-title: Acta Automat. Sin.
– volume: 14
  year: 2022
  ident: bb0065
  article-title: A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring
  publication-title: Water
– volume: 4
  start-page: 169
  year: 2024
  end-page: 177
  ident: bb0120
  article-title: Advancements and challenges of digital twins in industry
  publication-title: Nat. Comput. Sci.
– year: 2012
  ident: bb0110
  article-title: The digital twin paradigm for future NASA and U.S. air force vehicles
– volume: 641
  year: 2024
  ident: bb0020
  article-title: Transitioning practices of water utilities from reactive to proactive: leveraging Australian best practices in digital technologies and data analytics
  publication-title: J. Hydrol.
– volume: 62
  start-page: 586
  year: 2003
  end-page: 593
  ident: bb0140
  article-title: Effect of dissolved oxygen concentration on sludge settleability
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 17
  year: 2023
  ident: bb0080
  article-title: Online machine learning for stream wastewater influent flow rate prediction under unprecedented emergencies
  publication-title: Front. Environ. Sci. Eng.
– volume: 235
  start-page: 887
  year: 2020
  end-page: 901
  ident: bb0075
  article-title: Omer Faruk Beyca, an integrated machine learning: utility theory framework for real-time predictive maintenance in pumping systems
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
– volume: 53
  start-page: 168
  year: 1997
  end-page: 178
  ident: bb0135
  article-title: Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor
  publication-title: Biotechnol. Bioeng.
– volume: 67
  start-page: 169
  year: 2018
  end-page: 172
  ident: bb0125
  article-title: Digital twin driven prognostics and health management for complex equipment
  publication-title: CIRP Ann.
– volume: 54
  start-page: 4698
  year: 2020
  end-page: 4705
  ident: bb0035
  article-title: The fourth-revolution in the water sector encounters the digital revolution
  publication-title: Environ. Sci. Technol.
– volume: 14
  year: 2022
  ident: bb0060
  article-title: Combined anomaly detection framework for digital twins of water treatment facilities
  publication-title: Water
– volume: 8
  start-page: 929
  year: 2014
  end-page: 936
  ident: bb0030
  article-title: Decentralized wastewater treatment technologies and management in Chinese villages
  publication-title: Front. Environ. Sci. Eng.
– year: 2015
  ident: bb0150
  article-title: Principles of membrane bioreactors for wastewater treatment
– year: 2025
  ident: bb0160
  article-title: Predicting membrane fouling of submerged membrane bioreactor wastewater treatment plants using machine learning
  publication-title: Environ. Sci. Technol.
– volume: 36
  start-page: 21
  year: 2024
  end-page: 35
  ident: bb0050
  article-title: Digital twins for wastewater treatment: a technical review
  publication-title: Engineering
– volume: 17
  start-page: 135
  year: 2023
  ident: bb0085
  article-title: Machine learning enabled prediction and process optimization of VFA production from riboflavin-mediated sludge fermentation
  publication-title: Front. Environ. Sci. Eng.
– volume: 15
  start-page: 2405
  year: 2019
  end-page: 2415
  ident: bb0115
  article-title: Digital twin in industry: state-of-the-art
  publication-title: IEEE Trans. Ind. Informatics.
– volume: 49
  year: 2022
  ident: bb0095
  article-title: A review of artificial intelligence in water purification and wastewater treatment: recent advancements
  publication-title: J Water Process Eng
– volume: 36
  start-page: 21
  year: 2024
  ident: 10.1016/j.jwpe.2025.108316_bb0050
  article-title: Digital twins for wastewater treatment: a technical review
  publication-title: Engineering
  doi: 10.1016/j.eng.2024.04.012
– start-page: 85
  year: 2017
  ident: 10.1016/j.jwpe.2025.108316_bb0105
  article-title: Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems
– volume: 50
  start-page: 362
  year: 1978
  ident: 10.1016/j.jwpe.2025.108316_bb0145
  article-title: A unified theory of filamentous activated sludge bulking
  publication-title: J. Water Pollut. Control Fed.
– volume: 67
  start-page: 169
  year: 2018
  ident: 10.1016/j.jwpe.2025.108316_bb0125
  article-title: Digital twin driven prognostics and health management for complex equipment
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2018.04.055
– volume: 32
  start-page: 29
  year: 2015
  ident: 10.1016/j.jwpe.2025.108316_bb0090
  article-title: Toward the digital water age: survey and case studies of Australian water utility smart-metering programs
  publication-title: Util. Policy
  doi: 10.1016/j.jup.2014.12.006
– volume: 54
  start-page: 4698
  year: 2020
  ident: 10.1016/j.jwpe.2025.108316_bb0035
  article-title: The fourth-revolution in the water sector encounters the digital revolution
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b04251
– volume: 63
  year: 2024
  ident: 10.1016/j.jwpe.2025.108316_bb0025
  article-title: Advancements and challenges in membrane bioreactor performance for decentralized and low-temperature applications: a comprehensive review
  publication-title: J Water Process Eng
  doi: 10.1016/j.jwpe.2024.105523
– year: 2023
  ident: 10.1016/j.jwpe.2025.108316_bb0130
– volume: 17
  start-page: 135
  year: 2023
  ident: 10.1016/j.jwpe.2025.108316_bb0085
  article-title: Machine learning enabled prediction and process optimization of VFA production from riboflavin-mediated sludge fermentation
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-023-1735-8
– volume: 62
  start-page: 586
  year: 2003
  ident: 10.1016/j.jwpe.2025.108316_bb0140
  article-title: Effect of dissolved oxygen concentration on sludge settleability
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-003-1384-6
– year: 2014
  ident: 10.1016/j.jwpe.2025.108316_bb0010
– volume: 14
  year: 2022
  ident: 10.1016/j.jwpe.2025.108316_bb0065
  article-title: A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring
  publication-title: Water
  doi: 10.3390/w14091384
– volume: 53
  start-page: 168
  year: 1997
  ident: 10.1016/j.jwpe.2025.108316_bb0135
  article-title: Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/(SICI)1097-0290(19970120)53:2<168::AID-BIT6>3.0.CO;2-M
– volume: 49
  year: 2022
  ident: 10.1016/j.jwpe.2025.108316_bb0095
  article-title: A review of artificial intelligence in water purification and wastewater treatment: recent advancements
  publication-title: J Water Process Eng
  doi: 10.1016/j.jwpe.2022.102974
– volume: 8
  start-page: 929
  year: 2014
  ident: 10.1016/j.jwpe.2025.108316_bb0030
  article-title: Decentralized wastewater treatment technologies and management in Chinese villages
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-013-0623-z
– year: 2015
  ident: 10.1016/j.jwpe.2025.108316_bb0150
– volume: 17
  year: 2023
  ident: 10.1016/j.jwpe.2025.108316_bb0080
  article-title: Online machine learning for stream wastewater influent flow rate prediction under unprecedented emergencies
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-023-1752-7
– volume: 14
  year: 2022
  ident: 10.1016/j.jwpe.2025.108316_bb0055
  article-title: Real-time data-processing framework with model updating for digital twins of water treatment facilities
  publication-title: Water
– volume: 80
  start-page: 94
  year: 2014
  ident: 10.1016/j.jwpe.2025.108316_bb0015
  article-title: A review of “Water 4.0: The past, present, and future of the world's most vital resource,”
  publication-title: J. Am. Plan. Assoc.
  doi: 10.1080/01944363.2014.935673
– ident: 10.1016/j.jwpe.2025.108316_bb0165
– volume: 14
  year: 2022
  ident: 10.1016/j.jwpe.2025.108316_bb0060
  article-title: Combined anomaly detection framework for digital twins of water treatment facilities
  publication-title: Water
– year: 2012
  ident: 10.1016/j.jwpe.2025.108316_bb0110
– volume: 235
  start-page: 887
  year: 2020
  ident: 10.1016/j.jwpe.2025.108316_bb0075
  article-title: Omer Faruk Beyca, an integrated machine learning: utility theory framework for real-time predictive maintenance in pumping systems
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
  doi: 10.1177/0954405420970517
– volume: 19
  start-page: 34
  year: 2024
  ident: 10.1016/j.jwpe.2025.108316_bb0045
  article-title: Machine learning for membrane bioreactor research: principles, methods, applications, and a tutorial
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-025-1954-2
– volume: 559
  year: 2023
  ident: 10.1016/j.jwpe.2025.108316_bb0070
  article-title: Photovoltaic powered operational scale membrane capacitive deionization (MCDI) desalination with energy recovery for treated domestic wastewater reuse
  publication-title: Desalination
  doi: 10.1016/j.desal.2023.116647
– volume: 15
  start-page: 2405
  year: 2019
  ident: 10.1016/j.jwpe.2025.108316_bb0115
  article-title: Digital twin in industry: state-of-the-art
  publication-title: IEEE Trans. Ind. Informatics.
  doi: 10.1109/TII.2018.2873186
– volume: 18
  start-page: 20
  year: 2023
  ident: 10.1016/j.jwpe.2025.108316_bb0040
  article-title: Online soft measurement for wastewater treatment system based on hybrid deep learning
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-024-1780-y
– ident: 10.1016/j.jwpe.2025.108316_bb0005
– year: 2025
  ident: 10.1016/j.jwpe.2025.108316_bb0160
  article-title: Predicting membrane fouling of submerged membrane bioreactor wastewater treatment plants using machine learning
  publication-title: Environ. Sci. Technol.
– volume: 43
  year: 2017
  ident: 10.1016/j.jwpe.2025.108316_bb0155
  article-title: Knowledge-based intelligent optimal control for wastewater biochemical treatment process
  publication-title: Acta Automat. Sin.
– volume: 18
  year: 2024
  ident: 10.1016/j.jwpe.2025.108316_bb0100
  article-title: Scientific and technological innovations of wastewater treatment in China
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-024-1832-3
– volume: 4
  start-page: 169
  year: 2024
  ident: 10.1016/j.jwpe.2025.108316_bb0120
  article-title: Advancements and challenges of digital twins in industry
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-024-00603-w
– volume: 641
  year: 2024
  ident: 10.1016/j.jwpe.2025.108316_bb0020
  article-title: Transitioning practices of water utilities from reactive to proactive: leveraging Australian best practices in digital technologies and data analytics
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.131808
SSID ssj0002950588
Score 2.337947
Snippet The digital transformation of water treatment facilities through machine learning-enabled Digital Twins (ML-DTs) offers a paradigm shift in sustainable water...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108316
SubjectTerms Artificial intelligence (AI)
Digital twin
Digital water
Internet of things (IoT)
Water and wastewater treatment plants
Title Towards the digitalization of water treatment facilities: A case study on machine learning-enabled digital twins
URI https://dx.doi.org/10.1016/j.jwpe.2025.108316
Volume 77
WOSCitedRecordID wos001541627300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2214-7144
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002950588
  issn: 2214-7144
  databaseCode: AIEXJ
  dateStart: 20140401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMXBAJEy0M-cFtltbHjOOa2QkWAUMWhSHuLHD-qrCCNuptu-3f4pYwfSeiyIHrgEkWWPYkyn8aT8TczCL0xmRHcGpHkplBJxuZVUlGhE9hdLTM0V5XSvtkEPz0tlkvxZTL50efCXH3jTVNcX4v2v6oaxkDZLnX2DuoehMIA3IPS4Qpqh-u_Kd4TYdfeo9T1uWsKEnMtnWO4la4q4kgvt1I5dmwdqHGLqYJdLdScdccI3z3V0vS9Jc4T41OtdC94utnWMdz3u4MbHtWGTISpGQsfjlFwfzRibroxfN35PaFrbuqReGAiMaBr1nA_LP9cB7DFkRi6IGzgZkULR0jqyKChAOTM7BmLJjp2egk2NnXN0fK95j9EIlaz1bZ1JVAJm42Tb9fa3tkDB2ZiT3pblU5G6WSUQcY9dEg4E2D8DxcfT5afhkgeEeBF-ganw7vH7KxAJNx9mf0e0C9ezdkj9DBqCy8CjB6jiWmeoDZCCAOE8G0I4QuLvV7xACE8QugtXmAHIOwBhGF6BBDeBVAvFnsAPUVf35-cvfuQxM4ciSKMbhKmjbbUUmMzqTPFVTE3lPo07JTzeaoN0yKjOpWFBgdeWg7_HYIySYmoFMnpM3TQXDTmOcI2U7mURlnLbZYSIvmcVfBPYnXBhSzsEZr2X6tsQwGW8s9KOkKs_6BldCGDa1gCRP6y7vhOT3mBHoxwfokONpedeYXuq6tNvb58HfHxE9UAljU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+the+digitalization+of+water+treatment+facilities%3A+A+case+study+on+machine+learning-enabled+digital+twins&rft.jtitle=Journal+of+water+process+engineering&rft.au=Ma%2C+Zeyu&rft.au=Zhu%2C+Yunyi&rft.au=Chen%2C+Chunsheng&rft.au=Li%2C+Ting&rft.date=2025-09-01&rft.issn=2214-7144&rft.eissn=2214-7144&rft.volume=77&rft.spage=108316&rft_id=info:doi/10.1016%2Fj.jwpe.2025.108316&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jwpe_2025_108316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7144&client=summon