One-dimensional decoupled convolutional autoencoder with sparse self-attention mechanism for process monitoring
Industrial processes are constantly disturbed by environmental and human factors during operation. Undifferentiated alarming of these disturbances will bring serious alarm disaster problems.Effectively distinguishing the disturbances that have different effects on the process operation state can hel...
Uloženo v:
| Vydáno v: | Process safety and environmental protection Ročník 199; s. 107156 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.07.2025
|
| Témata: | |
| ISSN: | 0957-5820 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Industrial processes are constantly disturbed by environmental and human factors during operation. Undifferentiated alarming of these disturbances will bring serious alarm disaster problems.Effectively distinguishing the disturbances that have different effects on the process operation state can help the field operators to make a reasonable risk assessment.To achieve the above purposes, this paper proposes a one-dimensional decoupled convolutional autoencoder network with sparse self-attention mechanism under process knowledge constraints (PKC-SSAM-DCAE). Firstly, aiming at the change of data distribution caused by feedback control adjustment, the window normalization strategy is adopted for the standardized data. Realize data distribution alignment at the input end of the model. Subsequently, one-dimensional decoupled convolutional encoder (DCAE) is constructed to extract the features of each process variable. The sparse self-attention mechanism network (SSAM) is constructed under the constraint of process knowledge to realize the interaction between process variable features. Then the detection index is established according to the network prediction results. When the fault is detected, the variable oblivion contribution plot is given to locate the key fault variables.Finally, through the experiments on Tennessee Eastman process, it is verified that the proposed model can solve the problem of data distribution change caused by process feedback adjustment, and can accurately distinguish process normal adjustment from faults. |
|---|---|
| AbstractList | Industrial processes are constantly disturbed by environmental and human factors during operation. Undifferentiated alarming of these disturbances will bring serious alarm disaster problems.Effectively distinguishing the disturbances that have different effects on the process operation state can help the field operators to make a reasonable risk assessment.To achieve the above purposes, this paper proposes a one-dimensional decoupled convolutional autoencoder network with sparse self-attention mechanism under process knowledge constraints (PKC-SSAM-DCAE). Firstly, aiming at the change of data distribution caused by feedback control adjustment, the window normalization strategy is adopted for the standardized data. Realize data distribution alignment at the input end of the model. Subsequently, one-dimensional decoupled convolutional encoder (DCAE) is constructed to extract the features of each process variable. The sparse self-attention mechanism network (SSAM) is constructed under the constraint of process knowledge to realize the interaction between process variable features. Then the detection index is established according to the network prediction results. When the fault is detected, the variable oblivion contribution plot is given to locate the key fault variables.Finally, through the experiments on Tennessee Eastman process, it is verified that the proposed model can solve the problem of data distribution change caused by process feedback adjustment, and can accurately distinguish process normal adjustment from faults. |
| ArticleNumber | 107156 |
| Author | Yang, Yuguo Shi, Hongbo Guo, Lei Tao, Yang Song, Bing |
| Author_xml | – sequence: 1 givenname: Yuguo surname: Yang fullname: Yang, Yuguo – sequence: 2 givenname: Hongbo surname: Shi fullname: Shi, Hongbo email: hbshi@ecust.edu.cn – sequence: 3 givenname: Bing surname: Song fullname: Song, Bing email: songbing@ecust.edu.cn – sequence: 4 givenname: Yang surname: Tao fullname: Tao, Yang – sequence: 5 givenname: Lei surname: Guo fullname: Guo, Lei |
| BookMark | eNp9kE1OwzAQhb0oEi1wAVa-QIrt1EkqsUEVf1KlbmBtOeMxdZXYke0WcXsShTWr0byZN3rzrcjCB4-E3HO25oxXD6f1kHBYCybkKNRcVguyZFtZF7IR7JqsUjoxxrio-ZKEg8fCuB59csHrjhqEcB46NBSCv4TunGddn3NAD8FgpN8uH2kadExIE3a20DmjnxZpj3DU3qWe2hDpEANgSrQP3uUQnf-6JVdWdwnv_uoN-Xx5_ti9FfvD6_vuaV-AkGUupGmwqaAcGwTJSwaStQDQbLVuq41pbD0OoBIt8LYuwVi7Ka3UpjUgrLDlDRHzXYghpYhWDdH1Ov4oztSESZ3UhElNmNSMaTQ9ziYck10cRpXAjU-jcREhKxPcf_ZfmV96OA |
| Cites_doi | 10.1016/j.conengprac.2020.104692 10.1016/j.psep.2021.04.010 10.1016/j.psep.2021.08.022 10.1007/978-3-030-01234-2_1 10.1002/aic.14888 10.1016/j.jprocont.2020.01.004 10.1016/j.ress.2023.109863 10.1109/CVPR.2019.00060 10.1016/j.isatra.2022.10.031 10.1016/j.asoc.2021.107751 10.1016/j.jprocont.2017.03.005 10.1016/j.actaastro.2024.04.012 10.1016/j.chemolab.2022.104711 10.1016/j.compchemeng.2020.107197 10.1016/j.psep.2023.04.020 10.1109/TASE.2022.3230687 10.1109/TII.2020.2988208 10.1016/j.aei.2024.102837 10.1016/j.psep.2023.03.017 10.1016/j.neunet.2022.11.001 10.1016/j.conengprac.2021.104811 10.1109/TCST.2006.883234 10.1109/TII.2021.3124578 10.1016/j.psep.2024.02.075 10.1016/j.psep.2023.02.078 10.1109/CVPR42600.2020.01155 10.1016/j.jfranklin.2022.11.029 10.1214/aoms/1177704472 10.1109/CVPR.2018.00745 10.1016/j.jprocont.2023.103107 10.1109/TNNLS.2023.3313728 10.1016/j.csda.2003.10.013 10.1109/ICASSP39728.2021.9414265 10.1109/ACCESS.2019.2938227 10.1016/j.psep.2019.12.006 10.1016/j.psep.2023.10.066 10.1016/j.compchemeng.2021.107654 10.1016/j.knosys.2024.112182 10.1016/j.psep.2023.06.040 10.1016/j.ces.2023.118900 10.1016/j.compchemeng.2021.107609 |
| ContentType | Journal Article |
| Copyright | 2025 The Institution of Chemical Engineers |
| Copyright_xml | – notice: 2025 The Institution of Chemical Engineers |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.psep.2025.107156 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| ExternalDocumentID | 10_1016_j_psep_2025_107156 S0957582025004239 |
| GroupedDBID | --K --M -QF .~1 0R~ 123 1B1 1~. 1~5 3EH 4.4 457 4G. 4P2 53G 5VS 7-5 71M 8P~ 8WZ A6W AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFO ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMLS ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHEUO AHIDL AHPOS AIAGR AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC BNPGV CAG COF CS3 DU5 EBS EDH EFJIC EFKBS EJD ENUVR EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ I-F IHE J1W JARJE KCYFY KOM M41 ML. MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SJN SPC SPCBC SSG SSJ SSR SSZ T5K UNMZH ZE2 ~G- 9DU AAYXX ACLOT BANNL CITATION EFLBG ~HD |
| ID | FETCH-LOGICAL-c253t-5d8e86c3253ec5130c50bccc89aab64d8f73ecc62bc1b73cdff43f5adbdc2f2f3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001486311900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-5820 |
| IngestDate | Sat Nov 29 06:57:21 EST 2025 Tue Jul 29 20:15:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Process monitoring Process knowledge embedding Data distribution alignment Convolutional autoencoder Variable-level feature extraction and interaction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c253t-5d8e86c3253ec5130c50bccc89aab64d8f73ecc62bc1b73cdff43f5adbdc2f2f3 |
| ParticipantIDs | crossref_primary_10_1016_j_psep_2025_107156 elsevier_sciencedirect_doi_10_1016_j_psep_2025_107156 |
| PublicationCentury | 2000 |
| PublicationDate | July 2025 2025-07-00 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Process safety and environmental protection |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Y. Liu, Z. Shao, N. Hoffmann, Global Attention Mechanism: Retain Information to Enhance Channel-spatial Interactions, 2021.10.48550/arXiv.2112.05561. Song, Zheng, Jin, Shi, Tao, Tan (bib37) 2024 Feng, Zhao (bib14) 2021; 17 Yu, Liu, Ye (bib43) 2021; 70 Fang, Qu, Chai, Liu (bib13) 2023; 136 S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: convolutional block attention module. In: Proceedings of the Computer Vision-ECCV 2018, 2018, 3-19. Yin, Wang, Tian, Jiang (bib42) 2024; 185 Ghosh, Ahmed, Khan, Rusli (bib16) 2020; 135 Chu, Mo, Hao, Lu, Wang (bib11) 2024; 21 Shang, Yang, Gao, Huang, Suykens, Huang (bib36) 2015; 61 Bai, Qi, Shu, Reniers, Khan, Chen, Liu (bib5) 2023; 176 Zhang, Yu, Ye (bib45) 2021; 111 Chen, Yu, Wang (bib10) 2020; 87 G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-normalizing neural networks. In: Proceedings of the Thirty First International Conference on Neural Information Processing Systems, 2017, 972-981. Lin, Miao, Chen, Ye, Xu, Liu, Jiang, Lu (bib26) 2024; 300 Bi, Wu, Xie, Ye, Zhao (bib8) 2023; 173 Ma, Ji, Xu, Wang, Sun (bib29) 2023; 278 Mugdadi, Ahmad (bib30) 2004; 47 D. Kingma, A method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (2014). X. Zhang, J. Shi, M. Yang, X. Huang, A.S. Usmani, G. Chen, J. Fu, J.-B. Huang, J.Y. Li, Real-time pipeline leak detection and localization using an attention-based lstm approach, Process Safety and Environmental Protection (2023). Jahanshahi, Zhu (bib18) 2024; 220 Kopbayev, Khan, Yang, Halim (bib23) 2022; 158 Li, Peng, Zhang, Wang, Shen (bib24) 2024; 35 Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, Eca-net: Efficient channel attention for deep convolutional neural networks. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, 11531-11539. Chen, Wang (bib9) 2021; 107 Lin, Sun, Wang (bib27) 2023; 360 Yu, J., , 2024)102837.Mutual stacked autoencoder for unsupervised fault detection under complex multi-residual correlations. Adv. Eng. Inform., 62, 102837. Thill, Konen, Wang, Bäck (bib39) 2021; 112 Parzen (bib31) 1962; 33 H. Phan, H.L. Nguyen, O.Y. Chén, P. Koch, N.Q.K. Duong, I. McLoughlin, A. Mertins, Self-attention generative adversarial network for speech enhancement. In: Proceedings of the ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, 7103-7107. Zhu, Shi, Song, Tao, Tan (bib48) 2022; 18 Bauer, Cox, Caveness, Downs, Thornhill (bib7) 2007; 15 Arunthavanathan, Khan, Ahmed, Imtiaz (bib4) 2021; 145 Rani, Tripura, Kodamana, Chakraborty, Tamboli (bib34) 2023; 173 Ji, Hou, Wu (bib19) 2023; 131 Bathelt, Ricker, Jelali (bib6) 2015; 48 Saufi, Ahmad, Leong, Lim (bib35) 2019; 7 Deng, Li, Huang, Wu, Yang, Gui (bib12) 2023; 158 Amin, Khan, Ahmed, Imtiaz (bib2) 2021; 150 Su, Shi, Zhou, Bai, Wang (bib38) 2024; 244 T. Kim, J. Kim, Y. Tae, C. Park, J.-H. Choi, J. Choo, Reversible instance normalization for accurate time-series forecasting against distribution shift. In: Proceedings of the International Conference on Learning Representations, 2022. X. Li, W. Wang, X. Hu, J. Yang, Selective kernel networks. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, 510-519. Qian, Song, Yao, Zhu, Zhang (bib33) 2022; 231 Ali, Zhang, Gao (bib1) 2023; 180 Arunthavanathan, Khan, Ahmed, Imtiaz (bib3) 2021; 154 Gajjar, Kulahci, Palazoglu (bib15) 2018; 67 Zhang, Qiu (bib46) 2022; 158 J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, 7132-7141. Zhang (10.1016/j.psep.2025.107156_bib46) 2022; 158 Yin (10.1016/j.psep.2025.107156_bib42) 2024; 185 10.1016/j.psep.2025.107156_bib40 Shang (10.1016/j.psep.2025.107156_bib36) 2015; 61 Deng (10.1016/j.psep.2025.107156_bib12) 2023; 158 Su (10.1016/j.psep.2025.107156_bib38) 2024; 244 Arunthavanathan (10.1016/j.psep.2025.107156_bib3) 2021; 154 Lin (10.1016/j.psep.2025.107156_bib26) 2024; 300 Bathelt (10.1016/j.psep.2025.107156_bib6) 2015; 48 Gajjar (10.1016/j.psep.2025.107156_bib15) 2018; 67 Lin (10.1016/j.psep.2025.107156_bib27) 2023; 360 Kopbayev (10.1016/j.psep.2025.107156_bib23) 2022; 158 Thill (10.1016/j.psep.2025.107156_bib39) 2021; 112 Parzen (10.1016/j.psep.2025.107156_bib31) 1962; 33 Zhu (10.1016/j.psep.2025.107156_bib48) 2022; 18 10.1016/j.psep.2025.107156_bib17 Chen (10.1016/j.psep.2025.107156_bib10) 2020; 87 Rani (10.1016/j.psep.2025.107156_bib34) 2023; 173 Yu (10.1016/j.psep.2025.107156_bib43) 2021; 70 Fang (10.1016/j.psep.2025.107156_bib13) 2023; 136 Li (10.1016/j.psep.2025.107156_bib24) 2024; 35 Ali (10.1016/j.psep.2025.107156_bib1) 2023; 180 Arunthavanathan (10.1016/j.psep.2025.107156_bib4) 2021; 145 10.1016/j.psep.2025.107156_bib32 Saufi (10.1016/j.psep.2025.107156_bib35) 2019; 7 Bauer (10.1016/j.psep.2025.107156_bib7) 2007; 15 Jahanshahi (10.1016/j.psep.2025.107156_bib18) 2024; 220 Zhang (10.1016/j.psep.2025.107156_bib45) 2021; 111 Feng (10.1016/j.psep.2025.107156_bib14) 2021; 17 Ghosh (10.1016/j.psep.2025.107156_bib16) 2020; 135 Song (10.1016/j.psep.2025.107156_bib37) 2024 Chu (10.1016/j.psep.2025.107156_bib11) 2024; 21 Bai (10.1016/j.psep.2025.107156_bib5) 2023; 176 Amin (10.1016/j.psep.2025.107156_bib2) 2021; 150 Ji (10.1016/j.psep.2025.107156_bib19) 2023; 131 10.1016/j.psep.2025.107156_bib28 Bi (10.1016/j.psep.2025.107156_bib8) 2023; 173 Qian (10.1016/j.psep.2025.107156_bib33) 2022; 231 10.1016/j.psep.2025.107156_bib22 10.1016/j.psep.2025.107156_bib44 Chen (10.1016/j.psep.2025.107156_bib9) 2021; 107 10.1016/j.psep.2025.107156_bib21 10.1016/j.psep.2025.107156_bib20 Ma (10.1016/j.psep.2025.107156_bib29) 2023; 278 10.1016/j.psep.2025.107156_bib41 10.1016/j.psep.2025.107156_bib25 Mugdadi (10.1016/j.psep.2025.107156_bib30) 2004; 47 10.1016/j.psep.2025.107156_bib47 |
| References_xml | – volume: 150 start-page: 123 year: 2021 end-page: 136 ident: bib2 article-title: Risk-based fault detection and diagnosis for nonlinear and non-gaussian process systems using r-vine copula publication-title: Process Saf. Environ. Prot. – volume: 15 start-page: 12 year: 2007 end-page: 21 ident: bib7 article-title: Finding the direction of disturbance propagation in a chemical process using transfer entropy publication-title: IEEE Trans. Control Syst. Technol. – volume: 87 start-page: 54 year: 2020 end-page: 67 ident: bib10 article-title: One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes publication-title: J. Process Control – reference: G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-normalizing neural networks. In: Proceedings of the Thirty First International Conference on Neural Information Processing Systems, 2017, 972-981. – volume: 70 start-page: 1 year: 2021 end-page: 15 ident: bib43 article-title: Convolutional long short-term memory autoencoder-based feature learning for fault detection in industrial processes publication-title: IEEE Trans. Instrum. Meas. – volume: 180 start-page: 1053 year: 2023 end-page: 1075 ident: bib1 article-title: Multiscale monitoring of industrial chemical process using wavelet-entropy aided machine learning approach publication-title: Process Saf. Environ. Prot. – volume: 61 start-page: 3666 year: 2015 end-page: 3682 ident: bib36 article-title: Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis publication-title: AIChE J. – volume: 135 start-page: 70 year: 2020 end-page: 80 ident: bib16 article-title: Process safety assessment considering multivariate non-linear dependence among process variables publication-title: Process Saf. Environ. Prot. – volume: 244 year: 2024 ident: bib38 article-title: Knowledge-informed deep networks for robust fault diagnosis of rolling bearings publication-title: Reliab. Eng. Syst. Saf. – reference: X. Zhang, J. Shi, M. Yang, X. Huang, A.S. Usmani, G. Chen, J. Fu, J.-B. Huang, J.Y. Li, Real-time pipeline leak detection and localization using an attention-based lstm approach, Process Safety and Environmental Protection (2023). – volume: 18 start-page: 4555 year: 2022 end-page: 4565 ident: bib48 article-title: Convolutional neural network based feature learning for large-scale quality-related process monitoring publication-title: IEEE Trans. Ind. Inform. – reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, In: Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, 7132-7141. – volume: 185 start-page: 492 year: 2024 end-page: 510 ident: bib42 article-title: Distributed incipient fault detection with causality-based multi-perspective subblock partitioning for large-scale nonlinear processes publication-title: Process Saf. Environ. Prot. – volume: 111 year: 2021 ident: bib45 article-title: Sparsity and manifold regularized convolutional auto-encoders-based feature learning for fault detection of multivariate processes publication-title: Control Eng. Pract. – reference: T. Kim, J. Kim, Y. Tae, C. Park, J.-H. Choi, J. Choo, Reversible instance normalization for accurate time-series forecasting against distribution shift. In: Proceedings of the International Conference on Learning Representations, 2022. – start-page: 1 year: 2024 end-page: 10 ident: bib37 article-title: A fault-targeted gated recurrent unit-canonical correlation analysis method for incipient fault detection publication-title: IEEE Trans. Ind. Inform. – volume: 173 start-page: 215 year: 2023 end-page: 228 ident: bib34 article-title: Fault detection and isolation using probabilistic wavelet neural operator auto-encoder with application to dynamic processes publication-title: Process Saf. Environ. Prot. – volume: 47 start-page: 49 year: 2004 end-page: 62 ident: bib30 article-title: A bandwidth selection for kernel density estimation of functions of random variables publication-title: Comput. Stat. Data Anal. – reference: H. Phan, H.L. Nguyen, O.Y. Chén, P. Koch, N.Q.K. Duong, I. McLoughlin, A. Mertins, Self-attention generative adversarial network for speech enhancement. In: Proceedings of the ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, 7103-7107. – volume: 48 start-page: 309 year: 2015 end-page: 314 ident: bib6 article-title: Revision of the Tennessee Eastman process model publication-title: In: Proceedings of the IFAC Symposium on Advanced Control of Chemical Processes ADCHEM – volume: 360 start-page: 1 year: 2023 end-page: 17 ident: bib27 article-title: Improved key performance indicator-partial least squares method for nonlinear process fault detection based on just-in-time learning publication-title: J. Frankl. Inst. – reference: D. Kingma, A method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (2014). – reference: Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, Eca-net: Efficient channel attention for deep convolutional neural networks. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, 11531-11539. – volume: 112 year: 2021 ident: bib39 article-title: Temporal convolutional autoencoder for unsupervised anomaly detection in time series publication-title: Appl. Soft Comput. – volume: 35 start-page: 6194 year: 2024 end-page: 6205 ident: bib24 article-title: Sccam: supervised contrastive convolutional attention mechanism for ante-hoc interpretable fault diagnosis with limited fault samples publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 131 year: 2023 ident: bib19 article-title: Modified performance-enhanced pca for incipient fault detection of dynamic industrial processes publication-title: J. Process Control – volume: 67 start-page: 112 year: 2018 end-page: 128 ident: bib15 article-title: Real-time fault detection and diagnosis using sparse principal component analysis publication-title: J. Process Control – volume: 300 year: 2024 ident: bib26 article-title: Fault detection and isolation for multi-type sensors in nuclear power plants via a knowledge-guided spatial–temporal model publication-title: Knowl. Based Syst. – volume: 220 start-page: 37 year: 2024 end-page: 61 ident: bib18 article-title: Review of machine learning in robotic grasping control in space application publication-title: Acta Astronaut. – volume: 176 start-page: 411 year: 2023 end-page: 420 ident: bib5 article-title: Why do major chemical accidents still happen in China: analysis from a process safety management perspective publication-title: Process Saf. Environ. Prot. – volume: 158 start-page: 30 year: 2023 end-page: 41 ident: bib12 article-title: Lstmed: an uneven dynamic process monitoring method based on lstm and autoencoder neural network publication-title: Neural Netw. – reference: Yu, J., , 2024)102837.Mutual stacked autoencoder for unsupervised fault detection under complex multi-residual correlations. Adv. Eng. Inform., 62, 102837. – reference: X. Li, W. Wang, X. Hu, J. Yang, Selective kernel networks. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, 510-519. – volume: 145 year: 2021 ident: bib4 article-title: An analysis of process fault diagnosis methods from safety perspectives publication-title: Comput. Chem. Eng. – volume: 107 year: 2021 ident: bib9 article-title: Key-performance-indicator-related state monitoring based on kernel canonical correlation analysis publication-title: Control Eng. Pract. – volume: 278 year: 2023 ident: bib29 article-title: Spatial correlation extraction for chemical process fault detection using image enhancement technique aided convolutional autoencoder publication-title: Chem. Eng. Sci. – reference: S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: convolutional block attention module. In: Proceedings of the Computer Vision-ECCV 2018, 2018, 3-19. – volume: 173 start-page: 163 year: 2023 end-page: 177 ident: bib8 article-title: Large-scale chemical process causal discovery from big data with transformer-based deep learning publication-title: Process Saf. Environ. Prot. – volume: 158 year: 2022 ident: bib46 article-title: A dynamic-inner convolutional autoencoder for process monitoring publication-title: Comput. Chem. Eng. – volume: 17 start-page: 1852 year: 2021 end-page: 1862 ident: bib14 article-title: Fault description based attribute transfer for zero-sample industrial fault diagnosis publication-title: IEEE Trans. Ind. Inform. – volume: 33 start-page: 1065 year: 1962 end-page: 1076 ident: bib31 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Stat. – volume: 231 year: 2022 ident: bib33 article-title: A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes publication-title: Chemom. Intell. Lab. Syst. – volume: 154 start-page: 467 year: 2021 end-page: 479 ident: bib3 article-title: A deep learning model for process fault prognosis publication-title: Process Saf. Environ. Prot. – volume: 21 year: 2024 ident: bib11 article-title: Operating performance assessment of complex nonlinear industrial process based on kernel locally linear embedding pls publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 7 start-page: 122644 year: 2019 end-page: 122662 ident: bib35 article-title: Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: a review publication-title: IEEE Access – volume: 158 year: 2022 ident: bib23 article-title: Fault detection and diagnosis to enhance safety in digitalized process system publication-title: Comput. Chem. Eng. – reference: Y. Liu, Z. Shao, N. Hoffmann, Global Attention Mechanism: Retain Information to Enhance Channel-spatial Interactions, 2021.10.48550/arXiv.2112.05561. – volume: 136 start-page: 428 year: 2023 end-page: 441 ident: bib13 article-title: Adaptive multiscale and dual subnet convolutional auto-encoder for intermittent fault detection of analog circuits in noise environment publication-title: ISA Trans. – volume: 107 year: 2021 ident: 10.1016/j.psep.2025.107156_bib9 article-title: Key-performance-indicator-related state monitoring based on kernel canonical correlation analysis publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104692 – volume: 150 start-page: 123 year: 2021 ident: 10.1016/j.psep.2025.107156_bib2 article-title: Risk-based fault detection and diagnosis for nonlinear and non-gaussian process systems using r-vine copula publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.04.010 – volume: 154 start-page: 467 year: 2021 ident: 10.1016/j.psep.2025.107156_bib3 article-title: A deep learning model for process fault prognosis publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.08.022 – ident: 10.1016/j.psep.2025.107156_bib41 doi: 10.1007/978-3-030-01234-2_1 – volume: 61 start-page: 3666 year: 2015 ident: 10.1016/j.psep.2025.107156_bib36 article-title: Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis publication-title: AIChE J. doi: 10.1002/aic.14888 – volume: 87 start-page: 54 year: 2020 ident: 10.1016/j.psep.2025.107156_bib10 article-title: One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.01.004 – ident: 10.1016/j.psep.2025.107156_bib28 – volume: 244 year: 2024 ident: 10.1016/j.psep.2025.107156_bib38 article-title: Knowledge-informed deep networks for robust fault diagnosis of rolling bearings publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109863 – ident: 10.1016/j.psep.2025.107156_bib25 doi: 10.1109/CVPR.2019.00060 – volume: 136 start-page: 428 year: 2023 ident: 10.1016/j.psep.2025.107156_bib13 article-title: Adaptive multiscale and dual subnet convolutional auto-encoder for intermittent fault detection of analog circuits in noise environment publication-title: ISA Trans. doi: 10.1016/j.isatra.2022.10.031 – volume: 112 year: 2021 ident: 10.1016/j.psep.2025.107156_bib39 article-title: Temporal convolutional autoencoder for unsupervised anomaly detection in time series publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107751 – volume: 67 start-page: 112 year: 2018 ident: 10.1016/j.psep.2025.107156_bib15 article-title: Real-time fault detection and diagnosis using sparse principal component analysis publication-title: J. Process Control doi: 10.1016/j.jprocont.2017.03.005 – volume: 220 start-page: 37 year: 2024 ident: 10.1016/j.psep.2025.107156_bib18 article-title: Review of machine learning in robotic grasping control in space application publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2024.04.012 – volume: 231 year: 2022 ident: 10.1016/j.psep.2025.107156_bib33 article-title: A review on autoencoder based representation learning for fault detection and diagnosis in industrial processes publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2022.104711 – volume: 145 year: 2021 ident: 10.1016/j.psep.2025.107156_bib4 article-title: An analysis of process fault diagnosis methods from safety perspectives publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.107197 – volume: 48 start-page: 309 year: 2015 ident: 10.1016/j.psep.2025.107156_bib6 article-title: Revision of the Tennessee Eastman process model publication-title: In: Proceedings of the IFAC Symposium on Advanced Control of Chemical Processes ADCHEM – ident: 10.1016/j.psep.2025.107156_bib21 – start-page: 1 year: 2024 ident: 10.1016/j.psep.2025.107156_bib37 article-title: A fault-targeted gated recurrent unit-canonical correlation analysis method for incipient fault detection publication-title: IEEE Trans. Ind. Inform. – ident: 10.1016/j.psep.2025.107156_bib47 doi: 10.1016/j.psep.2023.04.020 – volume: 21 year: 2024 ident: 10.1016/j.psep.2025.107156_bib11 article-title: Operating performance assessment of complex nonlinear industrial process based on kernel locally linear embedding pls publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2022.3230687 – volume: 17 start-page: 1852 year: 2021 ident: 10.1016/j.psep.2025.107156_bib14 article-title: Fault description based attribute transfer for zero-sample industrial fault diagnosis publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.2988208 – ident: 10.1016/j.psep.2025.107156_bib44 doi: 10.1016/j.aei.2024.102837 – volume: 173 start-page: 163 year: 2023 ident: 10.1016/j.psep.2025.107156_bib8 article-title: Large-scale chemical process causal discovery from big data with transformer-based deep learning publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2023.03.017 – volume: 158 start-page: 30 year: 2023 ident: 10.1016/j.psep.2025.107156_bib12 article-title: Lstmed: an uneven dynamic process monitoring method based on lstm and autoencoder neural network publication-title: Neural Netw. doi: 10.1016/j.neunet.2022.11.001 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.psep.2025.107156_bib43 article-title: Convolutional long short-term memory autoencoder-based feature learning for fault detection in industrial processes publication-title: IEEE Trans. Instrum. Meas. – volume: 111 year: 2021 ident: 10.1016/j.psep.2025.107156_bib45 article-title: Sparsity and manifold regularized convolutional auto-encoders-based feature learning for fault detection of multivariate processes publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2021.104811 – volume: 15 start-page: 12 year: 2007 ident: 10.1016/j.psep.2025.107156_bib7 article-title: Finding the direction of disturbance propagation in a chemical process using transfer entropy publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2006.883234 – volume: 18 start-page: 4555 year: 2022 ident: 10.1016/j.psep.2025.107156_bib48 article-title: Convolutional neural network based feature learning for large-scale quality-related process monitoring publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3124578 – volume: 185 start-page: 492 year: 2024 ident: 10.1016/j.psep.2025.107156_bib42 article-title: Distributed incipient fault detection with causality-based multi-perspective subblock partitioning for large-scale nonlinear processes publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2024.02.075 – volume: 173 start-page: 215 year: 2023 ident: 10.1016/j.psep.2025.107156_bib34 article-title: Fault detection and isolation using probabilistic wavelet neural operator auto-encoder with application to dynamic processes publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2023.02.078 – ident: 10.1016/j.psep.2025.107156_bib40 doi: 10.1109/CVPR42600.2020.01155 – volume: 360 start-page: 1 year: 2023 ident: 10.1016/j.psep.2025.107156_bib27 article-title: Improved key performance indicator-partial least squares method for nonlinear process fault detection based on just-in-time learning publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2022.11.029 – volume: 33 start-page: 1065 year: 1962 ident: 10.1016/j.psep.2025.107156_bib31 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704472 – ident: 10.1016/j.psep.2025.107156_bib17 doi: 10.1109/CVPR.2018.00745 – ident: 10.1016/j.psep.2025.107156_bib20 – volume: 131 year: 2023 ident: 10.1016/j.psep.2025.107156_bib19 article-title: Modified performance-enhanced pca for incipient fault detection of dynamic industrial processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.103107 – volume: 35 start-page: 6194 year: 2024 ident: 10.1016/j.psep.2025.107156_bib24 article-title: Sccam: supervised contrastive convolutional attention mechanism for ante-hoc interpretable fault diagnosis with limited fault samples publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2023.3313728 – volume: 47 start-page: 49 year: 2004 ident: 10.1016/j.psep.2025.107156_bib30 article-title: A bandwidth selection for kernel density estimation of functions of random variables publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2003.10.013 – ident: 10.1016/j.psep.2025.107156_bib22 – ident: 10.1016/j.psep.2025.107156_bib32 doi: 10.1109/ICASSP39728.2021.9414265 – volume: 7 start-page: 122644 year: 2019 ident: 10.1016/j.psep.2025.107156_bib35 article-title: Challenges and opportunities of deep learning models for machinery fault detection and diagnosis: a review publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2938227 – volume: 135 start-page: 70 year: 2020 ident: 10.1016/j.psep.2025.107156_bib16 article-title: Process safety assessment considering multivariate non-linear dependence among process variables publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2019.12.006 – volume: 180 start-page: 1053 year: 2023 ident: 10.1016/j.psep.2025.107156_bib1 article-title: Multiscale monitoring of industrial chemical process using wavelet-entropy aided machine learning approach publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2023.10.066 – volume: 158 year: 2022 ident: 10.1016/j.psep.2025.107156_bib46 article-title: A dynamic-inner convolutional autoencoder for process monitoring publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107654 – volume: 300 year: 2024 ident: 10.1016/j.psep.2025.107156_bib26 article-title: Fault detection and isolation for multi-type sensors in nuclear power plants via a knowledge-guided spatial–temporal model publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2024.112182 – volume: 176 start-page: 411 year: 2023 ident: 10.1016/j.psep.2025.107156_bib5 article-title: Why do major chemical accidents still happen in China: analysis from a process safety management perspective publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2023.06.040 – volume: 278 year: 2023 ident: 10.1016/j.psep.2025.107156_bib29 article-title: Spatial correlation extraction for chemical process fault detection using image enhancement technique aided convolutional autoencoder publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2023.118900 – volume: 158 year: 2022 ident: 10.1016/j.psep.2025.107156_bib23 article-title: Fault detection and diagnosis to enhance safety in digitalized process system publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107609 |
| SSID | ssj0001271 |
| Score | 2.3928468 |
| Snippet | Industrial processes are constantly disturbed by environmental and human factors during operation. Undifferentiated alarming of these disturbances will bring... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 107156 |
| SubjectTerms | Convolutional autoencoder Data distribution alignment Process knowledge embedding Process monitoring Variable-level feature extraction and interaction |
| Title | One-dimensional decoupled convolutional autoencoder with sparse self-attention mechanism for process monitoring |
| URI | https://dx.doi.org/10.1016/j.psep.2025.107156 |
| Volume | 199 |
| WOSCitedRecordID | wos001486311900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect issn: 0957-5820 databaseCode: AIEXJ dateStart: 19961101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0001271 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOaAwmNhjygVvkqXHixjkOVAQIDQ5D6k6R44_B1CVR00z7P_YP8xw7Hy0fYgcuUeu2dpT30_N7r7_3M0JvmAarsqkiOVMpiRnlRFAVklTKNJXtHtRa-nNydsYXi_TrZHLX9cLcLJOi4Le3afVfTQ1jYGzbOnsPc_eTwgC8BqPDFcwO138y_JdCE2U1-53eRqAgwWyqpVYtw9wvbRUCmnVpVSytmIQjqleQ5Oqg1ktDrOqm40Fea9sbbI_SsITEyvUVBNetK1h1-56Pbn3XQVALY5mgtiY_aqSzPV9OFWL03_-Fr1dfNJdN2Zd7vruztMviMh8GPXn4bbdoW29oK712knH5grKe6jrUIRPCOJ1uuGR3aJJ3qpChhk59_Bd_70oPVydVra34KGUnw5c3xbW3Nr2eitix3K4yO0dm58jcHA_QLk1YCt5-9_TjfPGp3-BD2ubx_Z37XixHG9y-k9_HO6MY5nwPPfHJBz51oHmKJrrYR49HkpT76GA-Nhj2rr9-hsotXOEeV3gDV3iEK2xxhR2u8CaucI8rDLjCHld4wNVz9O39_PzdB-JP6yCSsmhNmOKaz2QEb7RkEBpJNs2llDwVIp_FipsEPpAzmsswTyKpjIkjw4TKlaSGmugA7RRloV8gnAgBafEsoVzrOFZKGAj7VSimVAtqFDtEQfdMs8qJsmR_tuMhYt1jz3xY6cLFDFD0l98d3WuVl-jRAO9XaGe9avQxeihv1j_q1WsPoZ_1ZaKQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-dimensional+decoupled+convolutional+autoencoder+with+sparse+self-attention+mechanism+for+process+monitoring&rft.jtitle=Process+safety+and+environmental+protection&rft.au=Yang%2C+Yuguo&rft.au=Shi%2C+Hongbo&rft.au=Song%2C+Bing&rft.au=Tao%2C+Yang&rft.date=2025-07-01&rft.issn=0957-5820&rft.volume=199&rft.spage=107156&rft_id=info:doi/10.1016%2Fj.psep.2025.107156&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_psep_2025_107156 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5820&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5820&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5820&client=summon |