Dynamic multi-objective evolutionary algorithm based on dual-layer collaborative prediction under multiple perspective

Prediction-based strategies become increasingly prominent in addressing dynamic multi-objective optimization problems (DMOPs). However, challenges remain in selecting predictive models and effectively utilizing historical solutions. In this paper, we propose a multiple perspective dual-layer collabo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Swarm and evolutionary computation Ročník 94; s. 101876
Hlavní autoři: Hu, Yaru, Li, Yana, Ou, Junwei, Peng, Jiankang, Li, Jun, Zheng, Jinhua
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2025
Témata:
ISSN:2210-6502
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Prediction-based strategies become increasingly prominent in addressing dynamic multi-objective optimization problems (DMOPs). However, challenges remain in selecting predictive models and effectively utilizing historical solutions. In this paper, we propose a multiple perspective dual-layer collaborative prediction strategy to efficiently tackle both challenges. The multi-perspective approach is further divided into a search perspective and a spatial perspective and realized through the collaboration of three sub-strategies. From the search perspective, we employ a dual-layer prediction strategy that focuses on both global and local information. Specifically, the first layer utilizes Gaussian process regression (GPR) to predict centrality, which serves as a measure of the population’s collective intelligence. This layer effectively captures global insights into population dynamics, identifying overarching movement trends over time. Building on these global insights, the second layer employs a knee-point interval partitioning strategy that combines vector partitioning with knee-point-based predictions. This layer provides localized insights that complement the broader movement trends identified by the first layer. From the spatial perspective, we implement dual-layer historical similarity detection across non-dominated solutions in both decision and objective spaces. Specifically, the historical Pareto-similarity selection strategy identifies populations in these spaces that demonstrate the greatest similarity to the current population’s non-dominated solutions. The spatial perspective complements the search perspective, forming a coherent framework that systematically integrates global, local, and historical information. Experimental results indicate that the proposed algorithm performs better than previous state-of-the-art methods. •In this paper, we propose the multiple perspective dual-layer collaborative prediction strategy to efficiently tackle both challenges. The multi-perspective approach is further divided into a search perspective and a spatial perspective realized through the collaboration of three sub-strategies.•From the search perspective, we employ a dual-layer prediction strategy that focuses on both global and local information. Specifically, the first layer utilizes Gaussian process regression (GPR) to predict centrality, which serves as a measure of the population’s collective intelligence. This layer effectively captures global insights into population dynamics, identifying overarching movement trends over time.•From the spatial perspective, we implement dual-layer historical similarity detection across non-dominated solutions in both decision and objective spaces. Specifically, the historical Pareto-similarity selection strategy identifies populations in these spaces that demonstrate the greatest similarity to the current population’s non-dominated solutions.
AbstractList Prediction-based strategies become increasingly prominent in addressing dynamic multi-objective optimization problems (DMOPs). However, challenges remain in selecting predictive models and effectively utilizing historical solutions. In this paper, we propose a multiple perspective dual-layer collaborative prediction strategy to efficiently tackle both challenges. The multi-perspective approach is further divided into a search perspective and a spatial perspective and realized through the collaboration of three sub-strategies. From the search perspective, we employ a dual-layer prediction strategy that focuses on both global and local information. Specifically, the first layer utilizes Gaussian process regression (GPR) to predict centrality, which serves as a measure of the population’s collective intelligence. This layer effectively captures global insights into population dynamics, identifying overarching movement trends over time. Building on these global insights, the second layer employs a knee-point interval partitioning strategy that combines vector partitioning with knee-point-based predictions. This layer provides localized insights that complement the broader movement trends identified by the first layer. From the spatial perspective, we implement dual-layer historical similarity detection across non-dominated solutions in both decision and objective spaces. Specifically, the historical Pareto-similarity selection strategy identifies populations in these spaces that demonstrate the greatest similarity to the current population’s non-dominated solutions. The spatial perspective complements the search perspective, forming a coherent framework that systematically integrates global, local, and historical information. Experimental results indicate that the proposed algorithm performs better than previous state-of-the-art methods. •In this paper, we propose the multiple perspective dual-layer collaborative prediction strategy to efficiently tackle both challenges. The multi-perspective approach is further divided into a search perspective and a spatial perspective realized through the collaboration of three sub-strategies.•From the search perspective, we employ a dual-layer prediction strategy that focuses on both global and local information. Specifically, the first layer utilizes Gaussian process regression (GPR) to predict centrality, which serves as a measure of the population’s collective intelligence. This layer effectively captures global insights into population dynamics, identifying overarching movement trends over time.•From the spatial perspective, we implement dual-layer historical similarity detection across non-dominated solutions in both decision and objective spaces. Specifically, the historical Pareto-similarity selection strategy identifies populations in these spaces that demonstrate the greatest similarity to the current population’s non-dominated solutions.
ArticleNumber 101876
Author Li, Jun
Hu, Yaru
Zheng, Jinhua
Ou, Junwei
Li, Yana
Peng, Jiankang
Author_xml – sequence: 1
  givenname: Yaru
  surname: Hu
  fullname: Hu, Yaru
  email: huyaru@xtu.edu.cn
  organization: School of Computer Science, Xiangtan University, Xiangtan 411105, China
– sequence: 2
  givenname: Yana
  surname: Li
  fullname: Li, Yana
  email: liyana2024@163.com
  organization: School of Computer Science, Xiangtan University, Xiangtan 411105, China
– sequence: 3
  givenname: Junwei
  orcidid: 0000-0001-8769-0953
  surname: Ou
  fullname: Ou, Junwei
  email: junweiou@xtu.edu.com
  organization: School of Computer Science, Xiangtan University, Xiangtan 411105, China
– sequence: 4
  givenname: Jiankang
  surname: Peng
  fullname: Peng, Jiankang
  email: pengjiankang01@gmail.com
  organization: School of Computer Science, Xiangtan University, Xiangtan 411105, China
– sequence: 5
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  email: jli@hnie.edu.cn
  organization: Hunan Institute of Engineering, Xiangtan, 411105, China
– sequence: 6
  givenname: Jinhua
  surname: Zheng
  fullname: Zheng, Jinhua
  email: jhzheng@xtu.edu.cn
  organization: School of Computer Science, Xiangtan University, Xiangtan 411105, China
BookMark eNp9kMtOwzAQRb0oEgX6BWz8AymOXTvtggUqT6kSG1hbfkzAkRNHdhLUv8dtWDObkWbmXN25V2jRhQ4Qui3JuiSluGvW6QemsKaE8tNkW4kFWlJakkJwQi_RKqWG5BL5gO-WaHo8dqp1BrejH1wRdANmcBPgrOLHwYVOxSNW_itEN3y3WKsEFocO21H5wqsjRGyC90qHqM5gH8E6cyLx2Nm8Piv3Pm8gpn6Wv0EXtfIJVn_9Gn0-P33sX4vD-8vb_uFQGMrZUGy2UFeV0ZwxVVMgFWWW7di2tgKI3nAlNCXEbrhmQpiKa2OsIrrmqlZU25JdIzbrmhhSilDLPro2vyRLIk-JyUaeE5OnxOScWKbuZwqytclBlMk46Ex-LGb_0gb3L_8LpV1-FQ
Cites_doi 10.1016/j.swevo.2024.101693
10.1007/s00500-018-3033-0
10.1109/TEVC.2019.2922834
10.1016/j.swevo.2022.101041
10.1109/TETCI.2023.3251352
10.1016/j.ins.2024.121524
10.1016/j.eswa.2021.114594
10.1109/TEVC.2014.2378512
10.1007/s10489-022-03353-2
10.1016/j.swevo.2024.101773
10.1109/TEVC.2007.894202
10.1109/TCYB.2013.2245892
10.1016/j.asoc.2024.112022
10.1109/SSCI.2016.7849963
10.1007/s00500-014-1477-4
10.1016/j.aej.2024.03.049
10.1016/j.neucom.2024.127241
10.1016/j.eswa.2024.123344
10.1016/j.ins.2023.119627
10.1109/TEVC.2016.2574621
10.1016/j.ins.2019.09.016
10.2307/3001968
10.1109/TEVC.2021.3115036
10.1016/j.ins.2020.04.011
10.1109/TEVC.2020.2985323
10.1109/TCYB.2015.2490738
10.1016/j.future.2024.07.028
10.1007/BF01195985
10.1109/TCYB.2020.3017017
10.1109/TCYB.2019.2909806
10.1109/TEVC.2023.3291697
10.1109/TNNLS.2023.3295461
10.1016/j.ijhydene.2023.02.062
10.1007/s00500-014-1433-3
10.1016/j.asoc.2017.08.004
10.1016/j.autcon.2022.104256
10.1016/j.asoc.2017.05.008
10.1109/TEVC.2020.3004027
10.1016/j.swevo.2023.101356
10.1016/j.swevo.2022.101164
10.1109/TEVC.2023.3253850
10.1016/j.knosys.2022.109173
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2025.101876
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2025_101876
S2210650225000343
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADQTV
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c253t-48ef77cb533af2e0723d3938fd6e0b45a6b200d45b366c75bccda0bf5afa2bd13
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001440518000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Thu Nov 13 04:27:53 EST 2025
Sat Mar 29 16:08:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Gaussian process regression
Prediction-based strategies
Knee-point interval partitioning
Historical similarity detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-48ef77cb533af2e0723d3938fd6e0b45a6b200d45b366c75bccda0bf5afa2bd13
ORCID 0000-0001-8769-0953
ParticipantIDs crossref_primary_10_1016_j_swevo_2025_101876
elsevier_sciencedirect_doi_10_1016_j_swevo_2025_101876
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Das (b41) 1999; 18
Zhou, Liu, Li, Wang, Shen, Feng, Zhu (b32) 2023; 7
Wu, Shi, Liu (b13) 2020; 529
Chen, Zou, Liu, Yang, Zheng, Huang (b39) 2022; 70
Wu, Jin, Liu (b38) 2015; 19
Feng, Zhou, Liu, Ong, Tan (b47) 2022; 52
Liu, Tang, Ding, Chen, Liu, Liu (b9) 2024
Zou, Li, Yang, Bai, Zheng (b40) 2017; 61
Wang, Thakur, Shen, He, Chen (b2) 2023; 1
Wang, Ma, Wang (b21) 2022; 75
Shahverdian, Sedayevatan, Hosseini, Sohani, Javadijam, Sayyaadi (b5) 2023; 48
Gao, Xu (b20) 2024; 165
Zhang, Shen, Liu, Yen (b7) 2020; 24
Zou, Yen, Tang (b6) 2020; 509
Hou, Ge, Chen, Shen, Zou (b1) 2023; 649
Li, Wang, Lan, Wu, Zeng (b51) 2024; 35
Muruganantham, Tan, Vadakkepat (b45) 2016; 46
Peng, Zheng, Zou, Liu (b24) 2015; 19
Jiang, Wang, Hong, Yen (b29) 2021; 25
Zhang, Zhou, Jin (b42) 2008; 12
Guo, Zhang (b4) 2022; 139
Jiang, Yang (b46) 2017; 21
Rambabu, Vadakkepat, Tan, Jiang (b48) 2020; 50
Wang, Li, Dai, Song, Chen, Bao, Peng (b22) 2024; 90
Xie, Qiao, Wang (b11) 2025; 92
Wang, Ma, Wang (b14) 2022; 75
Shboul, Zayed, Ashraf, Usman, Roy, Irshad, Rehman (b3) 2024; 94
Liu, Liu, Ding, Yang, Jin (b10) 2024; 28
Fang, Li, Hu, Zeng (b31) 2024; 574
Xu, Jiang, Hu, Li, Pan, Yen (b30) 2022; 26
Zhang, Tian, Jin (b27) 2015; 19
Ruan, Yu, Zheng, Zou, Yang (b44) 2017; 58
Wilcoxon (b50) 1945; 1
Zhou, Jin, Zhang (b19) 2013; 44
Hatzakis, Wallace (b36) 2006
Li, Zou, Yang, Zheng, Ruan (b28) 2019; 23
Wang, Zhao, Tang, Yao (b49) 2024
Peng, Mei, Zhang, Luo, Zhang, Wu (b8) 2023; 82
X. Peng, D. Xu, F. Zhang, UAV online path planning based on dynamic multiobjective evolutionary algorithm, in: Proceedings of the 30th Chinese Control Conference, 2011, pp. 5424–5429.
S. Jiang, S. Yang, X. Yao, K. Tan, M. Kaiser, N. Krasnogor, Benchmark problems for ieee cec 2018 competition on dynamic multiobjective optimization, in: IEEE Congress on Evolutionary Computation, 2018.
Liang, Zou, Zheng, Yang, Zhu (b37) 2021; 172
Hu, Zou, Zheng, Jiang, Yang (b12) 2024; 248
Sun, Ma, Hu, Yang, Cui (b23) 2023; 53
Hu, Zheng, Jiang, Yang, Zou, Wang (b33) 2024; 28
Ye, Li, Lin, Wong, Li, Ming (b26) 2022; 250
Hernández, Schütze, Trautmann, Rudolph (b34) 2015
S. Sahmoud, H.R. Topcuoglu, Sensor-based change detection schemes for dynamic multi-objective optimization problems, in: 2016 IEEE Symposium Series on Computational Intelligence, SSCI, 2016, pp. 1–8.
E. Guerrero-Pena, A.F. Araújo, C. Garrozi, Dynamic multi-objective evolutionary algorithms: An overview.
Zhang, Yang, Jiang, Wang, Li (b17) 2020; 24
Sarkar, Khanapuri, Tiwari (b25) 2025; 690
Peng, Pi, Xiong, Fan, Shen (b35) 2024; 161
Yazdani, Yazdani, Blanco-Davis, Nguyen (b52) 2024
10.1016/j.swevo.2025.101876_b18
Wang (10.1016/j.swevo.2025.101876_b2) 2023; 1
Zhou (10.1016/j.swevo.2025.101876_b19) 2013; 44
Shboul (10.1016/j.swevo.2025.101876_b3) 2024; 94
Liu (10.1016/j.swevo.2025.101876_b9) 2024
Liu (10.1016/j.swevo.2025.101876_b10) 2024; 28
10.1016/j.swevo.2025.101876_b15
10.1016/j.swevo.2025.101876_b16
Ye (10.1016/j.swevo.2025.101876_b26) 2022; 250
Yazdani (10.1016/j.swevo.2025.101876_b52) 2024
Zhang (10.1016/j.swevo.2025.101876_b17) 2020; 24
Chen (10.1016/j.swevo.2025.101876_b39) 2022; 70
Das (10.1016/j.swevo.2025.101876_b41) 1999; 18
Zhang (10.1016/j.swevo.2025.101876_b7) 2020; 24
Wang (10.1016/j.swevo.2025.101876_b14) 2022; 75
Shahverdian (10.1016/j.swevo.2025.101876_b5) 2023; 48
Zhang (10.1016/j.swevo.2025.101876_b27) 2015; 19
10.1016/j.swevo.2025.101876_b43
Li (10.1016/j.swevo.2025.101876_b28) 2019; 23
Zou (10.1016/j.swevo.2025.101876_b6) 2020; 509
Muruganantham (10.1016/j.swevo.2025.101876_b45) 2016; 46
Wang (10.1016/j.swevo.2025.101876_b22) 2024; 90
Wang (10.1016/j.swevo.2025.101876_b21) 2022; 75
Sarkar (10.1016/j.swevo.2025.101876_b25) 2025; 690
Zhou (10.1016/j.swevo.2025.101876_b32) 2023; 7
Peng (10.1016/j.swevo.2025.101876_b35) 2024; 161
Gao (10.1016/j.swevo.2025.101876_b20) 2024; 165
Hu (10.1016/j.swevo.2025.101876_b33) 2024; 28
Peng (10.1016/j.swevo.2025.101876_b8) 2023; 82
Feng (10.1016/j.swevo.2025.101876_b47) 2022; 52
Wu (10.1016/j.swevo.2025.101876_b13) 2020; 529
Xie (10.1016/j.swevo.2025.101876_b11) 2025; 92
Fang (10.1016/j.swevo.2025.101876_b31) 2024; 574
Zou (10.1016/j.swevo.2025.101876_b40) 2017; 61
Jiang (10.1016/j.swevo.2025.101876_b46) 2017; 21
Xu (10.1016/j.swevo.2025.101876_b30) 2022; 26
Rambabu (10.1016/j.swevo.2025.101876_b48) 2020; 50
Hernández (10.1016/j.swevo.2025.101876_b34) 2015
Hu (10.1016/j.swevo.2025.101876_b12) 2024; 248
Wu (10.1016/j.swevo.2025.101876_b38) 2015; 19
Guo (10.1016/j.swevo.2025.101876_b4) 2022; 139
Li (10.1016/j.swevo.2025.101876_b51) 2024; 35
Peng (10.1016/j.swevo.2025.101876_b24) 2015; 19
Hatzakis (10.1016/j.swevo.2025.101876_b36) 2006
Liang (10.1016/j.swevo.2025.101876_b37) 2021; 172
Wilcoxon (10.1016/j.swevo.2025.101876_b50) 1945; 1
Sun (10.1016/j.swevo.2025.101876_b23) 2023; 53
Jiang (10.1016/j.swevo.2025.101876_b29) 2021; 25
Zhang (10.1016/j.swevo.2025.101876_b42) 2008; 12
Ruan (10.1016/j.swevo.2025.101876_b44) 2017; 58
Wang (10.1016/j.swevo.2025.101876_b49) 2024
Hou (10.1016/j.swevo.2025.101876_b1) 2023; 649
References_xml – volume: 48
  start-page: 19772
  year: 2023
  end-page: 19791
  ident: b5
  article-title: Multi-objective technoeconomic optimization of an off-grid solar-ground-source driven cycle with hydrogen storage for power and fresh water production
  publication-title: Int. J. Hydrog. Energy
– start-page: 126
  year: 2015
  end-page: 140
  ident: b34
  article-title: On the behavior of stochastic local search within parameter dependent MOPs
  publication-title: Evolutionary Multi-Criterion Optimization
– year: 2024
  ident: b9
  article-title: A dual mutation based evolutionary algorithm for dynamic multi-objective optimization with undetectable changes
  publication-title: IEEE Trans. Evol. Comput.
– volume: 82
  year: 2023
  ident: b8
  article-title: Multi-strategy dynamic multi-objective evolutionary algorithm with hybrid environmental change responses
  publication-title: Swarm Evol. Comput.
– volume: 529
  start-page: 116
  year: 2020
  end-page: 131
  ident: b13
  article-title: A new dynamic strategy for dynamic multi-objective optimization
  publication-title: Inform. Sci.
– volume: 75
  year: 2022
  ident: b14
  article-title: A dynamic multi-objective optimization evolutionary algorithm based on particle swarm prediction strategy and prediction adjustment strategy
  publication-title: Swarm Evol. Comput.
– reference: X. Peng, D. Xu, F. Zhang, UAV online path planning based on dynamic multiobjective evolutionary algorithm, in: Proceedings of the 30th Chinese Control Conference, 2011, pp. 5424–5429.
– volume: 58
  start-page: 631
  year: 2017
  end-page: 647
  ident: b44
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 70
  year: 2022
  ident: b39
  article-title: Combining a hybrid prediction strategy and a mutation strategy for dynamic multiobjective optimization
  publication-title: Swarm Evol. Comput.
– reference: S. Jiang, S. Yang, X. Yao, K. Tan, M. Kaiser, N. Krasnogor, Benchmark problems for ieee cec 2018 competition on dynamic multiobjective optimization, in: IEEE Congress on Evolutionary Computation, 2018.
– year: 2024
  ident: b49
  article-title: MOEA/D with spatial-temporal topological tensor prediction for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 75
  year: 2022
  ident: b21
  article-title: A dynamic multi-objective optimization evolutionary algorithm based on particle swarm prediction strategy and prediction adjustment strategy
  publication-title: Swarm Evol. Comput.
– volume: 35
  start-page: 16533
  year: 2024
  end-page: 16547
  ident: b51
  article-title: A novel dynamic multiobjective optimization algorithm with non-inductive transfer learning based on multi-strategy adaptive selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 50
  start-page: 5099
  year: 2020
  end-page: 5112
  ident: b48
  article-title: A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– start-page: 1201
  year: 2006
  end-page: 1208
  ident: b36
  article-title: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach
  publication-title: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation
– volume: 26
  start-page: 690
  year: 2022
  end-page: 703
  ident: b30
  article-title: An online prediction approach based on incremental support vector machine for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 761
  year: 2015
  end-page: 776
  ident: b27
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 161
  start-page: 390
  year: 2024
  end-page: 403
  ident: b35
  article-title: A dynamic multi-objective evolutionary algorithm with variable stepsize and dual prediction strategies
  publication-title: Future Gener. Comput. Syst.
– volume: 649
  year: 2023
  ident: b1
  article-title: Temporal distribution-based prediction strategy for dynamic multi-objective optimization assisted by GRU neural network
  publication-title: Inform. Sci.
– reference: E. Guerrero-Pena, A.F. Araújo, C. Garrozi, Dynamic multi-objective evolutionary algorithms: An overview.
– volume: 19
  start-page: 2633
  year: 2015
  end-page: 2653
  ident: b24
  article-title: Novel prediction and memory strategies for dynamic multiobjective optimization
  publication-title: Soft Comput.
– volume: 574
  year: 2024
  ident: b31
  article-title: A learnable population filter for dynamic multi-objective optimization
  publication-title: Neurocomputing
– volume: 12
  start-page: 41
  year: 2008
  end-page: 63
  ident: b42
  article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 107
  year: 1999
  end-page: 115
  ident: b41
  article-title: On characterizing the “knee” of the Pareto curve based on normal-boundary intersection
  publication-title: Struct. Optim.
– volume: 46
  start-page: 2862
  year: 2016
  end-page: 2873
  ident: b45
  article-title: Evolutionary dynamic multiobjective optimization via Kalman filter prediction
  publication-title: IEEE Trans. Cybern.
– reference: S. Sahmoud, H.R. Topcuoglu, Sensor-based change detection schemes for dynamic multi-objective optimization problems, in: 2016 IEEE Symposium Series on Computational Intelligence, SSCI, 2016, pp. 1–8.
– volume: 28
  start-page: 1039
  year: 2024
  end-page: 1053
  ident: b10
  article-title: A surrogate-assisted differential evolution with knowledge transfer for expensive incremental optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 248
  year: 2024
  ident: b12
  article-title: A new framework of change response for dynamic multi-objective optimization
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 1228
  year: 2023
  end-page: 1241
  ident: b32
  article-title: Dynamic multi-objective optimization framework with interactive evolution for sequential recommendation
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
– volume: 25
  start-page: 117
  year: 2021
  end-page: 129
  ident: b29
  article-title: Knee point-based imbalanced transfer learning for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 28
  start-page: 238
  year: 2024
  end-page: 251
  ident: b33
  article-title: A mahalanobis distance-based approach for dynamic multiobjective optimization with stochastic changes
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: b50
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
– volume: 24
  start-page: 974
  year: 2020
  end-page: 988
  ident: b7
  article-title: Multiobjective evolution strategy for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  year: 2023
  ident: b2
  article-title: Influences of vaginal microbiota on human papillomavirus infection and host immune regulation: What we have learned?
  publication-title: Decod. Infect. Transm.
– volume: 23
  start-page: 3723
  year: 2019
  end-page: 3739
  ident: b28
  article-title: A predictive strategy based on special points for evolutionary dynamic multi-objective optimization
  publication-title: Soft Comput.
– volume: 690
  year: 2025
  ident: b25
  article-title: Integrating machine learning with dynamic multi-objective optimization for real-time decision-making
  publication-title: Inform. Sci.
– volume: 61
  start-page: 806
  year: 2017
  end-page: 818
  ident: b40
  article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
– volume: 509
  start-page: 193
  year: 2020
  end-page: 209
  ident: b6
  article-title: A knee-guided prediction approach for dynamic multi-objective optimization
  publication-title: Inform. Sci.
– volume: 21
  start-page: 65
  year: 2017
  end-page: 82
  ident: b46
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 139
  year: 2022
  ident: b4
  article-title: Multi-objective optimization for improved project management: Current status and future directions
  publication-title: Autom. Constr.
– volume: 52
  start-page: 2649
  year: 2022
  end-page: 2662
  ident: b47
  article-title: Solving dynamic multiobjective problem via autoencoding evolutionary search
  publication-title: IEEE Trans. Cybern.
– volume: 19
  start-page: 3221
  year: 2015
  end-page: 3235
  ident: b38
  article-title: A directed search strategy for evolutionary dynamic multiobjective optimization
  publication-title: Soft Comput.
– start-page: 1
  year: 2024
  end-page: 23
  ident: b52
  article-title: A survey of multi-population optimization algorithms for tracking the moving optimum in dynamic environments
  publication-title: J. Membr. Comput.
– volume: 24
  start-page: 260
  year: 2020
  end-page: 274
  ident: b17
  article-title: Novel prediction strategies for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 165
  year: 2024
  ident: b20
  article-title: A new prediction-based evolutionary dynamic multiobjective optimization algorithm aided by Pareto optimal solution estimation strategy
  publication-title: Appl. Soft Comput.
– volume: 92
  year: 2025
  ident: b11
  article-title: A weighted knowledge extraction strategy for dynamic multi-objective optimization
  publication-title: Swarm Evol. Comput.
– volume: 53
  start-page: 1115
  year: 2023
  end-page: 1131
  ident: b23
  article-title: A two stages prediction strategy for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Intell.
– volume: 44
  start-page: 40
  year: 2013
  end-page: 53
  ident: b19
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 90
  year: 2024
  ident: b22
  article-title: A dynamic multi-objective optimization algorithm with a dual mechanism based on prediction and archive
  publication-title: Swarm Evol. Comput.
– volume: 172
  year: 2021
  ident: b37
  article-title: A feedback-based prediction strategy for dynamic multi-objective evolutionary optimization
  publication-title: Expert Syst. Appl.
– volume: 94
  start-page: 131
  year: 2024
  end-page: 148
  ident: b3
  article-title: Energy and economic analysis of building integrated photovoltaic thermal system: Seasonal dynamic modeling assisted with machine learning-aided method and multi-objective genetic optimization
  publication-title: Alex. Eng. J.
– volume: 250
  year: 2022
  ident: b26
  article-title: Knowledge guided Bayesian classification for dynamic multi-objective optimization
  publication-title: Knowl.-Based Syst.
– volume: 90
  year: 2024
  ident: 10.1016/j.swevo.2025.101876_b22
  article-title: A dynamic multi-objective optimization algorithm with a dual mechanism based on prediction and archive
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101693
– volume: 23
  start-page: 3723
  year: 2019
  ident: 10.1016/j.swevo.2025.101876_b28
  article-title: A predictive strategy based on special points for evolutionary dynamic multi-objective optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3033-0
– volume: 24
  start-page: 260
  issue: 2
  year: 2020
  ident: 10.1016/j.swevo.2025.101876_b17
  article-title: Novel prediction strategies for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2922834
– volume: 70
  year: 2022
  ident: 10.1016/j.swevo.2025.101876_b39
  article-title: Combining a hybrid prediction strategy and a mutation strategy for dynamic multiobjective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101041
– volume: 7
  start-page: 1228
  issue: 4
  year: 2023
  ident: 10.1016/j.swevo.2025.101876_b32
  article-title: Dynamic multi-objective optimization framework with interactive evolution for sequential recommendation
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2023.3251352
– volume: 690
  year: 2025
  ident: 10.1016/j.swevo.2025.101876_b25
  article-title: Integrating machine learning with dynamic multi-objective optimization for real-time decision-making
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2024.121524
– volume: 172
  year: 2021
  ident: 10.1016/j.swevo.2025.101876_b37
  article-title: A feedback-based prediction strategy for dynamic multi-objective evolutionary optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114594
– volume: 19
  start-page: 761
  issue: 6
  year: 2015
  ident: 10.1016/j.swevo.2025.101876_b27
  article-title: A knee point-driven evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2378512
– start-page: 1201
  year: 2006
  ident: 10.1016/j.swevo.2025.101876_b36
  article-title: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach
– volume: 53
  start-page: 1115
  issue: 1
  year: 2023
  ident: 10.1016/j.swevo.2025.101876_b23
  article-title: A two stages prediction strategy for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03353-2
– volume: 1
  year: 2023
  ident: 10.1016/j.swevo.2025.101876_b2
  article-title: Influences of vaginal microbiota on human papillomavirus infection and host immune regulation: What we have learned?
  publication-title: Decod. Infect. Transm.
– volume: 92
  year: 2025
  ident: 10.1016/j.swevo.2025.101876_b11
  article-title: A weighted knowledge extraction strategy for dynamic multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101773
– volume: 12
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.swevo.2025.101876_b42
  article-title: RM-MEDA: A regularity model-based multiobjective estimation of distribution algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.894202
– volume: 44
  start-page: 40
  issue: 1
  year: 2013
  ident: 10.1016/j.swevo.2025.101876_b19
  article-title: A population prediction strategy for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2245892
– volume: 165
  year: 2024
  ident: 10.1016/j.swevo.2025.101876_b20
  article-title: A new prediction-based evolutionary dynamic multiobjective optimization algorithm aided by Pareto optimal solution estimation strategy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112022
– ident: 10.1016/j.swevo.2025.101876_b16
  doi: 10.1109/SSCI.2016.7849963
– volume: 19
  start-page: 3221
  year: 2015
  ident: 10.1016/j.swevo.2025.101876_b38
  article-title: A directed search strategy for evolutionary dynamic multiobjective optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1477-4
– volume: 94
  start-page: 131
  year: 2024
  ident: 10.1016/j.swevo.2025.101876_b3
  article-title: Energy and economic analysis of building integrated photovoltaic thermal system: Seasonal dynamic modeling assisted with machine learning-aided method and multi-objective genetic optimization
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2024.03.049
– volume: 574
  year: 2024
  ident: 10.1016/j.swevo.2025.101876_b31
  article-title: A learnable population filter for dynamic multi-objective optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127241
– start-page: 1
  year: 2024
  ident: 10.1016/j.swevo.2025.101876_b52
  article-title: A survey of multi-population optimization algorithms for tracking the moving optimum in dynamic environments
  publication-title: J. Membr. Comput.
– volume: 248
  year: 2024
  ident: 10.1016/j.swevo.2025.101876_b12
  article-title: A new framework of change response for dynamic multi-objective optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123344
– ident: 10.1016/j.swevo.2025.101876_b18
– volume: 649
  year: 2023
  ident: 10.1016/j.swevo.2025.101876_b1
  article-title: Temporal distribution-based prediction strategy for dynamic multi-objective optimization assisted by GRU neural network
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2023.119627
– volume: 21
  start-page: 65
  issue: 1
  year: 2017
  ident: 10.1016/j.swevo.2025.101876_b46
  article-title: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2574621
– volume: 509
  start-page: 193
  year: 2020
  ident: 10.1016/j.swevo.2025.101876_b6
  article-title: A knee-guided prediction approach for dynamic multi-objective optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.09.016
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.swevo.2025.101876_b50
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
  doi: 10.2307/3001968
– volume: 26
  start-page: 690
  issue: 4
  year: 2022
  ident: 10.1016/j.swevo.2025.101876_b30
  article-title: An online prediction approach based on incremental support vector machine for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3115036
– volume: 529
  start-page: 116
  year: 2020
  ident: 10.1016/j.swevo.2025.101876_b13
  article-title: A new dynamic strategy for dynamic multi-objective optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.04.011
– volume: 24
  start-page: 974
  issue: 5
  year: 2020
  ident: 10.1016/j.swevo.2025.101876_b7
  article-title: Multiobjective evolution strategy for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2985323
– start-page: 126
  year: 2015
  ident: 10.1016/j.swevo.2025.101876_b34
  article-title: On the behavior of stochastic local search within parameter dependent MOPs
– ident: 10.1016/j.swevo.2025.101876_b15
– volume: 46
  start-page: 2862
  issue: 12
  year: 2016
  ident: 10.1016/j.swevo.2025.101876_b45
  article-title: Evolutionary dynamic multiobjective optimization via Kalman filter prediction
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2490738
– volume: 161
  start-page: 390
  year: 2024
  ident: 10.1016/j.swevo.2025.101876_b35
  article-title: A dynamic multi-objective evolutionary algorithm with variable stepsize and dual prediction strategies
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2024.07.028
– volume: 18
  start-page: 107
  year: 1999
  ident: 10.1016/j.swevo.2025.101876_b41
  article-title: On characterizing the “knee” of the Pareto curve based on normal-boundary intersection
  publication-title: Struct. Optim.
  doi: 10.1007/BF01195985
– ident: 10.1016/j.swevo.2025.101876_b43
– volume: 52
  start-page: 2649
  issue: 5
  year: 2022
  ident: 10.1016/j.swevo.2025.101876_b47
  article-title: Solving dynamic multiobjective problem via autoencoding evolutionary search
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3017017
– volume: 50
  start-page: 5099
  issue: 12
  year: 2020
  ident: 10.1016/j.swevo.2025.101876_b48
  article-title: A mixture-of-experts prediction framework for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2909806
– volume: 28
  start-page: 1039
  issue: 4
  year: 2024
  ident: 10.1016/j.swevo.2025.101876_b10
  article-title: A surrogate-assisted differential evolution with knowledge transfer for expensive incremental optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2023.3291697
– volume: 35
  start-page: 16533
  issue: 11
  year: 2024
  ident: 10.1016/j.swevo.2025.101876_b51
  article-title: A novel dynamic multiobjective optimization algorithm with non-inductive transfer learning based on multi-strategy adaptive selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2023.3295461
– volume: 48
  start-page: 19772
  issue: 52
  year: 2023
  ident: 10.1016/j.swevo.2025.101876_b5
  article-title: Multi-objective technoeconomic optimization of an off-grid solar-ground-source driven cycle with hydrogen storage for power and fresh water production
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2023.02.062
– year: 2024
  ident: 10.1016/j.swevo.2025.101876_b9
  article-title: A dual mutation based evolutionary algorithm for dynamic multi-objective optimization with undetectable changes
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 2633
  issue: 9
  year: 2015
  ident: 10.1016/j.swevo.2025.101876_b24
  article-title: Novel prediction and memory strategies for dynamic multiobjective optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1433-3
– volume: 61
  start-page: 806
  year: 2017
  ident: 10.1016/j.swevo.2025.101876_b40
  article-title: A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.08.004
– volume: 139
  year: 2022
  ident: 10.1016/j.swevo.2025.101876_b4
  article-title: Multi-objective optimization for improved project management: Current status and future directions
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104256
– volume: 58
  start-page: 631
  year: 2017
  ident: 10.1016/j.swevo.2025.101876_b44
  article-title: The effect of diversity maintenance on prediction in dynamic multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.008
– volume: 25
  start-page: 117
  issue: 1
  year: 2021
  ident: 10.1016/j.swevo.2025.101876_b29
  article-title: Knee point-based imbalanced transfer learning for dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.3004027
– year: 2024
  ident: 10.1016/j.swevo.2025.101876_b49
  article-title: MOEA/D with spatial-temporal topological tensor prediction for evolutionary dynamic multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 82
  year: 2023
  ident: 10.1016/j.swevo.2025.101876_b8
  article-title: Multi-strategy dynamic multi-objective evolutionary algorithm with hybrid environmental change responses
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101356
– volume: 75
  year: 2022
  ident: 10.1016/j.swevo.2025.101876_b14
  article-title: A dynamic multi-objective optimization evolutionary algorithm based on particle swarm prediction strategy and prediction adjustment strategy
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101164
– volume: 28
  start-page: 238
  issue: 1
  year: 2024
  ident: 10.1016/j.swevo.2025.101876_b33
  article-title: A mahalanobis distance-based approach for dynamic multiobjective optimization with stochastic changes
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2023.3253850
– volume: 75
  year: 2022
  ident: 10.1016/j.swevo.2025.101876_b21
  article-title: A dynamic multi-objective optimization evolutionary algorithm based on particle swarm prediction strategy and prediction adjustment strategy
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101164
– volume: 250
  year: 2022
  ident: 10.1016/j.swevo.2025.101876_b26
  article-title: Knowledge guided Bayesian classification for dynamic multi-objective optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109173
SSID ssj0000602559
Score 2.3594015
Snippet Prediction-based strategies become increasingly prominent in addressing dynamic multi-objective optimization problems (DMOPs). However, challenges remain in...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 101876
SubjectTerms Gaussian process regression
Historical similarity detection
Knee-point interval partitioning
Prediction-based strategies
Title Dynamic multi-objective evolutionary algorithm based on dual-layer collaborative prediction under multiple perspective
URI https://dx.doi.org/10.1016/j.swevo.2025.101876
Volume 94
WOSCitedRecordID wos001440518000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ojlJR-4FVdpHMfJcQWLFg4LEovUW2Q7DrRb0irbpvs3-MeMYzuPXbRiD1yiyErGSebLzGd7xoPQW6q1LnigCC2kIJHkAZFBWBAJzjSZMZ3wyBab4KenyXyefh2NfvtcmHrFyzK5vEw3_1XV0AbKNqmzt1B3KxQa4ByUDkdQOxz_SfEfbI15GypI1nJpTdpE165bEycnVj_W1WL789fEuLHcLBmYpCyyEkDBJz1w1CaRyizmNDgxGWdVF4S4GWZqepL7bS8qW3lj0KdqCkgMVv5Pdo0LENWuDQxa2JaydRdfdjZ7pNzrRWfIXSAxgPtcOOfr5i5C1gt5aUxcCANOAhxxYI_TqGdQzYZitkDMNVtvpx2W04s9vMzUiJ92Vw931r7i8do4RB_itswaIZkRklkhd9BByFmajNHB0afj-ed24i6Im2GYKVron97vZtXEDV57nL8znh6LOXuI7rvhBz6ysHmERrp8jB740h7YWfonqHYowldQhPsaxS2KcIMivC5xhyI8QBHuUIQbFGGPItxD0VP0_ePx2fsT4kp0EBUyuiVRAn86VxIGDaIIdcBDmtOUJkUe60BGTMQS_s08YpLGseJMKpWLQBZMFCKU-Yw-Q-NyXernCOfMVDLgmubAcIHUyjTknCcs1RHVMyUO0Tv_GbON3Yklu0F_hyj2nzpzZNKSxAzwc9ONL27Xz0t0r0P2KzTeVjv9Gt1V9XZxUb1x4PkDmjme8g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+multi-objective+evolutionary+algorithm+based+on+dual-layer+collaborative+prediction+under+multiple+perspective&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Hu%2C+Yaru&rft.au=Li%2C+Yana&rft.au=Ou%2C+Junwei&rft.au=Peng%2C+Jiankang&rft.date=2025-04-01&rft.issn=2210-6502&rft.volume=94&rft.spage=101876&rft_id=info:doi/10.1016%2Fj.swevo.2025.101876&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_swevo_2025_101876
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon