A Parallel Algorithm for the Reduction to Tridiagonal Form for Eigendecomposition

One-sided orthogonal transformations which orthogonalize columns of a matrix are related to methods for finding singular values. They have the advantages of lending themselves to parallel and vector implementations and simplifying access to the data by not requiring access to both rows and columns....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on scientific computing Ročník 21; číslo 3; s. 987 - 1005
Hlavní autoři: Hegland, Markus, Kahn, Margaret, Osborne, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 1999
Témata:
ISSN:1064-8275, 1095-7197
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:One-sided orthogonal transformations which orthogonalize columns of a matrix are related to methods for finding singular values. They have the advantages of lending themselves to parallel and vector implementations and simplifying access to the data by not requiring access to both rows and columns. They can be used to find eigenvalues when the matrix is given in factored form. Here, a finite sequence of transformations leading to a partial orthogonalization of the columns is described. This permits a tridiagonal matrix whose eigenvalues are the squared singular values to be derived. The implementation on the Fujitsu VPP series is discussed and some timing results are presented.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1064-8275
1095-7197
DOI:10.1137/S1064827595296719