Developing deep learning models for predicting urban bike-sharing usage patterns

Urban traffic systems are facing significant challenges due to the ever-growing number of vehicles on the road, leading to increased congestion and suboptimal traffic flow. Traditional research focusing on individual traffic flows is often insufficient to meet the complex demands of modern urban tra...

Full description

Saved in:
Bibliographic Details
Published in:Physica A Vol. 652; p. 130016
Main Authors: Zhao, Xumin, Jin, HongWei, Luo, Yi, Zhang, Zhiqiang, Xie, Guojie, Yang, Chengji, Zheng, Meilian
Format: Journal Article
Language:English
Published: Elsevier B.V 15.10.2024
Subjects:
ISSN:0378-4371
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Urban traffic systems are facing significant challenges due to the ever-growing number of vehicles on the road, leading to increased congestion and suboptimal traffic flow. Traditional research focusing on individual traffic flows is often insufficient to meet the complex demands of modern urban transportation. While studying integrated shared single-vehicle flows offers a potential solution to mitigate these issues, the unique characteristics of shared bikes present substantial obstacles to accurate traffic flow research. These obstacles include the high liquidity, sparsity, and variability of shared bikes, the vagueness of travel characteristics, the lack of correlation between travel groups, and the unpredictability of travel patterns. The study endeavors to confront the challenges above by proposing an innovative model that correlates multiuser interactions and elucidates behavioral dynamics. This model utilizes a deep clustering method to analyze the evolution of superlarge-scale shared bike systems in Beijing. It uncovers the complex mechanisms governing user behavior and employs a neural network algorithm to predict shared bike users’ travel patterns effectively. By focusing on the theoretical and algorithmic aspects of behavioral dynamics for large-scale shared single-vehicle flows, this study offers a unique contribution to the field, with significant implications for multi-traffic flow management and urban planning in scenarios with extensive multi-traffic flows. •Addressing challenges in understanding and managing traffic flow in urban areas, particularly with the emergence of shared bike systems.•Proposing a novel multiuser correlation and behavioral dynamics model for super-large-scale shared bike systems.•Incorporating deep clustering methods and neural network algorithms to predict travel patterns among shared bike users.•Contributing insights into behavioral dynamics theory and algorithms applicable to large-scale shared single vehicle flows.•Significance for multitraffic flow management, urban planning, and optimizing transportation infrastructure.•Rigorous analytical methodologies and advanced computational techniques employed for compelling results.
AbstractList Urban traffic systems are facing significant challenges due to the ever-growing number of vehicles on the road, leading to increased congestion and suboptimal traffic flow. Traditional research focusing on individual traffic flows is often insufficient to meet the complex demands of modern urban transportation. While studying integrated shared single-vehicle flows offers a potential solution to mitigate these issues, the unique characteristics of shared bikes present substantial obstacles to accurate traffic flow research. These obstacles include the high liquidity, sparsity, and variability of shared bikes, the vagueness of travel characteristics, the lack of correlation between travel groups, and the unpredictability of travel patterns. The study endeavors to confront the challenges above by proposing an innovative model that correlates multiuser interactions and elucidates behavioral dynamics. This model utilizes a deep clustering method to analyze the evolution of superlarge-scale shared bike systems in Beijing. It uncovers the complex mechanisms governing user behavior and employs a neural network algorithm to predict shared bike users’ travel patterns effectively. By focusing on the theoretical and algorithmic aspects of behavioral dynamics for large-scale shared single-vehicle flows, this study offers a unique contribution to the field, with significant implications for multi-traffic flow management and urban planning in scenarios with extensive multi-traffic flows. •Addressing challenges in understanding and managing traffic flow in urban areas, particularly with the emergence of shared bike systems.•Proposing a novel multiuser correlation and behavioral dynamics model for super-large-scale shared bike systems.•Incorporating deep clustering methods and neural network algorithms to predict travel patterns among shared bike users.•Contributing insights into behavioral dynamics theory and algorithms applicable to large-scale shared single vehicle flows.•Significance for multitraffic flow management, urban planning, and optimizing transportation infrastructure.•Rigorous analytical methodologies and advanced computational techniques employed for compelling results.
ArticleNumber 130016
Author Yang, Chengji
Zheng, Meilian
Zhang, Zhiqiang
Xie, Guojie
Luo, Yi
Zhao, Xumin
Jin, HongWei
Author_xml – sequence: 1
  givenname: Xumin
  surname: Zhao
  fullname: Zhao, Xumin
  organization: School of International Business, Zhejiang Yuexiu University, Shaoxing, 312069, Zhejiang, China
– sequence: 2
  givenname: HongWei
  surname: Jin
  fullname: Jin, HongWei
  organization: School of International Business, Zhejiang Yuexiu University, Shaoxing, 312069, Zhejiang, China
– sequence: 3
  givenname: Yi
  surname: Luo
  fullname: Luo, Yi
  organization: School of International Business, Zhejiang Yuexiu University, Shaoxing, 312069, Zhejiang, China
– sequence: 4
  givenname: Zhiqiang
  surname: Zhang
  fullname: Zhang, Zhiqiang
  organization: School of International Business, Zhejiang Yuexiu University, Shaoxing, 312069, Zhejiang, China
– sequence: 5
  givenname: Guojie
  surname: Xie
  fullname: Xie, Guojie
  organization: Key Laboratory of Open Data Zhejiang Province, Hangzhou, 310000, Zhejiang, China
– sequence: 6
  givenname: Chengji
  orcidid: 0009-0002-1847-3685
  surname: Yang
  fullname: Yang, Chengji
  organization: School of Management, UCSI University, MA, 110819, USA
– sequence: 7
  givenname: Meilian
  surname: Zheng
  fullname: Zheng, Meilian
  organization: School of Management, Zhejiang University of Technology, Hangzhou, 310000, Zhejiang, China
BookMark eNp9kD1PwzAQQD0UibbwC1jyBxJsXxK7AwMqH0WqBEN3y3YurUPqRHao1H9P0jIzne5J76R7CzLznUdCHhjNGGXlY5P1h3PUGac8zxjQkc3InIKQaQ6C3ZJFjA0dsQA-J18veMK2653fJxVin7Sog5-2Y1dhG5O6C0kfsHJ2mOhPMNonxn1jGg86XFDUe0x6PQwYfLwjN7VuI97_zSXZvb3u1pt0-_n-sX7eppYXMKQ5R8FKUxiLQqJZaUBuNa9zwY2QVcEBjGAAUlNmYVXoorCjYmUpuS0BlgSuZ23oYgxYqz64ow5nxaiaOqhGXTqoqYO6dhitp6s1foYnh0FF69Db8b2AdlBV5_71fwE5nGw0
Cites_doi 10.1016/j.physa.2011.02.026
10.1016/j.jtrangeo.2014.06.026
10.1109/TITS.2014.2368998
10.1016/j.phpro.2010.07.034
10.1016/j.trc.2014.05.012
10.3390/su13147519
10.1016/j.physa.2018.09.090
10.1007/s00521-022-07380-5
10.1016/j.physa.2004.02.054
10.1038/nature03459
10.1016/j.trc.2015.12.012
10.3390/ijgi8060281
10.1103/PhysRevE.80.026118
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.physa.2024.130016
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_physa_2024_130016
S0378437124005259
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAXKI
AAXUO
ABAOU
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFHU
ADGUI
AEBSH
AEKER
AEYQN
AFFNX
AFKWA
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
AXLSJ
BKOJK
BLXMC
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSB
SSF
SSQ
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YNT
ZMT
~02
~G-
29O
5VS
6TJ
9DU
AAFFL
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACROA
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AFODL
AGQPQ
AIIUN
AJWLA
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BEHZQ
BEZPJ
BGSCR
BNTGB
BPUDD
BULVW
BZJEE
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HMV
HVGLF
HZ~
M38
MVM
NDZJH
R2-
SPG
VOH
WUQ
XOL
YYP
ZY4
~HD
ID FETCH-LOGICAL-c253t-42e716b5bce78eb9a3e2ca2f472b78d5233b71338a01c395a55c2e7c8682c633
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001307799500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4371
IngestDate Sat Nov 29 03:55:23 EST 2025
Sat Sep 14 18:01:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Neural network algorithm
Urban traffic flow
Behavioral dynamics model
Multiuser correlation
Shared bike
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-42e716b5bce78eb9a3e2ca2f472b78d5233b71338a01c395a55c2e7c8682c633
ORCID 0009-0002-1847-3685
ParticipantIDs crossref_primary_10_1016_j_physa_2024_130016
elsevier_sciencedirect_doi_10_1016_j_physa_2024_130016
PublicationCentury 2000
PublicationDate 2024-10-15
PublicationDateYYYYMMDD 2024-10-15
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Physica A
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yang, Guo, Wang, Ma (b12) 2020; PP
Ma, Wu, Wang, Feng, Liu (b9) 2013; 36C
Li, Li, Gong, Zhang (b33) 2016
Song, Qu, Blumm, Barabasi (b24) 2010
C. Yang, F. Yan, S.V. Ukkusuri, Unraveling traveler mobility patterns and predicting user behavior in the Shenzhen metro system, Transportmetrica.
Langlois, Koutsopoulos, Zhao (b7) 2016; 64
Kusakabe, Asakura (b4) 2014
Ding, Zhu, Mishra, Xie (b5) 2014
Camille, Kang, Michael, Marc, Matjaz (b25) 2011; 6
Liu, Wu, Wang, Tan (b32) 2016; vol. 30
Chen, Han, Wang (b20) 2010; 3
Goh, Barabasi (b21) 2006
Martin, Shaheen (b1) 2014; 41
Zong, Tian, He, Tang, Lv (b29) 2019; 515
Monreale, Pinelli, Trasarti, Giannotti (b27) 2009
Barabási (b14) 2005
Jiang (b34) 2022; 34
Wang, Xie, Yeung, Wang (b18) 2011; 390
Arian, Peng, Hsieh, Chiu (b31) 2019
M. Ifsttar, E.C. Ifsttar, J.B. Ifsttar, L.O. Ifsttar, Understanding Passenger Patterns in Public Transit Through Smart Card and Socioeconomic Data: A case study in Rennes, France, in: The 3rd International Workshop on Urban Computing, UrbComp 2014, 2014.
Zhu, Diao (b11) 2019
Radicchi (b16) 2009; 80
Candia, González, Wang, Schoenharl, Madey, Barabási (b17) 2007; 41
Alexei, João, Oliveira, Dezsö, Goh (b19) 2006
M. Morzy, Mining Frequent Trajectories of Moving Objects for Location Prediction, in: International Conference on Machine Learning & Data Mining in Pattern Recognition, 2007.
Zhao, Hu, Liu, Meng (b13) 2019; 8
Marta, César, Albert-László (b23) 2008
Kieu, Bhaskar, Chung (b6) 2015; 16
Sameena, Shahabaz, Prakash, Atul, Gajanan (b2) 2019
Johansen (b15) 2004; 338
Trepanier, Oukhellou, Briand, Come (b10) 2017
Caggiani, Camporeale (b3) 2021; 13
Brockmann, Hufnagel, Geisel (b22) 2006
Besse, Guillouet, Loubes, Royer (b30) 2018
Chen (10.1016/j.physa.2024.130016_b20) 2010; 3
Yang (10.1016/j.physa.2024.130016_b12) 2020; PP
Liu (10.1016/j.physa.2024.130016_b32) 2016; vol. 30
Sameena (10.1016/j.physa.2024.130016_b2) 2019
Candia (10.1016/j.physa.2024.130016_b17) 2007; 41
Caggiani (10.1016/j.physa.2024.130016_b3) 2021; 13
Radicchi (10.1016/j.physa.2024.130016_b16) 2009; 80
Wang (10.1016/j.physa.2024.130016_b18) 2011; 390
Barabási (10.1016/j.physa.2024.130016_b14) 2005
10.1016/j.physa.2024.130016_b8
Zhu (10.1016/j.physa.2024.130016_b11) 2019
Marta (10.1016/j.physa.2024.130016_b23) 2008
Brockmann (10.1016/j.physa.2024.130016_b22) 2006
Zong (10.1016/j.physa.2024.130016_b29) 2019; 515
Trepanier (10.1016/j.physa.2024.130016_b10) 2017
Besse (10.1016/j.physa.2024.130016_b30) 2018
Langlois (10.1016/j.physa.2024.130016_b7) 2016; 64
Monreale (10.1016/j.physa.2024.130016_b27) 2009
Song (10.1016/j.physa.2024.130016_b24) 2010
10.1016/j.physa.2024.130016_b26
Ding (10.1016/j.physa.2024.130016_b5) 2014
Ma (10.1016/j.physa.2024.130016_b9) 2013; 36C
Johansen (10.1016/j.physa.2024.130016_b15) 2004; 338
10.1016/j.physa.2024.130016_b28
Li (10.1016/j.physa.2024.130016_b33) 2016
Alexei (10.1016/j.physa.2024.130016_b19) 2006
Camille (10.1016/j.physa.2024.130016_b25) 2011; 6
Kieu (10.1016/j.physa.2024.130016_b6) 2015; 16
Martin (10.1016/j.physa.2024.130016_b1) 2014; 41
Arian (10.1016/j.physa.2024.130016_b31) 2019
Jiang (10.1016/j.physa.2024.130016_b34) 2022; 34
Goh (10.1016/j.physa.2024.130016_b21) 2006
Kusakabe (10.1016/j.physa.2024.130016_b4) 2014
Zhao (10.1016/j.physa.2024.130016_b13) 2019; 8
References_xml – volume: 6
  year: 2011
  ident: b25
  article-title: Structure of urban movements: Polycentric activity and entangled hierarchical flows
  publication-title: PLoS ONE
– volume: 390
  start-page: 2395
  year: 2011
  end-page: 2400
  ident: b18
  article-title: Heterogenous scaling in the inter-event time of on-line bookmarking
  publication-title: Phys. A
– year: 2019
  ident: b2
  article-title: Heuristic bike optimization algorithm to improve usage efficiency of the station-free bike sharing system in shenzhen, China
  publication-title: Sci. Total Environ.
– volume: 41
  year: 2007
  ident: b17
  article-title: Uncovering individual and collective human dynamics from mobile phone records
  publication-title: Physics
– volume: 515
  start-page: 258
  year: 2019
  end-page: 269
  ident: b29
  article-title: Trip destination prediction based on multi-day GPS data
  publication-title: Phys. A
– volume: 16
  start-page: 1537
  year: 2015
  end-page: 1548
  ident: b6
  article-title: Passenger segmentation using smart card data
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: M. Morzy, Mining Frequent Trajectories of Moving Objects for Location Prediction, in: International Conference on Machine Learning & Data Mining in Pattern Recognition, 2007.
– year: 2019
  ident: b31
  article-title: Destination prediction from mobile app data using ensemble Bayesian network
  publication-title: Annual Meeting of the Transportation Research Board, Washington DC. Trid. Trb. Org/View/1572803
– year: 2006
  ident: b22
  article-title: The scaling laws of human travel
– volume: 80
  year: 2009
  ident: b16
  article-title: Human activity in the web
  publication-title: Phys. Rev. E
– volume: 13
  year: 2021
  ident: b3
  article-title: Toward sustainability: Bike-sharing systems design, simulation and management
  publication-title: Sustainability
– year: 2006
  ident: b21
  article-title: Burstiness and memory in complex systems
  publication-title: arXiv e-prints
– year: 2009
  ident: b27
  article-title: WhereNext: A location predictor on trajectory pattern mining
  publication-title: ACM
– reference: C. Yang, F. Yan, S.V. Ukkusuri, Unraveling traveler mobility patterns and predicting user behavior in the Shenzhen metro system, Transportmetrica.
– volume: 36C
  start-page: 1
  year: 2013
  end-page: 12
  ident: b9
  article-title: Mining smart card data for transit riders’ travel patterns
  publication-title: Transp. Res.
– volume: 41
  start-page: 315
  year: 2014
  end-page: 324
  ident: b1
  article-title: Evaluating public transit modal shift dynamics in response to bikesharing: a tale of two US cities
  publication-title: J. Transp. Geogr.
– volume: 3
  start-page: 1897
  year: 2010
  end-page: 1905
  ident: b20
  article-title: Multi-level scaling properties of instant-message communications
  publication-title: Physics Procedia
– year: 2018
  ident: b30
  article-title: Destination prediction by trajectory distribution-based model
  publication-title: IEEE
– volume: 34
  start-page: 15369
  year: 2022
  end-page: 15385
  ident: b34
  article-title: Bike sharing usage prediction with deep learning: a survey
  publication-title: Neural Comput. Appl.
– year: 2010
  ident: b24
  article-title: Limits of predictability in human mobility
  publication-title: APS March Meeting 2010
– volume: PP
  start-page: 1
  year: 2020
  ident: b12
  article-title: Hierarchical prediction based on network representation learning enhanced clustering for bike-sharing system in smart city
  publication-title: IEEE Internet Things J.
– volume: 8
  start-page: 281
  year: 2019
  ident: b13
  article-title: Weighted dynamic time warping for grid-based travel-demand-pattern clustering: Case study of Beijing bicycle-sharing system
  publication-title: Int. J. Geo-Inf.
– volume: vol. 30
  year: 2016
  ident: b32
  article-title: Predicting the next location: A recurrent model with spatial and temporal contexts
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2014
  ident: b5
  article-title: The impact of regional transit service on tour-based commuter travel mode choice using Bayesian hierarchical modeling
  publication-title: Annual Meeting of the Transportation Research Board;Transportation Research Board
– year: 2017
  ident: b10
  article-title: Analyzing year-to-year changes in public transport passenger behaviour using smart card data
  publication-title: Transp. Res. C
– start-page: 1
  year: 2019
  end-page: 14
  ident: b11
  article-title: Understanding the spatiotemporal patterns of public bicycle usage: A case study of hangzhou, China
  publication-title: Int. J. Sustain. Transp.
– year: 2016
  ident: b33
  article-title: T-DesP: Destination prediction based on big trajectory data
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: M. Ifsttar, E.C. Ifsttar, J.B. Ifsttar, L.O. Ifsttar, Understanding Passenger Patterns in Public Transit Through Smart Card and Socioeconomic Data: A case study in Rennes, France, in: The 3rd International Workshop on Urban Computing, UrbComp 2014, 2014.
– year: 2005
  ident: b14
  article-title: The origin of bursts and heavy tails in human dynamics
  publication-title: Nature
– volume: 338
  start-page: 286
  year: 2004
  end-page: 291
  ident: b15
  article-title: Probing human response times
  publication-title: Phys. A
– year: 2008
  ident: b23
  article-title: Understanding individual human mobility patterns.
  publication-title: Nature
– year: 2014
  ident: b4
  article-title: Behavioural data mining of transit smart card data: A data fusion approach
  publication-title: Transp. Res. C
– volume: 64
  start-page: 1
  year: 2016
  end-page: 16
  ident: b7
  article-title: Inferring patterns in the multi-week activity sequences of public transport users
  publication-title: Transp. Res. C
– year: 2006
  ident: b19
  article-title: Modeling bursts and heavy tails in human dynamics
  publication-title: Phys. Rev. E
– volume: 390
  start-page: 2395
  issue: 12
  year: 2011
  ident: 10.1016/j.physa.2024.130016_b18
  article-title: Heterogenous scaling in the inter-event time of on-line bookmarking
  publication-title: Phys. A
  doi: 10.1016/j.physa.2011.02.026
– volume: 41
  start-page: 315
  issue: Dec.
  year: 2014
  ident: 10.1016/j.physa.2024.130016_b1
  article-title: Evaluating public transit modal shift dynamics in response to bikesharing: a tale of two US cities
  publication-title: J. Transp. Geogr.
  doi: 10.1016/j.jtrangeo.2014.06.026
– year: 2019
  ident: 10.1016/j.physa.2024.130016_b31
  article-title: Destination prediction from mobile app data using ensemble Bayesian network
– volume: 16
  start-page: 1537
  issue: 3
  year: 2015
  ident: 10.1016/j.physa.2024.130016_b6
  article-title: Passenger segmentation using smart card data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2368998
– volume: 3
  start-page: 1897
  issue: 5
  year: 2010
  ident: 10.1016/j.physa.2024.130016_b20
  article-title: Multi-level scaling properties of instant-message communications
  publication-title: Physics Procedia
  doi: 10.1016/j.phpro.2010.07.034
– year: 2006
  ident: 10.1016/j.physa.2024.130016_b21
  article-title: Burstiness and memory in complex systems
  publication-title: arXiv e-prints
– year: 2016
  ident: 10.1016/j.physa.2024.130016_b33
  article-title: T-DesP: Destination prediction based on big trajectory data
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2019
  ident: 10.1016/j.physa.2024.130016_b2
  article-title: Heuristic bike optimization algorithm to improve usage efficiency of the station-free bike sharing system in shenzhen, China
  publication-title: Sci. Total Environ.
– year: 2014
  ident: 10.1016/j.physa.2024.130016_b4
  article-title: Behavioural data mining of transit smart card data: A data fusion approach
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2014.05.012
– year: 2008
  ident: 10.1016/j.physa.2024.130016_b23
  article-title: Understanding individual human mobility patterns.
  publication-title: Nature
– volume: vol. 30
  year: 2016
  ident: 10.1016/j.physa.2024.130016_b32
  article-title: Predicting the next location: A recurrent model with spatial and temporal contexts
– volume: 13
  year: 2021
  ident: 10.1016/j.physa.2024.130016_b3
  article-title: Toward sustainability: Bike-sharing systems design, simulation and management
  publication-title: Sustainability
  doi: 10.3390/su13147519
– volume: 515
  start-page: 258
  year: 2019
  ident: 10.1016/j.physa.2024.130016_b29
  article-title: Trip destination prediction based on multi-day GPS data
  publication-title: Phys. A
  doi: 10.1016/j.physa.2018.09.090
– volume: 34
  start-page: 15369
  issue: 18
  year: 2022
  ident: 10.1016/j.physa.2024.130016_b34
  article-title: Bike sharing usage prediction with deep learning: a survey
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07380-5
– volume: 338
  start-page: 286
  issue: 1–2
  year: 2004
  ident: 10.1016/j.physa.2024.130016_b15
  article-title: Probing human response times
  publication-title: Phys. A
  doi: 10.1016/j.physa.2004.02.054
– volume: PP
  start-page: 1
  issue: 99
  year: 2020
  ident: 10.1016/j.physa.2024.130016_b12
  article-title: Hierarchical prediction based on network representation learning enhanced clustering for bike-sharing system in smart city
  publication-title: IEEE Internet Things J.
– volume: 41
  issue: 22
  year: 2007
  ident: 10.1016/j.physa.2024.130016_b17
  article-title: Uncovering individual and collective human dynamics from mobile phone records
  publication-title: Physics
– ident: 10.1016/j.physa.2024.130016_b26
– volume: 36C
  start-page: 1
  year: 2013
  ident: 10.1016/j.physa.2024.130016_b9
  article-title: Mining smart card data for transit riders’ travel patterns
  publication-title: Transp. Res.
– year: 2006
  ident: 10.1016/j.physa.2024.130016_b19
  article-title: Modeling bursts and heavy tails in human dynamics
  publication-title: Phys. Rev. E
– start-page: 1
  year: 2019
  ident: 10.1016/j.physa.2024.130016_b11
  article-title: Understanding the spatiotemporal patterns of public bicycle usage: A case study of hangzhou, China
  publication-title: Int. J. Sustain. Transp.
– year: 2010
  ident: 10.1016/j.physa.2024.130016_b24
  article-title: Limits of predictability in human mobility
– year: 2017
  ident: 10.1016/j.physa.2024.130016_b10
  article-title: Analyzing year-to-year changes in public transport passenger behaviour using smart card data
  publication-title: Transp. Res. C
– ident: 10.1016/j.physa.2024.130016_b28
– volume: 6
  issue: 1
  year: 2011
  ident: 10.1016/j.physa.2024.130016_b25
  article-title: Structure of urban movements: Polycentric activity and entangled hierarchical flows
  publication-title: PLoS ONE
– year: 2005
  ident: 10.1016/j.physa.2024.130016_b14
  article-title: The origin of bursts and heavy tails in human dynamics
  publication-title: Nature
  doi: 10.1038/nature03459
– volume: 64
  start-page: 1
  issue: Mar.
  year: 2016
  ident: 10.1016/j.physa.2024.130016_b7
  article-title: Inferring patterns in the multi-week activity sequences of public transport users
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2015.12.012
– year: 2006
  ident: 10.1016/j.physa.2024.130016_b22
– year: 2014
  ident: 10.1016/j.physa.2024.130016_b5
  article-title: The impact of regional transit service on tour-based commuter travel mode choice using Bayesian hierarchical modeling
– volume: 8
  start-page: 281
  issue: 6
  year: 2019
  ident: 10.1016/j.physa.2024.130016_b13
  article-title: Weighted dynamic time warping for grid-based travel-demand-pattern clustering: Case study of Beijing bicycle-sharing system
  publication-title: Int. J. Geo-Inf.
  doi: 10.3390/ijgi8060281
– volume: 80
  issue: 2
  year: 2009
  ident: 10.1016/j.physa.2024.130016_b16
  article-title: Human activity in the web
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.026118
– year: 2009
  ident: 10.1016/j.physa.2024.130016_b27
  article-title: WhereNext: A location predictor on trajectory pattern mining
  publication-title: ACM
– ident: 10.1016/j.physa.2024.130016_b8
– issue: 8
  year: 2018
  ident: 10.1016/j.physa.2024.130016_b30
  article-title: Destination prediction by trajectory distribution-based model
  publication-title: IEEE
SSID ssj0001732
Score 2.4612722
Snippet Urban traffic systems are facing significant challenges due to the ever-growing number of vehicles on the road, leading to increased congestion and suboptimal...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 130016
SubjectTerms Behavioral dynamics model
Multiuser correlation
Neural network algorithm
Shared bike
Urban traffic flow
Title Developing deep learning models for predicting urban bike-sharing usage patterns
URI https://dx.doi.org/10.1016/j.physa.2024.130016
Volume 652
WOSCitedRecordID wos001307799500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-4371
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001732
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELXapZW4IEpb8Vn50CNBYDuJfUR8CDigPazUhUtkO2Y3VA3LZoP4-YztOEkBoXLoJVpZsTfKe5mMJzNvEPrJweugtrqHUaUjxoSKZJLLSOWMShiDJ0q6ZhPp5SUfj8WwSWuuXDuBtCz546OY_VeoYQzAtqWz74C7XRQG4DeADkeAHY7_BPxxVwaVGzMLfSEmvumNk1-wygC5rQWB0Xqu4BFXxW8TVVPpsvFqm2xmFVdtsLDqu69Dj2oXAL2eShdrHdd_ipZmF16X4OyunPwyRZvyU7szr4reXG9orqfFPbB00o9AEGZNt6_BDJVXsBNl1LdSCVY18cK0jV20H818TeULk-2jB7d7NpJjhaAI2-vO_lsg-9mLq00nDJlqt5lbJLOLZH6Rj2iJpLHgA7R0eH4yvmjf0gcp9V-YmmsPilQu9-_FtbzutfQ8kdEqWmm2EPjQQ_8FfTDlGvrsoam-omFHAGwJgAMBsCcABgLgjgDYEQD3CYAdAXAgwDc0Oj0ZHZ1FTd-MSJOYLiJGDOyCVay0SblRQlJDtCQ3LCUq5XlMKFUuNiH3DzQVsYxjDVM0TzjRCaXf0aC8K806wgnVuZYquWG5YKmhkvJYG6K4IIaKfb6BdsNtyWZeHSV7A4wNlIRblzUOnnfcMiDDWxM33_c_W2i54-k2GizmtdlBn_TDoqjmPxomPAGaqnL0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+deep+learning+models+for+predicting+urban+bike-sharing+usage+patterns&rft.jtitle=Physica+A&rft.au=Zhao%2C+Xumin&rft.au=Jin%2C+HongWei&rft.au=Luo%2C+Yi&rft.au=Zhang%2C+Zhiqiang&rft.date=2024-10-15&rft.issn=0378-4371&rft.volume=652&rft.spage=130016&rft_id=info:doi/10.1016%2Fj.physa.2024.130016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_physa_2024_130016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4371&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4371&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4371&client=summon