SSA-LSTM-based locomotion mode recognition algorithm for the control of powered hip disarticulation prostheses

•Motion-pattern recognition for hip prostheses is investigated.•SSA-LSTM algorithm stabilises and refines single-hip-gait-pattern classification.•Dataset validation achieves over 99 % accuracy for healthy subjects and 96.4 % for hip amputees. Accurate recognition of locomotion modes is essential for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical signal processing and control Jg. 112; S. 108583
Hauptverfasser: Meng, Qiaoling, Sun, Zhenkun, Zhao, Jing, Castelli, Vincenzo Parenti, Yu, Hongliu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.02.2026
Schlagworte:
ISSN:1746-8094
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Motion-pattern recognition for hip prostheses is investigated.•SSA-LSTM algorithm stabilises and refines single-hip-gait-pattern classification.•Dataset validation achieves over 99 % accuracy for healthy subjects and 96.4 % for hip amputees. Accurate recognition of locomotion modes is essential for the effective control of lower limb prosthetics, enabling amputees to navigate various terrains with ease. Despite advancements, current prosthetics lack adaptive capabilities for complex movements, necessitating intelligent systems that can discern user intentions from sensory inputs. This paper introduces the SSA-LSTM algorithm, which integrates the Sparrow Search Algorithm (SSA) with Long Short-Term Memory (LSTM) networks to enhance the stability and accuracy of motion pattern recognition in powered hip disarticulation prostheses. A comprehensive dataset was constructed, capturing gait characteristics of both healthy individuals and amputees across various motion modes, including level walking, stair climbing, and ramp navigation. The SSA-LSTM algorithm optimizes the LSTM’s initial state, thereby improving convergence and learning efficiency. Its performance was bench-marked against established methods, including Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), ensemble learning, and LSTM. The SSA-LSTM model achieved superior recognition accuracy, averaging over 99 % for healthy subjects and 96.4 % for hip disarticulation amputees. This model demonstrated faster convergence, underscoring the SSA’s role in enhancing the LSTM’s learning capabilities. The SSA-LSTM model, through its integration of SSA optimization, represents a significant advancement in locomotion mode recognition. This research contributes to the development of intelligent prosthetics by providing a more precise and responsive control mechanism, which is crucial for enhancing the mobility and independence of amputees.
AbstractList •Motion-pattern recognition for hip prostheses is investigated.•SSA-LSTM algorithm stabilises and refines single-hip-gait-pattern classification.•Dataset validation achieves over 99 % accuracy for healthy subjects and 96.4 % for hip amputees. Accurate recognition of locomotion modes is essential for the effective control of lower limb prosthetics, enabling amputees to navigate various terrains with ease. Despite advancements, current prosthetics lack adaptive capabilities for complex movements, necessitating intelligent systems that can discern user intentions from sensory inputs. This paper introduces the SSA-LSTM algorithm, which integrates the Sparrow Search Algorithm (SSA) with Long Short-Term Memory (LSTM) networks to enhance the stability and accuracy of motion pattern recognition in powered hip disarticulation prostheses. A comprehensive dataset was constructed, capturing gait characteristics of both healthy individuals and amputees across various motion modes, including level walking, stair climbing, and ramp navigation. The SSA-LSTM algorithm optimizes the LSTM’s initial state, thereby improving convergence and learning efficiency. Its performance was bench-marked against established methods, including Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), ensemble learning, and LSTM. The SSA-LSTM model achieved superior recognition accuracy, averaging over 99 % for healthy subjects and 96.4 % for hip disarticulation amputees. This model demonstrated faster convergence, underscoring the SSA’s role in enhancing the LSTM’s learning capabilities. The SSA-LSTM model, through its integration of SSA optimization, represents a significant advancement in locomotion mode recognition. This research contributes to the development of intelligent prosthetics by providing a more precise and responsive control mechanism, which is crucial for enhancing the mobility and independence of amputees.
ArticleNumber 108583
Author Castelli, Vincenzo Parenti
Sun, Zhenkun
Yu, Hongliu
Meng, Qiaoling
Zhao, Jing
Author_xml – sequence: 1
  givenname: Qiaoling
  orcidid: 0000-0002-0240-4004
  surname: Meng
  fullname: Meng, Qiaoling
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 2
  givenname: Zhenkun
  surname: Sun
  fullname: Sun, Zhenkun
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 3
  givenname: Jing
  surname: Zhao
  fullname: Zhao, Jing
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
– sequence: 4
  givenname: Vincenzo Parenti
  surname: Castelli
  fullname: Castelli, Vincenzo Parenti
  organization: University of Bologna, Emilia Romagna, Italy
– sequence: 5
  givenname: Hongliu
  orcidid: 0000-0002-2812-1192
  surname: Yu
  fullname: Yu, Hongliu
  email: yhl_usst@outlook.com
  organization: Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai, China
BookMark eNp9kMtqwzAQRbVIoUnaH-hKP-BUki0_oJsQ-gKXLpKuhSyNEwXbYyS3pX9fJem6MDAwzLkznAWZDTgAIXecrTjj-f1x1YTRrAQTMg5KWaYzMudFliclq7JrsgjhyFhWFjybk2G7XSf1dveWNDqApR0a7HFyONAeLVAPBveDOw90t0fvpkNPW_R0OgA1OEweO4otHfEbfAw4uJFaF7SfnPns9BkcPYa4HiDckKtWdwFu__qSfDw97jYvSf3-_LpZ14kRMp2SjOesgrYSkBa5LKoqr6zkumik1jk3rLU2S0tuY4EQRWO4tCnkQvIqs7wt0yURl1wTTwcPrRq967X_UZypkyV1VCdL6mRJXSxF6OECQfzsy4FXwTgYDFgXNUzKovsP_wU4HnZP
Cites_doi 10.1109/TNSRE.2015.2412461
10.1109/TNSRE.2019.2909585
10.1109/JAS.2017.7510619
10.1109/MPOT.2016.2614756
10.1155/2021/5631730
10.1007/s00034-019-01116-y
10.1016/j.artmed.2024.102966
10.1088/1741-2560/11/5/056021
10.1007/s42835-020-00424-7
10.1016/j.mechatronics.2015.09.002
10.1109/LRA.2022.3183936
10.1080/21642583.2019.1708830
10.1162/neco.1997.9.8.1735
10.3390/s19204596
10.1016/j.compbiomed.2023.107124
10.1109/TASLP.2017.2769220
10.1109/TMECH.2014.2309708
10.1186/s12938-016-0284-9
10.1002/j.1538-7305.1984.tb00034.x
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2025.108583
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2025_108583
S1746809425010948
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9DU
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c253t-41609ef92e376579969d51a7b5aa61c0fdd4381d81de227bc15d3e625194d1f83
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001586745000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Sat Nov 29 06:52:19 EST 2025
Wed Dec 10 14:40:35 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Sparrow search algorithm (SSA)
Hip amputation
Long short-term memory (LSTM)
Locomotion mode recognition
Lower limb prosthesis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-41609ef92e376579969d51a7b5aa61c0fdd4381d81de227bc15d3e625194d1f83
ORCID 0000-0002-0240-4004
0000-0002-2812-1192
ParticipantIDs crossref_primary_10_1016_j_bspc_2025_108583
elsevier_sciencedirect_doi_10_1016_j_bspc_2025_108583
PublicationCentury 2000
PublicationDate February 2026
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: February 2026
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Khamis, Khamis, Kouzbary, Kouzbary, Mokayed, AbdRazak, AbuOsman (b0055) 2024; 156
Li, Qin (b0125) 2024; 9
Spanias, Simon, Hargrove (b0010) 2017
Sheng, Wang, Tong, Yang, Chen, Su (b0080) 2021
Spanias, Simon, Perreault, Hargrove (b0015) 2016
Chen, Wang, Huang, Wei, Wang (b0060) 2015; 32
Wang, Liu (b0095) 2020; 39
Young, Kuiken, Hargrove (b0025) 2014; 11
Rainio, Teuho, Klén (b0160) 2024; 14
Anh, Van, Ha, Quyet (b0040) 2012
Yuan, Wang, Wang (b0065) 2014; 20
Hidayat, Fajrian, Muda, Huoy, Ahmad (b0045) 2011
Pergolini, Livolsi, Trigili (b0090) 2022; 7
Liu, Lin, Geng, Yang (b0085) 2017; 4
Kumar, Charan, Kanagaraj (b0005) 2017; 36
Noraxon USA, all-in-one measurement & analysis software.
Juang (b0050) 1984; 63
Huo, Zhou (b0155) 2022; 2021
Hochreiter, Schmidhuber (b0145) 1997; 9
Javvaji, Musala (b0120) 2019
Su, Wang, Liu, Sheng, Jiang, Xiang (b0075) 2019; 27
Parajuli, Sreenivasan, Bifulco (b0030) 2019; 19
Xue, Shen (b0150) 2019; 8
XSENSOR® Technology Corporation
Windrich, Grimmer, Christ, Rinderknecht, Beckerle (b0035) 2016; 15
Miller, Beazer, Hahn (b0070) 2013; 60
Young, Hargrove (b0020) 2016; 24
Gelly, Gauvain (b0135) 2018; 26
Song, Ma, Liu (b0140) 2023; 163
Kwon, Park, Song (b0130) 2020; 15
Soleimanian, Mohammad, Laya (b0100) 2022; 30
2025 (accessed 13 May 2025).
Abbaspour, Lindén, Gholamhosseini (b0115) 2015; 211
Young (10.1016/j.bspc.2025.108583_b0020) 2016; 24
Chen (10.1016/j.bspc.2025.108583_b0060) 2015; 32
Young (10.1016/j.bspc.2025.108583_b0025) 2014; 11
Rainio (10.1016/j.bspc.2025.108583_b0160) 2024; 14
Anh (10.1016/j.bspc.2025.108583_b0040) 2012
Kwon (10.1016/j.bspc.2025.108583_b0130) 2020; 15
Miller (10.1016/j.bspc.2025.108583_b0070) 2013; 60
Windrich (10.1016/j.bspc.2025.108583_b0035) 2016; 15
Wang (10.1016/j.bspc.2025.108583_b0095) 2020; 39
Su (10.1016/j.bspc.2025.108583_b0075) 2019; 27
Khamis (10.1016/j.bspc.2025.108583_b0055) 2024; 156
Yuan (10.1016/j.bspc.2025.108583_b0065) 2014; 20
Kumar (10.1016/j.bspc.2025.108583_b0005) 2017; 36
Song (10.1016/j.bspc.2025.108583_b0140) 2023; 163
Hochreiter (10.1016/j.bspc.2025.108583_b0145) 1997; 9
Huo (10.1016/j.bspc.2025.108583_b0155) 2022; 2021
Spanias (10.1016/j.bspc.2025.108583_b0010) 2017
Parajuli (10.1016/j.bspc.2025.108583_b0030) 2019; 19
Spanias (10.1016/j.bspc.2025.108583_b0015) 2016
10.1016/j.bspc.2025.108583_b0105
Gelly (10.1016/j.bspc.2025.108583_b0135) 2018; 26
Li (10.1016/j.bspc.2025.108583_b0125) 2024; 9
Sheng (10.1016/j.bspc.2025.108583_b0080) 2021
Hidayat (10.1016/j.bspc.2025.108583_b0045) 2011
Juang (10.1016/j.bspc.2025.108583_b0050) 1984; 63
Javvaji (10.1016/j.bspc.2025.108583_b0120) 2019
Abbaspour (10.1016/j.bspc.2025.108583_b0115) 2015; 211
Soleimanian (10.1016/j.bspc.2025.108583_b0100) 2022; 30
10.1016/j.bspc.2025.108583_b0110
Xue (10.1016/j.bspc.2025.108583_b0150) 2019; 8
Liu (10.1016/j.bspc.2025.108583_b0085) 2017; 4
Pergolini (10.1016/j.bspc.2025.108583_b0090) 2022; 7
References_xml – reference: , 2025 (accessed 13 May 2025).
– volume: 27
  start-page: 1032
  year: 2019
  end-page: 1042
  ident: b0075
  article-title: A CNN-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 9
  start-page: 1
  year: 2024
  end-page: 24
  ident: b0125
  article-title: An Exploration of the application of principal component analysis in big data processing
  publication-title: Appl. Math, Nonlinear Sci.
– volume: 15
  start-page: 140
  year: 2016
  ident: b0035
  article-title: Towards active lower limb prosthetic systems: design issues and solutions
  publication-title: Biom. Eng. Online.
– start-page: 354
  year: 2011
  end-page: 359
  ident: b0045
  article-title: A comparative study of feature extraction using PCA and LDA for face recognition
  publication-title: 7th Int Conf. Inf. Assur. Secur.
– volume: 14
  year: 2024
  ident: b0160
  article-title: Evaluation metrics and statistical tests for machine learning
  publication-title: Sci. Rep.
– volume: 19
  start-page: 4596
  year: 2019
  ident: b0030
  article-title: Real-time EMG based pattern recognition control for hand prostheses: a review on existing methods, challenges and future implementation
  publication-title: Sensors
– volume: 26
  start-page: 646
  year: 2018
  end-page: 656
  ident: b0135
  article-title: Optimization of RNN-based speech activity detection
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– volume: 163
  year: 2023
  ident: b0140
  article-title: Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach
  publication-title: Comput. Biol. Med.
– volume: 2021
  start-page: 18
  year: 2022
  end-page: 20
  ident: b0155
  article-title: Power load prediction model based on long short term memory and sparrow search algorithm
  publication-title: J. Phys. Conf. Ser.
– volume: 11
  year: 2014
  ident: b0025
  article-title: Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses
  publication-title: J. Neural Eng.
– volume: 36
  start-page: 19
  year: 2017
  end-page: 23
  ident: b0005
  article-title: Trends and challenges in lower limb prosthesis
  publication-title: IEEE Potentials
– volume: 63
  start-page: 1213
  year: 1984
  end-page: 1243
  ident: b0050
  article-title: On the hidden Markov model and dynamic time warping for speech recognition—a unified view, AT&T
  publication-title: Bell Labs Tech. J.
– year: 2021
  ident: b0080
  article-title: Motion intent recognition in intelligent lower limb prosthesis using one-dimensional dual-tree complex wavelet transforms
  publication-title: Comput. Intell. Neurosci.
– volume: 4
  start-page: 651
  year: 2017
  end-page: 660
  ident: b0085
  article-title: Intent pattern recognition of lower-limb motion based on mechanical sensors
  publication-title: IEEE/CAA J. Autom. Sin.
– start-page: 191
  year: 2012
  end-page: 196
  ident: b0040
  article-title: A real-time model based support Vector Machine for emotion recognition through EEG
  publication-title: 2012 Int. Conf. Control Autom. Inf. Sci.
– volume: 32
  start-page: 12
  year: 2015
  end-page: 21
  ident: b0060
  article-title: A foot-wearable interface for locomotion mode recognition based on discrete contact force distribution
  publication-title: Mechatronics
– volume: 8
  start-page: 22
  year: 2019
  end-page: 34
  ident: b0150
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
– start-page: 441
  year: 2019
  end-page: 444
  ident: b0120
  article-title: 0. 4V, low power GmC integrator and bandpass filter design for EMG bio medical signal processing
  publication-title: 2nd Int Conf. Power Embed. Drive Control
– volume: 24
  start-page: 217
  year: 2016
  end-page: 225
  ident: b0020
  article-title: A classification method for user-independent intent recognition for transfemoral amputees using powered lower limb prostheses
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 60
  start-page: 2745
  year: 2013
  end-page: 2750
  ident: b0070
  article-title: Myoelectric walking mode classification for transtibial amputees
  publication-title: I.E.E.E. Trans. Biomed. Eng.
– volume: 39
  start-page: 837
  year: 2020
  end-page: 856
  ident: b0095
  article-title: Human activity recognition based on wearable sensor using hierarchical deep LSTM networks
  publication-title: Circuits Syst. Signal Process.
– reference: Noraxon USA, all-in-one measurement & analysis software.
– volume: 30
  start-page: 21
  year: 2022
  end-page: 29
  ident: b0100
  article-title: Advances in sparrow search algorithm: a comprehensive survey
  publication-title: Arch. Comput. Methods. Eng.
– reference: XSENSOR® Technology Corporation,
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0145
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 15
  start-page: 1501
  year: 2020
  end-page: 1509
  ident: b0130
  article-title: Short-term load forecasting based on deep neural networks using LSTM layer
  publication-title: J. Electr. Eng. Technol.
– start-page: 5083
  year: 2016
  end-page: 5086
  ident: b0015
  article-title: Preliminary results for an adaptive pattern recognition system for novel users using a powered lower limb prosthesis
  publication-title: 38th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
– volume: 156
  year: 2024
  ident: b0055
  article-title: Automated transtibial prosthesis alignment: a systematic review
  publication-title: Artif. Intell. Med.
– volume: 20
  start-page: 618
  year: 2014
  end-page: 630
  ident: b0065
  article-title: Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees
  publication-title: IEEE/ASME Trans. Mechatronics.
– start-page: 1580
  year: 2017
  end-page: 1583
  ident: b0010
  article-title: Across-user adaptation for a powered lower limb prosthesis
  publication-title: 2017 Int Conf. Rehabil. Robot.
– volume: 211
  start-page: 91
  year: 2015
  end-page: 97
  ident: b0115
  article-title: ECG artifact removal from surface EMG signal using an automated method based on wavelet-ICA
  publication-title: Stud. Health Technol. Inform.
– volume: 7
  start-page: 7487
  year: 2022
  end-page: 7494
  ident: b0090
  article-title: Real-time locomotion recognition algorithm for an active pelvis orthosis to assist lower-limb amputees
  publication-title: IEEE Robot. Autom. Lett.
– volume: 24
  start-page: 217
  year: 2016
  ident: 10.1016/j.bspc.2025.108583_b0020
  article-title: A classification method for user-independent intent recognition for transfemoral amputees using powered lower limb prostheses
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2412461
– volume: 27
  start-page: 1032
  year: 2019
  ident: 10.1016/j.bspc.2025.108583_b0075
  article-title: A CNN-based method for intent recognition using inertial measurement units and intelligent lower limb prosthesis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2909585
– volume: 4
  start-page: 651
  year: 2017
  ident: 10.1016/j.bspc.2025.108583_b0085
  article-title: Intent pattern recognition of lower-limb motion based on mechanical sensors
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2017.7510619
– volume: 36
  start-page: 19
  year: 2017
  ident: 10.1016/j.bspc.2025.108583_b0005
  article-title: Trends and challenges in lower limb prosthesis
  publication-title: IEEE Potentials
  doi: 10.1109/MPOT.2016.2614756
– year: 2021
  ident: 10.1016/j.bspc.2025.108583_b0080
  article-title: Motion intent recognition in intelligent lower limb prosthesis using one-dimensional dual-tree complex wavelet transforms
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/5631730
– volume: 39
  start-page: 837
  year: 2020
  ident: 10.1016/j.bspc.2025.108583_b0095
  article-title: Human activity recognition based on wearable sensor using hierarchical deep LSTM networks
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-019-01116-y
– start-page: 5083
  year: 2016
  ident: 10.1016/j.bspc.2025.108583_b0015
  article-title: Preliminary results for an adaptive pattern recognition system for novel users using a powered lower limb prosthesis
– volume: 156
  year: 2024
  ident: 10.1016/j.bspc.2025.108583_b0055
  article-title: Automated transtibial prosthesis alignment: a systematic review
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2024.102966
– start-page: 191
  year: 2012
  ident: 10.1016/j.bspc.2025.108583_b0040
  article-title: A real-time model based support Vector Machine for emotion recognition through EEG
– start-page: 1580
  year: 2017
  ident: 10.1016/j.bspc.2025.108583_b0010
  article-title: Across-user adaptation for a powered lower limb prosthesis
– ident: 10.1016/j.bspc.2025.108583_b0105
– volume: 11
  year: 2014
  ident: 10.1016/j.bspc.2025.108583_b0025
  article-title: Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/5/056021
– volume: 2021
  start-page: 18
  year: 2022
  ident: 10.1016/j.bspc.2025.108583_b0155
  article-title: Power load prediction model based on long short term memory and sparrow search algorithm
  publication-title: J. Phys. Conf. Ser.
– volume: 15
  start-page: 1501
  year: 2020
  ident: 10.1016/j.bspc.2025.108583_b0130
  article-title: Short-term load forecasting based on deep neural networks using LSTM layer
  publication-title: J. Electr. Eng. Technol.
  doi: 10.1007/s42835-020-00424-7
– volume: 32
  start-page: 12
  year: 2015
  ident: 10.1016/j.bspc.2025.108583_b0060
  article-title: A foot-wearable interface for locomotion mode recognition based on discrete contact force distribution
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2015.09.002
– volume: 7
  start-page: 7487
  year: 2022
  ident: 10.1016/j.bspc.2025.108583_b0090
  article-title: Real-time locomotion recognition algorithm for an active pelvis orthosis to assist lower-limb amputees
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3183936
– volume: 9
  start-page: 1
  year: 2024
  ident: 10.1016/j.bspc.2025.108583_b0125
  article-title: An Exploration of the application of principal component analysis in big data processing
  publication-title: Appl. Math, Nonlinear Sci.
– volume: 8
  start-page: 22
  year: 2019
  ident: 10.1016/j.bspc.2025.108583_b0150
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.bspc.2025.108583_b0145
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 354
  year: 2011
  ident: 10.1016/j.bspc.2025.108583_b0045
  article-title: A comparative study of feature extraction using PCA and LDA for face recognition
– start-page: 441
  year: 2019
  ident: 10.1016/j.bspc.2025.108583_b0120
  article-title: 0. 4V, low power GmC integrator and bandpass filter design for EMG bio medical signal processing
– ident: 10.1016/j.bspc.2025.108583_b0110
– volume: 19
  start-page: 4596
  year: 2019
  ident: 10.1016/j.bspc.2025.108583_b0030
  article-title: Real-time EMG based pattern recognition control for hand prostheses: a review on existing methods, challenges and future implementation
  publication-title: Sensors
  doi: 10.3390/s19204596
– volume: 163
  year: 2023
  ident: 10.1016/j.bspc.2025.108583_b0140
  article-title: Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107124
– volume: 14
  year: 2024
  ident: 10.1016/j.bspc.2025.108583_b0160
  article-title: Evaluation metrics and statistical tests for machine learning
  publication-title: Sci. Rep.
– volume: 26
  start-page: 646
  year: 2018
  ident: 10.1016/j.bspc.2025.108583_b0135
  article-title: Optimization of RNN-based speech activity detection
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2017.2769220
– volume: 211
  start-page: 91
  year: 2015
  ident: 10.1016/j.bspc.2025.108583_b0115
  article-title: ECG artifact removal from surface EMG signal using an automated method based on wavelet-ICA
  publication-title: Stud. Health Technol. Inform.
– volume: 60
  start-page: 2745
  year: 2013
  ident: 10.1016/j.bspc.2025.108583_b0070
  article-title: Myoelectric walking mode classification for transtibial amputees
  publication-title: I.E.E.E. Trans. Biomed. Eng.
– volume: 20
  start-page: 618
  year: 2014
  ident: 10.1016/j.bspc.2025.108583_b0065
  article-title: Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees
  publication-title: IEEE/ASME Trans. Mechatronics.
  doi: 10.1109/TMECH.2014.2309708
– volume: 30
  start-page: 21
  year: 2022
  ident: 10.1016/j.bspc.2025.108583_b0100
  article-title: Advances in sparrow search algorithm: a comprehensive survey
  publication-title: Arch. Comput. Methods. Eng.
– volume: 15
  start-page: 140
  year: 2016
  ident: 10.1016/j.bspc.2025.108583_b0035
  article-title: Towards active lower limb prosthetic systems: design issues and solutions
  publication-title: Biom. Eng. Online.
  doi: 10.1186/s12938-016-0284-9
– volume: 63
  start-page: 1213
  year: 1984
  ident: 10.1016/j.bspc.2025.108583_b0050
  article-title: On the hidden Markov model and dynamic time warping for speech recognition—a unified view, AT&T
  publication-title: Bell Labs Tech. J.
  doi: 10.1002/j.1538-7305.1984.tb00034.x
SSID ssj0048714
Score 2.391119
Snippet •Motion-pattern recognition for hip prostheses is investigated.•SSA-LSTM algorithm stabilises and refines single-hip-gait-pattern classification.•Dataset...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108583
SubjectTerms Hip amputation
Locomotion mode recognition
Long short-term memory (LSTM)
Lower limb prosthesis
Sparrow search algorithm (SSA)
Title SSA-LSTM-based locomotion mode recognition algorithm for the control of powered hip disarticulation prostheses
URI https://dx.doi.org/10.1016/j.bspc.2025.108583
Volume 112
WOSCitedRecordID wos001586745000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0048714
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5cp4f2UPqk6Ys99GYULGnX0h5NSGlLGlrsgslFrLQrW0kqGcsJob-nP7Qz2tVKcR80h4IRRqxHQvN5Z1b7zTeEvJWTiQpUxL1Y-MJjSmpPsCz08pAxHqVZPM4aEdfj6OQkXizE58HgR1sLc3URlWV8fS3W_9XVcA6cjaWzt3C3Mwon4Ds4HY7gdjj-k-Nns6l3PJt_8jBAqREEq8q06mm63owcYwhpyBfLalNsV98c2bBlriMPGvungQFkc6mibq5ke30hq6uG4bUlILabwk0pv6mzLJaY5q5NGUJbCGmtOydrM9F8KSS2Dlp2G1TNVHi60uX5pQPv6UqaXaLeyENZN4qiDVu3APyW3ytIilFxqui_zwgcBdpNwRFDiWTT-tjN0ZZrbWZZrJgw7W9-CQDmXcTZQVqvUaAy4Afd4Jtq2ztR0HETW9rbWYI2ErSRGBt3yF4QcREPyd70w9HiYxvxYc3XaMi7O7fFWYZHuHsnv0-AeknN_CF5YFcjdGpQ9IgMdPmY3O9pVD4h5U080Q5PFPFEe3iiDk8U8EQBINR6nFY5tXiigCe6gyfa4ekp-fruaH743rNNOrws4OHWg4R-LHQuAg2hikewfBaK-zJKuZQTPxvnSqGKnIKPDgL49_tchXqCBdNM-XkcPiPDsir1c0LHOso4SyFMBIpJCZFCiZRhVpnmws_DfTJqn1yyNlosyZ-9tU94-3ATm02aLDEBrPzldy9udZWX5F4H4ldkuN1c6tfkbna1LerNGwuUnzuMms8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SSA-LSTM-based+locomotion+mode+recognition+algorithm+for+the+control+of+powered+hip+disarticulation+prostheses&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Meng%2C+Qiaoling&rft.au=Sun%2C+Zhenkun&rft.au=Zhao%2C+Jing&rft.au=Castelli%2C+Vincenzo+Parenti&rft.date=2026-02-01&rft.issn=1746-8094&rft.volume=112&rft.spage=108583&rft_id=info:doi/10.1016%2Fj.bspc.2025.108583&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2025_108583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon