Overview of fair federated learning for fairness and privacy preservation

In the rapidly advancing field of machine learning, federated learning (FL) has facilitated a paradigm shift, enabling collaborative model development across multiple distributed entities while preserving data privacy. FL has recently gained considerable attention as a solution for collaborative mac...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 293; p. 128568
Main Authors: Kim, Dohyoung, Oh, Kyoungsu, Lee, Youngho, Woo, Hyekyung
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2025
Subjects:
ISSN:0957-4174
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the rapidly advancing field of machine learning, federated learning (FL) has facilitated a paradigm shift, enabling collaborative model development across multiple distributed entities while preserving data privacy. FL has recently gained considerable attention as a solution for collaborative machine learning that does not compromise data privacy. However, it faces significant challenges related to fairness, which result in performance disparities across subsets of data. This paper explores the complexities and challenges associated with implementing fairness in the FL framework. Our study substantially contributes to the field of fair FL, detailing how this innovation addresses critical issues such as bias, variance, and model performance degradation in heterogeneous data environments. We provide a comprehensive taxonomy of fairness in FL, categorizing solutions based on data partitioning strategies, privacy mechanisms, applicable machine learning models, communication architectures, and heterogeneity mitigation techniques. Additionally, we highlight ongoing challenges and propose future directions to enhance the integrity and effectiveness of FL systems in this domain.
AbstractList In the rapidly advancing field of machine learning, federated learning (FL) has facilitated a paradigm shift, enabling collaborative model development across multiple distributed entities while preserving data privacy. FL has recently gained considerable attention as a solution for collaborative machine learning that does not compromise data privacy. However, it faces significant challenges related to fairness, which result in performance disparities across subsets of data. This paper explores the complexities and challenges associated with implementing fairness in the FL framework. Our study substantially contributes to the field of fair FL, detailing how this innovation addresses critical issues such as bias, variance, and model performance degradation in heterogeneous data environments. We provide a comprehensive taxonomy of fairness in FL, categorizing solutions based on data partitioning strategies, privacy mechanisms, applicable machine learning models, communication architectures, and heterogeneity mitigation techniques. Additionally, we highlight ongoing challenges and propose future directions to enhance the integrity and effectiveness of FL systems in this domain.
ArticleNumber 128568
Author Kim, Dohyoung
Oh, Kyoungsu
Lee, Youngho
Woo, Hyekyung
Author_xml – sequence: 1
  givenname: Dohyoung
  orcidid: 0009-0001-7882-6158
  surname: Kim
  fullname: Kim, Dohyoung
  organization: Department of IT Convergence Engineering, Gachon University, Seongnam-si 13120, South Korea
– sequence: 2
  givenname: Kyoungsu
  orcidid: 0000-0002-3177-8793
  surname: Oh
  fullname: Oh, Kyoungsu
  organization: Department of IT Convergence Engineering, Gachon University, Seongnam-si 13120, South Korea
– sequence: 3
  givenname: Youngho
  orcidid: 0000-0003-0720-0569
  surname: Lee
  fullname: Lee, Youngho
  email: lyh@gachon.ac.kr
  organization: Department of Computer Engineering, Gachon University, Seongnam-si 13120, South Korea
– sequence: 4
  givenname: Hyekyung
  orcidid: 0000-0001-5489-3404
  surname: Woo
  fullname: Woo, Hyekyung
  email: hkwoo@kongju.ac.kr
  organization: Department of Health Administration, Kongju National University, Gongju-si 32588, South Korea
BookMark eNp9kMtKAzEYhbOoYKu-gKu8wIy5zDQJuJHipVDoRtchk5yRlJqRZGjp2zu1rl2dxc93OP-3ILM0JBByz1nNGV8-7GqUo6sFE23NhW6XekbmzLSqarhqrsmilB1jXDGm5mS9PSAfIo506GnvYqY9ArIbEegeLqeYPmk_5N9bQinUpUC_czw4f5oSZcLdGId0S656ty-4-8sb8vHy_L56qzbb1_XqaVN50cqxkooBWno0nWkgAGcUWBC8VQYeXEshvNCqkY2TxmkZTAffqQAYozslb4i49Po8lJLR22nNl8sny5k9C7A7exZgzwLsRcAEPV4gTMumd7MtPiJ5hJjhRxuG-B_-Az26aZc
Cites_doi 10.1016/j.ins.2020.02.042
10.1016/j.comnet.2020.107569
10.1016/j.procs.2022.12.238
10.1007/978-3-030-63076-8_14
10.3795/KSME-A.2012.36.10.1109
10.1145/3381006
10.1007/s10489-022-04111-0
10.1145/359168.359176
10.1016/j.pmcj.2018.05.003
10.1002/int.22818
10.1109/TCCN.2024.3400524
10.1016/j.inffus.2022.09.011
10.1109/COMST.2020.2986024
10.1016/j.comnet.2023.109678
10.1093/jamia/ocaa096
10.1109/MSP.2020.2975749
10.24963/ijcai.2024/575
10.1109/ACCESS.2021.3124020
10.1007/s13042-022-01647-y
10.1109/MNET.2019.1800286
10.1016/j.jisa.2022.103309
10.1561/2200000083
10.1016/j.cosrev.2023.100595
10.3390/math12101601
10.1007/s11633-022-1398-0
10.1109/TVT.2021.3102121
10.1016/j.amc.2004.06.120
10.1109/TIFS.2019.2929409
10.1016/j.inffus.2024.102576
10.1109/ACCESS.2020.3038287
10.1109/MWC.001.2100102
10.1016/j.future.2022.02.024
10.1109/JSAIT.2021.3056102
10.1109/MSN63567.2024.00123
10.1109/MCOM.001.2000200
10.1016/j.comcom.2021.02.014
10.6109/jkiice.2024.28.7.805
10.1227/neu.0000000000002198
10.1016/j.compbiomed.2023.106848
10.1109/INFOCOM52122.2024.10621227
10.1109/JIOT.2022.3156046
10.1109/TKDE.2009.191
10.1007/s11280-022-01046-x
10.1016/j.media.2020.101765
10.3390/a15070243
10.1109/TDSC.2022.3215574
10.1007/s40747-022-00895-3
10.1145/3375627.3375840
10.1016/j.dcan.2023.01.022
10.1109/MIS.2020.2988525
10.1016/j.inffus.2023.102198
10.1109/TMC.2024.3446271
10.1007/s10462-024-10774-7
10.1016/j.sysarc.2024.103088
10.3390/fi15090310
10.4018/978-1-59140-557-3.ch189
10.3390/s23198272
10.1109/MIS.2021.3114610
10.1007/978-0-387-70992-5_7
10.1145/3606017
10.1016/j.iotcps.2023.04.001
10.1109/JSAC.2023.3345431
10.1109/MNET.007.2100717
10.1016/j.ins.2022.11.031
10.1007/s10462-023-10563-8
10.1109/TMC.2024.3374706
10.1016/j.cose.2021.102402
10.1007/s40747-020-00247-z
10.1109/JIOT.2020.3022911
10.1109/TNSE.2020.3016035
10.1145/3637868
10.1002/spy2.374
10.1109/AIPR50011.2020.9425266
10.1016/j.knosys.2024.111420
10.1016/j.patter.2023.100907
10.3390/electronics13234664
10.1016/j.future.2023.10.013
10.1109/TNSE.2022.3185327
10.1007/s12559-024-10332-x
10.3233/IA-200075
10.1007/s00521-023-09410-2
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.eswa.2025.128568
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_128568
S0957417425021876
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ABUFD
ACDAQ
ACGFS
ACHRH
ACLOT
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAAKG
AAQXK
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c253t-370ee83ce4b94e2eea97e0d21579ece18322c287434a39a83d9becb7dee998b73
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001523407300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 07:31:53 EST 2025
Sat Oct 11 16:50:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Privacy preservation
Distributed computing methodologies
Data science maturity
Fair federated learning
Fairness
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-370ee83ce4b94e2eea97e0d21579ece18322c287434a39a83d9becb7dee998b73
ORCID 0000-0003-0720-0569
0000-0002-3177-8793
0009-0001-7882-6158
0000-0001-5489-3404
OpenAccessLink https://dx.doi.org/10.1016/j.eswa.2025.128568
ParticipantIDs crossref_primary_10_1016_j_eswa_2025_128568
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_128568
PublicationCentury 2000
PublicationDate 2025-12-01
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kim, Oh, Kang, Lee (b0330) 2023
Rodríguez-Gálvez, B., Granqvist, F., van Dalen, R., & Seigel, M. (2021). Enforcing fairness in private federated learning via the modified method of differential multipliers.
McMahan, H. B., Moore, E., Ramage, D., & y Arcas, B. A. (2016). Federated learning of deep networks using model averaging.
Girgis, Data, Diggavi, Kairouz, Suresh (b0215) 2021
Shamir (b0660) 1979; 22
Zhou, Xu, Lee, Fang, Hui (b0885) 2022; 6
Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., & Talwar, K. (2016). Semi-supervised knowledge transfer for deep learning from private training data.
Welfare, M. o. H. a., & Commission, P. I. P. (2024). Healthcare data utilization guideline. 126. Retrieved from
Zhang, Kou, Wang (b0835) 2020
Roy, Chergui, Verikoukis (b0625) 2024
Alam, Liu, Yan, Zhang (b0020) 2022; 35
McMahan, H. B., Ramage, D., Talwar, K., & Zhang, L. (2017). Learning differentially private recurrent language models.
Zhang, Xu, Vijayakumar, Sharma, Ghosh (b0860) 2022; 10
Wen, Zhang, Lan, Cui, Cai, Zhang (b0740) 2023; 14
Li, Yan, Ren (b0370) 2023; 53
Yang, Feng, Fang, Shao, Tang, Xia, Lu (b0780) 2022
Zhao, Yang, Huang, Chen, Zhang (b0875) 2024
Chen, Huang, Ye (b0100) 2024
Zhang, Wang, Cao, Hou, Meng (b0865) 2021
Yu, Li, Sun, Nanda, Smith, Sekar, Seshan (b0825) 2020
Fan, Vercauteren (b0155) 2012
Feng, Rong, Sun, Guo, Li (b0175) 2020; 4
Kalapaaking, Stephanie, Khalil, Atiquzzaman, Yi, Almashor (b0315) 2022; 36
Liu, Hu, Xu, Shu, Nguyen (b0440) 2022; 70
Pan, Yang (b0570) 2009; 22
Abdul Salam, Fouad, Elbably, Elsayed (b0015) 2024; 36
Yaacoub, Noura, Salman (b0770) 2023; 3
Zhou, Xu, Wang, Kuang, Zhuang, Yu (b0895) 2022; 20
Abad, Ozfatura, Gunduz, Ercetin (b0005) 2020
Bai, J., Chen, D., Qian, B., Yao, L., & Li, Y. (2024). Federated fine-tuning of large language models under heterogeneous tasks and client resources.
Liu, Cao, Chen, Guo, Yoshikawa (b0435) 2021
.
Pentyala, S., Neophytou, N., Nascimento, A., De Cock, M., & Farnadi, G. (2022). Privfairfl: Privacy-preserving group fairness in federated learning.
Lyu, Xu, Wang, Yu (b0490) 2020
Yao, Tang, Fan (b0785) 2022
Gecer, Garbinato (b0200) 2024; 56
Girgis, Data, Diggavi, Kairouz, Suresh (b0220) 2021; 2
Kim, Woo, Lee (b0340) 2024; 13
Xu, Qu, Xiang, Gao (b0755) 2023; 50
Su, Yu, Wang, Li, Li, Yu (b0680) 2024
Ong, Baracaldo, Zhou (b0555) 2022
Chen, M., Mathews, R., Ouyang, T., & Beaufays, F. (2019). Federated learning of out-of-vocabulary words.
(pp. 1005-1009): IGI global.
Ullah, Hassan, Ali (b0710) 2023; 217
Aziz, Banerjee, Bouzefrane, Le Vinh (b0025) 2023; 15
Gao, Liu, Hu, Lei, Ma (b0195) 2020; 7
Paper presented at the 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).
Turgay, İlter (b0705) 2023; 4
Chen, Ning, Slawski, Rangwala (b0105) 2020
Setayesh, Li, Wong (b0655) 2023
Liao, Chen, Larsson (b0410) 2022
Li, Zhou, Wu, Tang, Wang (b0405) 2022; 9
Varshney, A. K., Garg, S., Ghosh, A., & Gupta, S. (2023). Fair Differentially Private Federated Learning Framework.
Ibrahim Khalaf, Algburi, Selvaraj, Sharif, Elmedany (b0270) 2024; 7
Jiang, Liu, Yang, Liu, Li, Guo (b0300) 2020; 183
Cheung, Nasir-Moin, Kwon, Guan, Liu, Jiang, Ahmad (b0110) 2023; 92
Shanmugarasa, Paik, Kanhere, Zhu (b0665) 2023; 56
Truex, Baracaldo, Anwar, Steinke, Ludwig, Zhang, Zhou (b0695) 2019
Hu, Li, Liu, Li, Wu, He (b0245) 2022; 13
Li, Sahu, Talwalkar, Smith (b0380) 2020; 37
Zhang, Shuai, Kuang, Wu, Zhuang, Xiao (b0840) 2024; 5
Baek, Kim, Nam, Park (b0030) 2021; 9
Chen, Zhu, Zhang, Zhou, Yu (b0080) 2023; 56
Ghosh, A., Hong, J., Yin, D., & Ramchandran, K. (2019). Robust federated learning in a heterogeneous environment.
Huang, Han, Li, Xie, Zhang (b0265) 2023; 226
Li, Hu, Beirami, Smith (b0375) 2021
Cho, Lee, Lee (b0115) 2012; 36
He, Ceyani, Balasubramanian, Annavaram, Avestimehr (b0235) 2022
Ducange, Marcelloni, Renda, Ruffini (b0135) 2024; 16
Ezzeldin, Yan, He, Ferrara, Avestimehr (b0150) 2023
Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2016). Federated learning: Strategies for improving communication efficiency.
Liu, Kargupta, Ryan (b0430) 2005; 18
Mohassel, Zhang (b0530) 2017
Khalid, Qayyum, Bilal, Al-Fuqaha, Qadir (b0320) 2023; 158
Han, Zhu, Zhou (b0225) 2024; 287
Chamikara, Bertok, Khalil, Liu, Camtepe (b0070) 2021; 171
Zhang, Zhang, Hu, Liu, Wang (b0845) 2024; 12
Fraboni, Vidal, Kameni, Lorenzi (b0180) 2021
Mansouri, Önen, Ben Jaballah (b0505) 2022
Liu, Kang, Zou, Pu, He, Ye, Yang (b0455) 2024
Lu, Ma, Wang, Deng, Wu (b0480) 2023; 9
Li, Sun, Zeng, Zhang, Li, Chen (b0360) 2021
Ramaswamy, S., Mathews, R., Rao, K., & Beaufays, F. (2019). Federated learning for emoji prediction in a mobile keyboard.
Xu, Li, Liu, Yang, Lin (b0760) 2019; 15
Kim, Lee, Lee, Woo (b0335) 2025
Mondal, More, Rooparaghunath, Gupta (b0535) 2021
Mendieta, Yang, Wang, Lee, Ding, Chen (b0525) 2022
Gao, D., Ju, C., Wei, X., Liu, Y., Chen, T., & Yang, Q. (2019). Hhhfl: Hierarchical heterogeneous horizontal federated learning for electroencephalography.
Li, Zhou, Jolfaei, Yu, Xu, Zheng (b0400) 2020; 8
Jiang, Z., Wang, W., & Liu, Y. (2021). Flashe: Additively symmetric homomorphic encryption for cross-silo federated learning.
Page, McKenzie, Bossuyt, Boutron, Hoffmann, Mulrow, Brennan (b0560) 2021; 372
Tenison, I., Sreeramadas, S. A., Mugunthan, V., Oyallon, E., Rish, I., & Belilovsky, E. (2022). Gradient masked averaging for federated learning.
Zhang, Chen, Yu, Deng (b0850) 2019
López-Alt, Tromer, Vaikuntanathan (b0475) 2012
Sun, Mendieta, Dutta, Li, Chen (b0685) 2024
Liu, Ma, Yan, Wang, Liu, Ma (b0460) 2020; 521
Savazzi, Nicoli, Bennis, Kianoush, Barbieri (b0645) 2021; 59
Balija, S. B. (2025). FedMM-X: A Trustworthy and Interpretable Framework for Federated Multi-Modal Learning in Dynamic Environments.
Li, Ge, Tian (b0365) 2024; 57
Long, Xie, Shen, Zhou, Wang, Jiang (b0470) 2023; 26
Yu, S., Muñoz, J. P., & Jannesari, A. (2023). Federated foundation models: Privacy-preserving and collaborative learning for large models.
Cellamare, van Gestel, Alradhi, Martin, Moncada-Torres (b0065) 2022; 15
Khalil, Khan Mamun, Sherif, Elsersy, Imam, Mahmoud, Alsabaan (b0325) 2023; 23
He, Yan, Wu, Wang, Lécuyer, Beschastnikh (b0240) 2023; 5
Lin, Gao, Gong, Zhang, Zhang, Li (b0420) 2023; 20
Zhang, Zeng, Luo, Xu, King (b0870) 2023
Jang, H., Choi, Y., Ko, S., Yoo, S., Lee, H., & Seo, Y. (2016). Personal Information De-identification Measures Guidelines. 5. Retrieved from
Wu, N., Kuang, Z., Yan, Z., & Yu, L. (2024). From Optimization to Generalization: Fair Federated Learning against Quality Shift via Inter-Client Sharpness Matching.
Kairouz, McMahan, Avent, Bellet, Bennis, Bhagoji, Cummings (b0310) 2021; 14
Abay, A., Zhou, Y., Baracaldo, N., Rajamoni, S., Chuba, E., & Ludwig, H. (2020). Mitigating bias in federated learning.
Commission, P. I. P. (2024). Pseudonymization information processing guidelines. 241. Retrieved from
Fan, Y., Xu, W., Wang, H., Zhu, J., & Guo, S. (2023). Balanced Multi-modal Federated Learning via Cross-Modal Infiltration.
Hao, El-Khamy, Lee, Zhang, Liang, Chen, Duke (b0230) 2021
Yu, H., Liu, Z., Liu, Y., Chen, T., Cong, M., Weng, X., ... Yang, Q. (2020).
Li, T., Sanjabi, M., Beirami, A., & Smith, V. (2019). Fair resource allocation in federated learning.
Volgushev, Schwarzkopf, Getchell, Varia, Lapets, Bestavros (b0725) 2019
Huang, Ye, Shi, Wan, Li, Du, Yang (b0260) 2024
Yang, L., Chai, D., Zhang, J., Jin, Y., Wang, L., Liu, H., . . . Chen, K. (2023). A survey on vertical federated learning: From a layered perspective.
Yin, Q., Huang, J., Yao, H., & Zhang, L. (2024). Distribution-Free Fair Federated Learning with Small Samples.
Bey, Goussault, Grolleau, Benchoufi, Porcher (b0045) 2020; 27
Zhu, Shi, Fan, Peng, Letaief (b0905) 2024
Li, Gu, Dvornek, Staib, Ventola, Duncan (b0390) 2020; 65
Zhu, Zhang, Jin (b0900) 2021; 7
Liu, Kang, Xing, Chen, Yang (b0450) 2020; 35
Ji, Jiang, Walid, Li (b0290) 2021; 37
Xu, Baracaldo, Zhou, Anwar, Ludwig (b0765) 2019
Issa, Moustafa, Turnbull, Choo (b0280) 2024
Rafi, Noor, Hussain, Chae (b0605) 2024; 105
Shi, Yu, Leung (b0670) 2023
Morell, Alba (b0540) 2022; 133
Yi, Shi, Wang, Zhang, Wang, Liu (b0805) 2024
Iqbal, Chan (b0275) 2021; 34
Lindell, Y. (2005). Secure multiparty computation for privacy preserving data mining. In
Papadaki, A., Martinez, N., Bertran, M., Sapiro, G., & Rodrigues, M. (2021). Federating for learning group fair models.
Sprague, Jalalirad, Scavuzzo, Capota, Neun, Do, Kopp (b0675) 2018
Pan, Li, Yu, Wang, Wang, Tang, Zhao (b0575) 2024
Rodríguez-Barroso, Jiménez-López, Luzón, Herrera, Martínez-Cámara (b0615) 2023; 90
Chen, Chen, Zeng, Weng (b0085) 2021; 70
Liu, Guo, Chen, Chang, Wang, He, Huang (b0445) 2023; 14
Nguyen, Ding, Pathirana, Seneviratne, Li, Niyato, Poor (b0545) 2021; 28
Ye, Ge, Zhu, Chai, Yaxin, Liu, Chen (b0795) 2024; 37
(2).
Saha, Ahmad (b0630) 2021; 15
Bonawitz, Ivanov, Kreuter, Marcedone, McMahan, Patel, Seth (b0055) 2017
Salazar, Fernandes, Araújo, Abreu (b0635) 2023
Fan, Xu, Wang, Huo, Chen, Guo (b0160) 2024
Yazdinejad, Dehghantanha, Srivastava, Karimipour, Parizi (b0790) 2024; 148
Deng, Wu, Zhang, Tang, Du, Kang, Niyato (b0125) 2024
Chamikara, Bertók, Liu, Camtepe, Khalil (b0075) 2018; 48
Leroy, Coucke, Lavril, Gisselbrecht, Dureau (b0355) 2019
Sébert, Checri, Stan, Sirdey, Gouy-Pailler (b0650) 2023
Huang, Ye, Du (b0255) 2022
Lim, Luong, Hoang, Jiao, Liang, Yang, Miao (b0415) 2020; 22
Wang, Han, Wang, Zhao, Chen, Chen (b0730) 2019; 33
ur Rehman, M. H., Dirir, A. M., Salah, K., & Svetinovic, D. (2020).
Dilley, O., Parra-Ullauri, J. M., Hussain, R., & Simeonidou, D. (2024). Federated Fairness Analytics: Quantifying Fairness in Federated Learning.
Farahani, Monsefi (b0170) 2023; 9
Li, Zhao, Chen, Zheng (b0395) 2023; 619
Nguyen, Malik, Zhan, Yousefpour, Rabbat, Malek, Huba (b0550) 2022
Pang, Wang (b0580) 2005; 167
Dwork (b0140) 2006
Borazjani, Khosravan, Ying, Hosseinalipour (b0060) 2024
Jiang, F., Dong, L., Tu, S., Peng, Y., Wang, K., Yang, K., . . . Niyato, D. (2024). Personalized wireless federated learning for large language models.
Kim, Oh, Lee (b0345) 2024; 28
Sánchez, Celdrán, Xie, Bovet, Pérez, Stiller (b0640) 2024; 152
Dwork (b0145) 2008
Wu, Li, He (b0750) 2022
Paper p
Su (10.1016/j.eswa.2025.128568_b0680) 2024
Mondal (10.1016/j.eswa.2025.128568_b0535) 2021
10.1016/j.eswa.2025.128568_b0035
Mohassel (10.1016/j.eswa.2025.128568_b0530) 2017
10.1016/j.eswa.2025.128568_b0830
Zhang (10.1016/j.eswa.2025.128568_b0840) 2024; 5
Xu (10.1016/j.eswa.2025.128568_b0760) 2019; 15
Abad (10.1016/j.eswa.2025.128568_b0005) 2020
Girgis (10.1016/j.eswa.2025.128568_b0220) 2021; 2
Liu (10.1016/j.eswa.2025.128568_b0430) 2005; 18
Li (10.1016/j.eswa.2025.128568_b0370) 2023; 53
10.1016/j.eswa.2025.128568_b0425
10.1016/j.eswa.2025.128568_b0820
Dwork (10.1016/j.eswa.2025.128568_b0140) 2006
10.1016/j.eswa.2025.128568_b0305
Huang (10.1016/j.eswa.2025.128568_b0255) 2022
Leroy (10.1016/j.eswa.2025.128568_b0355) 2019
Li (10.1016/j.eswa.2025.128568_b0365) 2024; 57
10.1016/j.eswa.2025.128568_b0285
10.1016/j.eswa.2025.128568_b0165
Kim (10.1016/j.eswa.2025.128568_b0330) 2023
10.1016/j.eswa.2025.128568_b0720
Chen (10.1016/j.eswa.2025.128568_b0080) 2023; 56
Khalil (10.1016/j.eswa.2025.128568_b0325) 2023; 23
10.1016/j.eswa.2025.128568_b0040
Han (10.1016/j.eswa.2025.128568_b0225) 2024; 287
Yazdinejad (10.1016/j.eswa.2025.128568_b0790) 2024; 148
Liao (10.1016/j.eswa.2025.128568_b0410) 2022
Xu (10.1016/j.eswa.2025.128568_b0765) 2019
Li (10.1016/j.eswa.2025.128568_b0360) 2021
Ibrahim Khalaf (10.1016/j.eswa.2025.128568_b0270) 2024; 7
Mansouri (10.1016/j.eswa.2025.128568_b0505) 2022
Yang (10.1016/j.eswa.2025.128568_b0780) 2022
Deng (10.1016/j.eswa.2025.128568_b0125) 2024
Li (10.1016/j.eswa.2025.128568_b0375) 2021
Cellamare (10.1016/j.eswa.2025.128568_b0065) 2022; 15
Li (10.1016/j.eswa.2025.128568_b0395) 2023; 619
Lyu (10.1016/j.eswa.2025.128568_b0490) 2020
Liu (10.1016/j.eswa.2025.128568_b0435) 2021
10.1016/j.eswa.2025.128568_b0715
Mendieta (10.1016/j.eswa.2025.128568_b0525) 2022
Salazar (10.1016/j.eswa.2025.128568_b0635) 2023
Liu (10.1016/j.eswa.2025.128568_b0455) 2024
10.1016/j.eswa.2025.128568_b0010
Pang (10.1016/j.eswa.2025.128568_b0580) 2005; 167
10.1016/j.eswa.2025.128568_b0130
Jiang (10.1016/j.eswa.2025.128568_b0300) 2020; 183
Yao (10.1016/j.eswa.2025.128568_b0785) 2022
Shanmugarasa (10.1016/j.eswa.2025.128568_b0665) 2023; 56
Zhao (10.1016/j.eswa.2025.128568_b0875) 2024
Bey (10.1016/j.eswa.2025.128568_b0045) 2020; 27
10.1016/j.eswa.2025.128568_b0775
Huang (10.1016/j.eswa.2025.128568_b0265) 2023; 226
Zhang (10.1016/j.eswa.2025.128568_b0865) 2021
Xu (10.1016/j.eswa.2025.128568_b0755) 2023; 50
Aziz (10.1016/j.eswa.2025.128568_b0025) 2023; 15
Truex (10.1016/j.eswa.2025.128568_b0695) 2019
10.1016/j.eswa.2025.128568_b0095
Ong (10.1016/j.eswa.2025.128568_b0555) 2022
Kairouz (10.1016/j.eswa.2025.128568_b0310) 2021; 14
Zhang (10.1016/j.eswa.2025.128568_b0845) 2024; 12
Kim (10.1016/j.eswa.2025.128568_b0340) 2024; 13
Page (10.1016/j.eswa.2025.128568_b0560) 2021; 372
Saha (10.1016/j.eswa.2025.128568_b0630) 2021; 15
Issa (10.1016/j.eswa.2025.128568_b0280) 2024
Ullah (10.1016/j.eswa.2025.128568_b0710) 2023; 217
Baek (10.1016/j.eswa.2025.128568_b0030) 2021; 9
He (10.1016/j.eswa.2025.128568_b0235) 2022
Chamikara (10.1016/j.eswa.2025.128568_b0075) 2018; 48
Huang (10.1016/j.eswa.2025.128568_b0260) 2024
Girgis (10.1016/j.eswa.2025.128568_b0215) 2021
Chen (10.1016/j.eswa.2025.128568_b0100) 2024
10.1016/j.eswa.2025.128568_b0385
Hao (10.1016/j.eswa.2025.128568_b0230) 2021
Zhu (10.1016/j.eswa.2025.128568_b0905) 2024
Liu (10.1016/j.eswa.2025.128568_b0450) 2020; 35
Zhou (10.1016/j.eswa.2025.128568_b0890) 2024
Bonawitz (10.1016/j.eswa.2025.128568_b0055) 2017
Ye (10.1016/j.eswa.2025.128568_b0800) 2020; 8
Kim (10.1016/j.eswa.2025.128568_b0335) 2025
Shi (10.1016/j.eswa.2025.128568_b0670) 2023
Lu (10.1016/j.eswa.2025.128568_b0480) 2023; 9
Li (10.1016/j.eswa.2025.128568_b0390) 2020; 65
Pan (10.1016/j.eswa.2025.128568_b0575) 2024
Ji (10.1016/j.eswa.2025.128568_b0290) 2021; 37
Chen (10.1016/j.eswa.2025.128568_b0085) 2021; 70
10.1016/j.eswa.2025.128568_b0810
Ma (10.1016/j.eswa.2025.128568_b0495) 2022; 37
Yaacoub (10.1016/j.eswa.2025.128568_b0770) 2023; 3
He (10.1016/j.eswa.2025.128568_b0240) 2023; 5
Setayesh (10.1016/j.eswa.2025.128568_b0655) 2023
Zhu (10.1016/j.eswa.2025.128568_b0900) 2021; 7
10.1016/j.eswa.2025.128568_b0815
Li (10.1016/j.eswa.2025.128568_b0405) 2022; 9
10.1016/j.eswa.2025.128568_b0350
Zhang (10.1016/j.eswa.2025.128568_b0870) 2023
10.1016/j.eswa.2025.128568_b0595
Gao (10.1016/j.eswa.2025.128568_b0195) 2020; 7
Roy (10.1016/j.eswa.2025.128568_b0625) 2024
Khalid (10.1016/j.eswa.2025.128568_b0320) 2023; 158
Zhao (10.1016/j.eswa.2025.128568_b0880) 2022
Rafi (10.1016/j.eswa.2025.128568_b0605) 2024; 105
Truong (10.1016/j.eswa.2025.128568_b0700) 2021; 110
10.1016/j.eswa.2025.128568_b0590
Gecer (10.1016/j.eswa.2025.128568_b0200) 2024; 56
Fraboni (10.1016/j.eswa.2025.128568_b0180) 2021
Paillier (10.1016/j.eswa.2025.128568_b0565) 1999
Lim (10.1016/j.eswa.2025.128568_b0415) 2020; 22
Liu (10.1016/j.eswa.2025.128568_b0460) 2020; 521
Borazjani (10.1016/j.eswa.2025.128568_b0060) 2024
Li (10.1016/j.eswa.2025.128568_b0400) 2020; 8
10.1016/j.eswa.2025.128568_b0745
McMahan (10.1016/j.eswa.2025.128568_b0510) 2017
Zhang (10.1016/j.eswa.2025.128568_b0860) 2022; 10
Gao (10.1016/j.eswa.2025.128568_b0190) 2019
Nguyen (10.1016/j.eswa.2025.128568_b0550) 2022
Chen (10.1016/j.eswa.2025.128568_b0105) 2020
10.1016/j.eswa.2025.128568_b0120
Ye (10.1016/j.eswa.2025.128568_b0795) 2024; 37
Chamikara (10.1016/j.eswa.2025.128568_b0070) 2021; 171
Nguyen (10.1016/j.eswa.2025.128568_b0545) 2021; 28
10.1016/j.eswa.2025.128568_b0520
Fan (10.1016/j.eswa.2025.128568_b0155) 2012
Sprague (10.1016/j.eswa.2025.128568_b0675) 2018
Ezzeldin (10.1016/j.eswa.2025.128568_b0150) 2023
López-Alt (10.1016/j.eswa.2025.128568_b0475) 2012
Chen (10.1016/j.eswa.2025.128568_b0090) 2008
Wen (10.1016/j.eswa.2025.128568_b0740) 2023; 14
Zhang (10.1016/j.eswa.2025.128568_b0835) 2020
Zhou (10.1016/j.eswa.2025.128568_b0895) 2022; 20
Abdul Salam (10.1016/j.eswa.2025.128568_b0015) 2024; 36
Long (10.1016/j.eswa.2025.128568_b0470) 2023; 26
Sánchez (10.1016/j.eswa.2025.128568_b0640) 2024; 152
Wu (10.1016/j.eswa.2025.128568_b0750) 2022
10.1016/j.eswa.2025.128568_b0515
Pan (10.1016/j.eswa.2025.128568_b0570) 2009; 22
Rodríguez-Barroso (10.1016/j.eswa.2025.128568_b0615) 2023; 90
Wang (10.1016/j.eswa.2025.128568_b0730) 2019; 33
10.1016/j.eswa.2025.128568_b0295
Dwork (10.1016/j.eswa.2025.128568_b0145) 2008
10.1016/j.eswa.2025.128568_b0210
Hu (10.1016/j.eswa.2025.128568_b0245) 2022; 13
10.1016/j.eswa.2025.128568_b0610
Iqbal (10.1016/j.eswa.2025.128568_b0275) 2021; 34
Lu (10.1016/j.eswa.2025.128568_b0485) 2023
Shamir (10.1016/j.eswa.2025.128568_b0660) 1979; 22
Fan (10.1016/j.eswa.2025.128568_b0160) 2024
10.1016/j.eswa.2025.128568_b0050
Zhang (10.1016/j.eswa.2025.128568_b0855) 2023
Cho (10.1016/j.eswa.2025.128568_b0115) 2012; 36
Liu (10.1016/j.eswa.2025.128568_b0440) 2022; 70
10.1016/j.eswa.2025.128568_b0690
Sébert (10.1016/j.eswa.2025.128568_b0650) 2023
Liu (10.1016/j.eswa.2025.128568_b0445) 2023; 14
Kalapaaking (10.1016/j.eswa.2025.128568_b0315) 2022; 36
Sun (10.1016/j.eswa.2025.128568_b0685) 2024
10.1016/j.eswa.2025.128568_b0205
Huang (10.1016/j.eswa.2025.128568_b0250) 2024
Turgay (10.1016/j.eswa.2025.128568_b0705) 2023; 4
Morell (10.1016/j.eswa.2025.128568_b0540) 2022; 133
Alam (10.1016/j.eswa.2025.128568_b0020) 2022; 35
Qi (10.1016/j.eswa.2025.128568_b0600) 2022; 35
10.1016/j.eswa.2025.128568_b0185
Yi (10.1016/j.eswa.2025.128568_b0805) 2024
Kim (10.1016/j.eswa.2025.128568_b0345) 2024; 28
10.1016/j.eswa.2025.128568_b0465
Yu (10.1016/j.eswa.2025.128568_b0825) 2020
Li (10.1016/j.eswa.2025.128568_b0380) 2020; 37
10.1016/j.eswa.2025.128568_b0585
Lin (10.1016/j.eswa.2025.128568_b0420) 2023; 20
10.1016/j.eswa.2025.128568_b0620
Cheung (10.1016/j.eswa.2025.128568_b0110) 2023; 92
Zhang (10.1016/j.eswa.2025.128568_b0850) 2019
Savazzi (10.1016/j.eswa.2025.128568_b0645) 2021; 59
Ducange (10.1016/j.eswa.2025.128568_b0135) 2024; 16
Feng (10.1016/j.eswa.2025.128568_b0175) 2020; 4
Zhou (10.1016/j.eswa.2025.128568_b0885) 2022; 6
10.1016/j.eswa.2025.128568_b0735
Volgushev (10.1016/j.eswa.2025.128568_b0725) 2019
Farahani (10.1016/j.eswa.2025.128568_b0170) 2023; 9
References_xml – year: 2019
  ident: b0190
  publication-title: Paper presented at the 2019 IEEE international conference on big data (Big Data)
– volume: 37
  start-page: 27
  year: 2021
  end-page: 34
  ident: b0290
  article-title: Dynamic sampling and selective masking for communication-efficient federated learning
  publication-title: IEEE Intelligent Systems
– volume: 9
  start-page: 436
  year: 2023
  end-page: 447
  ident: b0170
  article-title: Smart and collaborative industrial IoT: A federated learning and data space approach
  publication-title: Digital Communications and Networks
– reference: McMahan, H. B., Ramage, D., Talwar, K., & Zhang, L. (2017). Learning differentially private recurrent language models.
– reference: Geyer, R. C., Klein, T., & Nabi, M. (2017). Differentially private federated learning: A client level perspective.
– reference: Jang, H., Choi, Y., Ko, S., Yoo, S., Lee, H., & Seo, Y. (2016). Personal Information De-identification Measures Guidelines. 5. Retrieved from
– reference: Yin, Q., Huang, J., Yao, H., & Zhang, L. (2024). Distribution-Free Fair Federated Learning with Small Samples.
– volume: 13
  start-page: 4664
  year: 2024
  ident: b0340
  article-title: Addressing Bias and Fairness using Fair Federated Learning: A Synthetic Review
  publication-title: Electronics
– reference: McMahan, H. B., Moore, E., Ramage, D., & y Arcas, B. A. (2016). Federated learning of deep networks using model averaging.
– year: 2023
  ident: b0870
  publication-title: Paper presented at the Companion Proceedings of the ACM Web Conference 2023
– volume: 152
  start-page: 83
  year: 2024
  end-page: 98
  ident: b0640
  article-title: Federatedtrust: A solution for trustworthy federated learning
  publication-title: Future Generation Computer Systems
– year: 2024
  ident: b0905
  article-title: ISFL: Federated learning for non-iid data with local importance sampling
  publication-title: IEEE Internet of Things Journal
– volume: 3
  start-page: 155
  year: 2023
  end-page: 179
  ident: b0770
  article-title: Security of federated learning with IoT systems: Issues, limitations, challenges, and solutions
  publication-title: Internet of Things and Cyber-Physical Systems
– volume: 12
  start-page: 1601
  year: 2024
  ident: b0845
  article-title: FedUB: Federated learning algorithm based on update bias
  publication-title: Mathematics
– reference: Gao, D., Ju, C., Wei, X., Liu, Y., Chen, T., & Yang, Q. (2019). Hhhfl: Hierarchical heterogeneous horizontal federated learning for electroencephalography.
– volume: 18
  start-page: 92
  year: 2005
  end-page: 106
  ident: b0430
  article-title: Random projection-based multiplicative data perturbation for privacy preserving distributed data mining
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 48
  start-page: 1
  year: 2018
  end-page: 19
  ident: b0075
  article-title: Efficient data perturbation for privacy preserving and accurate data stream mining
  publication-title: Pervasive and Mobile Computing
– volume: 372
  year: 2021
  ident: b0560
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: BMJ
– year: 2019
  ident: b0725
  publication-title: Paper presented at the Proceedings of the Fourteenth EuroSys Conference 2019
– year: 2020
  ident: b0835
  publication-title: Paper presented at the 2020 IEEE International Conference on Big Data (Big Data)
– year: 2021
  ident: b0535
  publication-title: Paper presented at the 2021 IEEE European Symposium on Security and Privacy (EuroS&P)
– volume: 14
  start-page: 513
  year: 2023
  end-page: 535
  ident: b0740
  article-title: A survey on federated learning: Challenges and applications
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 56
  start-page: 1
  year: 2023
  end-page: 37
  ident: b0080
  article-title: Privacy and fairness in Federated learning: On the perspective of Tradeoff
  publication-title: ACM Computing Surveys
– year: 2022
  ident: b0235
  publication-title: Paper presented at the Proceedings of the AAAI conference on artificial intelligence
– year: 2024
  ident: b0260
  article-title: Federated learning for generalization, robustness, fairness: A survey and benchmark
– volume: 20
  start-page: 539
  year: 2023
  end-page: 553
  ident: b0420
  article-title: Federated learning on multimodal data: A comprehensive survey
  publication-title: Machine Intelligence Research
– year: 2008
  ident: b0145
  publication-title: Paper presented at the International conference on theory and applications of models of computation
– reference: Dilley, O., Parra-Ullauri, J. M., Hussain, R., & Simeonidou, D. (2024). Federated Fairness Analytics: Quantifying Fairness in Federated Learning.
– year: 2022
  ident: b0410
  publication-title: Paper presented at the 2022 58th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
– year: 2019
  ident: b0765
  publication-title: Paper presented at the Proceedings of the 12th ACM workshop on artificial intelligence and security
– year: 2024
  ident: b0890
  article-title: Personalized federation learning with model-contrastive learning for multi-modal user modeling in human-centric metaverse
  publication-title: IEEE Journal on Selected Areas in Communications
– volume: 110
  year: 2021
  ident: b0700
  article-title: Privacy preservation in federated learning: An insightful survey from the GDPR perspective
  publication-title: Computers & Security
– volume: 4
  start-page: 31
  year: 2023
  end-page: 41
  ident: b0705
  article-title: Perturbation methods for protecting data privacy: A review of techniques and applications
  publication-title: Automation and Machine Learning
– volume: 8
  start-page: 6178
  year: 2020
  end-page: 6186
  ident: b0400
  article-title: Privacy-preserving federated learning framework based on chained secure multiparty computing
  publication-title: IEEE Internet of Things Journal
– start-page: 27
  year: 2022
  end-page: 52
  ident: b0555
  article-title: Tree-based models for federated learning systems
– reference: Paper presented at the Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society.
– reference: Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2016). Federated learning: Strategies for improving communication efficiency.
– reference: Pentyala, S., Neophytou, N., Nascimento, A., De Cock, M., & Farnadi, G. (2022). Privfairfl: Privacy-preserving group fairness in federated learning.
– volume: 90
  start-page: 148
  year: 2023
  end-page: 173
  ident: b0615
  article-title: Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges
  publication-title: Information Fusion
– volume: 65
  year: 2020
  ident: b0390
  article-title: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results
  publication-title: Medical Image Analysis
– start-page: 189
  year: 2020
  end-page: 204
  ident: b0490
  article-title: Collaborative fairness in federated learning
  publication-title: Federated Learning: Privacy and Incentive
– year: 2024
  ident: b0625
  article-title: Explanation-Guided Fair Federated Learning for Transparent 6G RAN Slicing
  publication-title: IEEE Transactions on Cognitive Communications and Networking
– reference: Chen, M., Mathews, R., Ouyang, T., & Beaufays, F. (2019). Federated learning of out-of-vocabulary words.
– volume: 36
  start-page: 6231
  year: 2024
  end-page: 6256
  ident: b0015
  article-title: Federated learning model for credit card fraud detection with data balancing techniques
  publication-title: Neural Computing and Applications
– year: 2024
  ident: b0280
  article-title: RVE-PFL: Robust Variational Encoder-based Personalised Federated Learning against Model Inversion attacks
– year: 2024
  ident: b0575
  publication-title: Paper presented at the Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 287
  year: 2024
  ident: b0225
  article-title: Fair federated learning with opposite GAN
  publication-title: Knowledge-Based Systems
– reference: Welfare, M. o. H. a., & Commission, P. I. P. (2024). Healthcare data utilization guideline. 126. Retrieved from
– year: 2019
  ident: b0850
  publication-title: Paper presented at the 2019 IEEE Global Communications Conference (GLOBECOM)
– reference: Rodríguez-Gálvez, B., Granqvist, F., van Dalen, R., & Seigel, M. (2021). Enforcing fairness in private federated learning via the modified method of differential multipliers.
– volume: 15
  start-page: 35
  year: 2021
  end-page: 44
  ident: b0630
  article-title: Federated transfer learning: Concept and applications
  publication-title: Intelligenza Artificiale
– year: 2022
  ident: b0505
  publication-title: Paper presented at the Proceedings of the 38th Annual Computer Security Applications Conference
– year: 2021
  ident: b0360
  publication-title: Paper presented at the Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems
– volume: 15
  start-page: 911
  year: 2019
  end-page: 926
  ident: b0760
  article-title: VerifyNet: Secure and verifiable federated learning
  publication-title: IEEE Transactions on Information Forensics and Security
– volume: 37
  start-page: 111106
  year: 2024
  end-page: 111130
  ident: b0795
  article-title: Fedllm-bench: Realistic benchmarks for federated learning of large language models
  publication-title: Advances in Neural Information Processing Systems
– year: 2024
  ident: b0250
  article-title: Multimodal federated learning: Concept, methods, applications and future directions
  publication-title: Information Fusion
– volume: 53
  start-page: 12399
  year: 2023
  end-page: 12415
  ident: b0370
  article-title: VFL-R: A novel framework for multi-party in vertical federated learning
  publication-title: Applied Intelligence
– volume: 26
  start-page: 481
  year: 2023
  end-page: 500
  ident: b0470
  article-title: Multi-center federated learning: Clients clustering for better personalization
  publication-title: World Wide Web
– year: 2020
  ident: b0005
  publication-title: Paper presented at the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– year: 2012
  ident: b0155
  article-title: Somewhat practical fully homomorphic encryption
  publication-title: Cryptology ePrint Archive.
– volume: 8
  start-page: 209191
  year: 2020
  end-page: 209198
  ident: b0800
  article-title: EdgeFed: Optimized federated learning based on edge computing
  publication-title: IEEE Access
– year: 2020
  ident: b0105
  publication-title: Paper presented at the 2020 IEEE International Conference on Big Data (Big Data)
– year: 2021
  ident: b0435
  publication-title: Paper presented at the Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2012
  ident: b0475
  publication-title: Paper presented at the Proceedings of the forty-fourth annual ACM symposium on Theory of computing
– reference: (pp. 1005-1009): IGI global.
– year: 2022
  ident: b0785
  publication-title: Paper presented at the 2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE)
– volume: 92
  start-page: 431
  year: 2023
  end-page: 438
  ident: b0110
  article-title: Methods and impact for using federated learning to collaborate on clinical research
  publication-title: Neurosurgery
– year: 2024
  ident: b0805
  article-title: Fedpe: Adaptive model pruning-expanding for federated learning on mobile devices
  publication-title: IEEE Transactions on Mobile Computing
– year: 2021
  ident: b0375
  publication-title: Paper presented at the International conference on machine learning
– volume: 133
  start-page: 53
  year: 2022
  end-page: 67
  ident: b0540
  article-title: Dynamic and adaptive fault-tolerant asynchronous federated learning using volunteer edge devices
  publication-title: Future Generation Computer Systems
– start-page: 23).
  year: 2023
  ident: b0855
  publication-title: Paper presented at the 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI
– year: 2022
  ident: b0550
  publication-title: Paper presented at the International Conference on Artificial Intelligence and Statistics
– volume: 105
  year: 2024
  ident: b0605
  article-title: Fairness and privacy preserving in federated learning: A survey
  publication-title: Information Fusion
– year: 2022
  ident: b0750
  article-title: Practical vertical federated learning with unsupervised representation learning
  publication-title: IEEE Transactions on Big Data
– volume: 35
  start-page: 70
  year: 2020
  end-page: 82
  ident: b0450
  article-title: A secure federated transfer learning framework
  publication-title: IEEE Intelligent Systems
– reference: Wu, N., Kuang, Z., Yan, Z., & Yu, L. (2024). From Optimization to Generalization: Fair Federated Learning against Quality Shift via Inter-Client Sharpness Matching.
– reference: Zhai, Y., Zhou, P., He, Y., Qu, F., Qin, Z., Jiao, X., . . . Guo, S. (2024). FedRAV: Hierarchically Federated Region-Learning for Traffic Object Classification of Autonomous Vehicles.
– reference: Tenison, I., Sreeramadas, S. A., Mugunthan, V., Oyallon, E., Rish, I., & Belilovsky, E. (2022). Gradient masked averaging for federated learning.
– year: 2021
  ident: b0180
  publication-title: Paper presented at the International Conference on Machine Learning
– year: 2022
  ident: b0525
  publication-title: Paper presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 50
  year: 2023
  ident: b0755
  article-title: Asynchronous federated learning on heterogeneous devices: A survey
  publication-title: Computer Science Review
– volume: 7
  start-page: e374
  year: 2024
  ident: b0270
  article-title: Federated learning with hybrid differential privacy for secure and reliable cross‐IoT platform knowledge sharing
  publication-title: Security and Privacy
– volume: 36
  start-page: 182
  year: 2022
  end-page: 189
  ident: b0315
  article-title: Smpc-based federated learning for 6g-enabled internet of medical things
  publication-title: IEEE Network
– volume: 22
  start-page: 2031
  year: 2020
  end-page: 2063
  ident: b0415
  article-title: Federated learning in mobile edge networks: A comprehensive survey
  publication-title: IEEE Communications Surveys & Tutorials
– year: 2021
  ident: b0865
  publication-title: Paper presented at the Proceedings of the 18th ACM international conference on computing frontiers
– volume: 7
  start-page: 639
  year: 2021
  end-page: 657
  ident: b0900
  article-title: From federated learning to federated neural architecture search: A survey
  publication-title: Complex & Intelligent Systems
– volume: 37
  start-page: 5880
  year: 2022
  end-page: 5901
  ident: b0495
  article-title: Privacy‐preserving federated learning based on multi‐key homomorphic encryption
  publication-title: International Journal of Intelligence Systems
– volume: 33
  start-page: 156
  year: 2019
  end-page: 165
  ident: b0730
  article-title: In-edge ai: Intelligentizing mobile edge computing, caching and communication by federated learning
  publication-title: IEEE Network
– volume: 22
  start-page: 1345
  year: 2009
  end-page: 1359
  ident: b0570
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2022
  ident: b0780
  publication-title: Paper presented at the Proceedings of the ACM Web Conference 2022
– reference: Ghosh, A., Hong, J., Yin, D., & Ramchandran, K. (2019). Robust federated learning in a heterogeneous environment.
– volume: 619
  start-page: 968
  year: 2023
  end-page: 986
  ident: b0395
  article-title: Heterogeneity-aware fair federated learning
  publication-title: Information Scientist
– volume: 521
  start-page: 14
  year: 2020
  end-page: 31
  ident: b0460
  article-title: Privacy-preserving federated k-means for proactive caching in next generation cellular networks
  publication-title: Information Scientist
– year: 2024
  ident: b0100
  publication-title: Paper presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 2
  start-page: 464
  year: 2021
  end-page: 478
  ident: b0220
  article-title: Shuffled model of federated learning: Privacy, accuracy and communication trade-offs
  publication-title: IEEE journal on selected areas in information theory
– volume: 183
  year: 2020
  ident: b0300
  article-title: Customized federated learning for accelerated edge computing with heterogeneous task targets
  publication-title: Computer Networks
– year: 2019
  ident: b0355
  publication-title: Paper presented at the ICASSP 2019-2019 IEEE international conference on acoustics, speech and signal processing (ICASSP)
– volume: 9
  start-page: 2081
  year: 2023
  end-page: 2099
  ident: b0480
  article-title: Federated learning based on stratified sampling and regularization
  publication-title: Complex & Intelligent Systems
– reference: Yu, S., Muñoz, J. P., & Jannesari, A. (2023). Federated foundation models: Privacy-preserving and collaborative learning for large models.
– year: 2025
  ident: b0335
  article-title: ACMFed: Fair semi-supervised federated learning with additional compromise model
  publication-title: IEEE Access
– reference: Liu, Y., Wang, Z., Zhu, Y., & Chen, C. (2024). DPBalance: Efficient and Fair Privacy Budget Scheduling for Federated Learning as a Service.
– year: 2018
  ident: b0675
  publication-title: Paper presented at the Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– year: 2023
  ident: b0650
  publication-title: Paper presented at the 2023 20th Annual International Conference on Privacy, Security and Trust (PST)
– start-page: 157
  year: 2008
  end-page: 181
  ident: b0090
  article-title: A survey of multiplicative perturbation for privacy-preserving data mining
  publication-title: Privacy-Preserving Data Mining: Models and Algorithms
– reference: Jiang, Z., Wang, W., & Liu, Y. (2021). Flashe: Additively symmetric homomorphic encryption for cross-silo federated learning.
– volume: 10
  start-page: 2864
  year: 2022
  end-page: 2880
  ident: b0860
  article-title: Homomorphic encryption-based privacy-preserving federated learning in IoT-enabled healthcare system
  publication-title: IEEE Transactions on Network Science and Engineering
– year: 2021
  ident: b0215
  publication-title: Paper presented at the International Conference on Artificial Intelligence and Statistics
– reference: Papadaki, A., Martinez, N., Bertran, M., Sapiro, G., & Rodrigues, M. (2021). Federating for learning group fair models.
– volume: 171
  start-page: 112
  year: 2021
  end-page: 125
  ident: b0070
  article-title: Privacy preserving distributed machine learning with federated learning
  publication-title: Computer Communications
– year: 2006
  ident: b0140
  publication-title: Paper presented at the International colloquium on automata, languages, and programming
– volume: 34
  start-page: 1667
  year: 2021
  end-page: 1683
  ident: b0275
  article-title: Concepts, key challenges and open problems of federated learning
  publication-title: International Journal of Engineering
– volume: 14
  start-page: 1
  year: 2021
  end-page: 210
  ident: b0310
  article-title: Advances and open problems in federated learning
  publication-title: Foundations and Trends® in Machine Learning
– reference: Paper presented at the 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).
– volume: 148
  year: 2024
  ident: b0790
  article-title: Hybrid privacy preserving federated learning against irregular users in next-generation internet of things
  publication-title: Journal of Systems Architecture
– volume: 23
  start-page: 8272
  year: 2023
  ident: b0325
  article-title: A federated learning model based on hardware acceleration for the early detection of Alzheimer’s disease
  publication-title: Sensors
– volume: 217
  start-page: 423
  year: 2023
  end-page: 435
  ident: b0710
  article-title: Multi-level federated learning for industry 4.0-A crowdsourcing approach
  publication-title: Procedia Computer Science
– volume: 20
  start-page: 4230
  year: 2022
  end-page: 4244
  ident: b0895
  article-title: A multi-shuffler framework to establish mutual confidence for secure federated learning
  publication-title: IEEE Transactions on Dependable and Secure Computing
– volume: 15
  start-page: 310
  year: 2023
  ident: b0025
  article-title: Exploring homomorphic encryption and differential privacy techniques towards secure federated learning paradigm
  publication-title: Future internet
– year: 2023
  ident: b0670
  article-title: Towards fairness-aware federated learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: Lindell, Y. (2005). Secure multiparty computation for privacy preserving data mining. In
– year: 2022
  ident: b0880
  publication-title: Paper presented at the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 9
  start-page: 148090
  year: 2021
  end-page: 148103
  ident: b0030
  article-title: Enhancing differential privacy for federated learning at scale
  publication-title: IEEE Access
– volume: 15
  start-page: 243
  year: 2022
  ident: b0065
  article-title: A federated generalized linear model for privacy-preserving analysis
  publication-title: Algorithms
– reference: Abay, A., Zhou, Y., Baracaldo, N., Rajamoni, S., Chuba, E., & Ludwig, H. (2020). Mitigating bias in federated learning.
– year: 2023
  ident: b0655
  publication-title: Paper presented at the The Eleventh International Conference on Learning Representations
– year: 2024
  ident: b0455
  article-title: Vertical federated learning: Concepts, advances, and challenges
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 35
  start-page: 29677
  year: 2022
  end-page: 29690
  ident: b0020
  article-title: Fedrolex: Model-heterogeneous federated learning with rolling sub-model extraction
  publication-title: Advances in Neural Information Processing Systems
– volume: 35
  start-page: 7852
  year: 2022
  end-page: 7865
  ident: b0600
  article-title: Fairvfl: A fair vertical federated learning framework with contrastive adversarial learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 6
  start-page: 1
  year: 2022
  end-page: 25
  ident: b0885
  article-title: Are you left out? an efficient and fair federated learning for personalized profiles on wearable devices of inferior networking conditions
  publication-title: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
– volume: 56
  start-page: 1773
  year: 2023
  end-page: 1827
  ident: b0665
  article-title: A systematic review of federated learning from clients’ perspective: Challenges and solutions
  publication-title: Artificial Intelligence Review
– volume: 37
  start-page: 50
  year: 2020
  end-page: 60
  ident: b0380
  article-title: Federated learning: Challenges, methods, and future directions
  publication-title: IEEE Signal Processing Magazine
– reference: Balija, S. B. (2025). FedMM-X: A Trustworthy and Interpretable Framework for Federated Multi-Modal Learning in Dynamic Environments.
– reference: Li, T., Sanjabi, M., Beirami, A., & Smith, V. (2019). Fair resource allocation in federated learning.
– volume: 27
  start-page: 1244
  year: 2020
  end-page: 1251
  ident: b0045
  article-title: Fold-stratified cross-validation for unbiased and privacy-preserving federated learning
  publication-title: Journal of the American Medical Informatics Association
– volume: 158
  year: 2023
  ident: b0320
  article-title: Privacy-preserving artificial intelligence in healthcare: Techniques and applications
  publication-title: Computers in Biology and Medicine
– volume: 57
  start-page: 130
  year: 2024
  ident: b0365
  article-title: Survey: Federated learning data security and privacy-preserving in edge-internet of things
  publication-title: Artificial Intelligence Review
– year: 2024
  ident: b0160
  publication-title: Paper presented at the European Conference on Computer Vision
– reference: Yang, L., Chai, D., Zhang, J., Jin, Y., Wang, L., Liu, H., . . . Chen, K. (2023). A survey on vertical federated learning: From a layered perspective.
– reference: Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., & Talwar, K. (2016). Semi-supervised knowledge transfer for deep learning from private training data.
– volume: 22
  start-page: 612
  year: 1979
  end-page: 613
  ident: b0660
  article-title: How to share a secret
  publication-title: Communications of the ACM
– volume: 36
  start-page: 1109
  year: 2012
  end-page: 1114
  ident: b0115
  article-title: Efficient Robust Design Optimization using Statistical Moments based on Multiplicative Decomposition Method
  publication-title: Transactions of the Korean Society of Mechanical Engineers, A
– volume: 226
  year: 2023
  ident: b0265
  article-title: A reliable and fair federated learning mechanism for mobile edge computing
  publication-title: Computer Networks
– volume: 13
  start-page: 1
  year: 2022
  end-page: 32
  ident: b0245
  article-title: The oarf benchmark suite: Characterization and implications for federated learning systems
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– reference: Bai, J., Chen, D., Qian, B., Yao, L., & Li, Y. (2024). Federated fine-tuning of large language models under heterogeneous tasks and client resources.
– volume: 70
  year: 2022
  ident: b0440
  article-title: High-accuracy low-cost privacy-preserving federated learning in IoT systems via adaptive perturbation
  publication-title: Journal of Information Security and Applications
– year: 2017
  ident: b0530
  publication-title: Paper presented at the 2017 IEEE symposium on security and privacy (SP)
– volume: 4
  start-page: 1
  year: 2020
  end-page: 21
  ident: b0175
  article-title: PMF: A privacy-preserving human mobility prediction framework via federated learning
  publication-title: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
– year: 2023
  ident: b0485
  publication-title: Paper presented at the Proceedings of the 31st ACM International Conference on Multimedia
– reference: Yu, H., Liu, Z., Liu, Y., Chen, T., Cong, M., Weng, X., ... Yang, Q. (2020).
– volume: 56
  start-page: 1
  year: 2024
  end-page: 28
  ident: b0200
  article-title: Federated learning for mobility applications
  publication-title: ACM Computing Surveys
– volume: 167
  start-page: 840
  year: 2005
  end-page: 848
  ident: b0580
  article-title: A new (t, n) multi-secret sharing scheme based on Shamir’s secret sharing
  publication-title: Applied Mathematics and Computation
– volume: 16
  start-page: 3051
  year: 2024
  end-page: 3076
  ident: b0135
  article-title: Federated learning of XAI models in healthcare: A case study on Parkinson’s disease
  publication-title: Cognitive Computation
– year: 2023
  ident: b0150
  publication-title: Paper presented at the Proceedings of the AAAI conference on artificial intelligence
– volume: 70
  start-page: 8639
  year: 2021
  end-page: 8652
  ident: b0085
  article-title: BDFL: A byzantine-fault-tolerance decentralized federated learning method for autonomous vehicle
  publication-title: IEEE Transactions on Vehicular Technology
– year: 1999
  ident: b0565
  publication-title: Paper presented at the International conference on the theory and applications of cryptographic techniques
– year: 2023
  ident: b0635
  publication-title: Paper presented at the International Conference on Computational Science
– year: 2024
  ident: b0060
  article-title: Multi-Modal Federated Learning for Cancer Staging over Non-IID Datasets with Unbalanced Modalities
  publication-title: IEEE Transactions on Medical Imaging
– volume: 28
  start-page: 805
  year: 2024
  end-page: 814
  ident: b0345
  article-title: HFAD: Fair Federated Learning and Hybrid Fusion Multimodal Industrial Anomaly Detection
  publication-title: Journal of the Korea Institute of Information and Communication Engineering
– reference: Jiang, F., Dong, L., Tu, S., Peng, Y., Wang, K., Yang, K., . . . Niyato, D. (2024). Personalized wireless federated learning for large language models.
– reference: Bhowmick, A., Duchi, J., Freudiger, J., Kapoor, G., & Rogers, R. (2018). Protection against reconstruction and its applications in private federated learning.
– year: 2017
  ident: b0055
  publication-title: Paper presented at the proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security
– year: 2022
  ident: b0255
  publication-title: Paper presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2024
  ident: b0875
  publication-title: Paper presented at the 2024 International Conference on Ubiquitous Communication (Ucom)
– year: 2019
  ident: b0695
  publication-title: Paper presented at the Proceedings of the 12th ACM workshop on artificial intelligence and security
– volume: 28
  start-page: 192
  year: 2021
  end-page: 199
  ident: b0545
  article-title: Federated learning for industrial internet of things in future industries
  publication-title: IEEE Wireless Communications
– year: 2024
  ident: b0125
  article-title: Fedasa: A personalized federated learning with adaptive model aggregation for heterogeneous mobile edge computing
  publication-title: IEEE Transactions on Mobile Computing
– volume: 59
  start-page: 16
  year: 2021
  end-page: 21
  ident: b0645
  article-title: Opportunities of federated learning in connected, cooperative, and automated industrial systems
  publication-title: IEEE Communications Magazine
– reference: Ramaswamy, S., Mathews, R., Rao, K., & Beaufays, F. (2019). Federated learning for emoji prediction in a mobile keyboard.
– volume: 14
  year: 2023
  ident: b0445
  article-title: A fully-mapped and energy-efficient FPGA accelerator for dual-function AI-based analysis of ECG
  publication-title: Frontiers in Physiology
– reference: ur Rehman, M. H., Dirir, A. M., Salah, K., & Svetinovic, D. (2020).
– reference: .
– reference: Commission, P. I. P. (2024). Pseudonymization information processing guidelines. 241. Retrieved from
– reference: (2).
– reference: Varshney, A. K., Garg, S., Ghosh, A., & Gupta, S. (2023). Fair Differentially Private Federated Learning Framework.
– year: 2023
  ident: b0330
  article-title: Development of Pneumonia Patient Classification Model using Fair Federated Learning
  publication-title: Paper presented at the
– year: 2024
  ident: b0685
  publication-title: Paper presented at the European Conference on Computer Vision
– reference: Fan, Y., Xu, W., Wang, H., Zhu, J., & Guo, S. (2023). Balanced Multi-modal Federated Learning via Cross-Modal Infiltration.
– year: 2021
  ident: b0230
  publication-title: Paper presented at the Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
– volume: 5
  start-page: 695
  year: 2023
  end-page: 707
  ident: b0240
  article-title: Gluefl: Reconciling client sampling and model masking for bandwidth efficient federated learning
  publication-title: Proceedings of Machine Learning and Systems
– year: 2017
  ident: b0510
  publication-title: Paper presented at the Artificial intelligence and statistics
– volume: 5
  year: 2024
  ident: b0840
  article-title: Unified fair federated learning for digital healthcare
  publication-title: Patterns
– year: 2024
  ident: b0680
  publication-title: Paper presented at the Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 9
  start-page: 17359
  year: 2022
  end-page: 17371
  ident: b0405
  article-title: Fairness-aware federated learning with unreliable links in resource-constrained internet of things
  publication-title: IEEE Internet of Things Journal
– volume: 7
  start-page: 2192
  year: 2020
  end-page: 2204
  ident: b0195
  article-title: Federated region-learning for environment sensing in edge computing system
  publication-title: IEEE Transactions on Network Science and Engineering
– year: 2020
  ident: b0825
  publication-title: Paper presented at the 2020 IEEE/ACM Fifth international conference on internet-of-things design and implementation (IoTDI)
– volume: 521
  start-page: 14
  year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0460
  article-title: Privacy-preserving federated k-means for proactive caching in next generation cellular networks
  publication-title: Information Scientist
  doi: 10.1016/j.ins.2020.02.042
– year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0650
  article-title: Combining homomorphic encryption and differential privacy in federated learning
– volume: 183
  year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0300
  article-title: Customized federated learning for accelerated edge computing with heterogeneous task targets
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2020.107569
– ident: 10.1016/j.eswa.2025.128568_b0610
– volume: 217
  start-page: 423
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0710
  article-title: Multi-level federated learning for industry 4.0-A crowdsourcing approach
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2022.12.238
– year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0880
  article-title: A dynamic reweighting strategy for fair federated learning
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0160
  article-title: Overcome Modal Bias in Multi-modal Federated Learning via Balanced Modality selection
– ident: 10.1016/j.eswa.2025.128568_b0095
– volume: 34
  start-page: 1667
  issue: 7
  year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0275
  article-title: Concepts, key challenges and open problems of federated learning
  publication-title: International Journal of Engineering
– start-page: 189
  year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0490
  article-title: Collaborative fairness in federated learning
  publication-title: Federated Learning: Privacy and Incentive
  doi: 10.1007/978-3-030-63076-8_14
– volume: 35
  start-page: 7852
  year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0600
  article-title: Fairvfl: A fair vertical federated learning framework with contrastive adversarial learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 36
  start-page: 1109
  issue: 10
  year: 2012
  ident: 10.1016/j.eswa.2025.128568_b0115
  article-title: Efficient Robust Design Optimization using Statistical Moments based on Multiplicative Decomposition Method
  publication-title: Transactions of the Korean Society of Mechanical Engineers, A
  doi: 10.3795/KSME-A.2012.36.10.1109
– volume: 37
  start-page: 111106
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0795
  article-title: Fedllm-bench: Realistic benchmarks for federated learning of large language models
  publication-title: Advances in Neural Information Processing Systems
– volume: 4
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0175
  article-title: PMF: A privacy-preserving human mobility prediction framework via federated learning
  publication-title: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
  doi: 10.1145/3381006
– volume: 53
  start-page: 12399
  issue: 10
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0370
  article-title: VFL-R: A novel framework for multi-party in vertical federated learning
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-022-04111-0
– volume: 22
  start-page: 612
  issue: 11
  year: 1979
  ident: 10.1016/j.eswa.2025.128568_b0660
  article-title: How to share a secret
  publication-title: Communications of the ACM
  doi: 10.1145/359168.359176
– volume: 14
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0445
  article-title: A fully-mapped and energy-efficient FPGA accelerator for dual-function AI-based analysis of ECG
  publication-title: Frontiers in Physiology
– volume: 48
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2025.128568_b0075
  article-title: Efficient data perturbation for privacy preserving and accurate data stream mining
  publication-title: Pervasive and Mobile Computing
  doi: 10.1016/j.pmcj.2018.05.003
– volume: 37
  start-page: 5880
  issue: 9
  year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0495
  article-title: Privacy‐preserving federated learning based on multi‐key homomorphic encryption
  publication-title: International Journal of Intelligence Systems
  doi: 10.1002/int.22818
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0625
  article-title: Explanation-Guided Fair Federated Learning for Transparent 6G RAN Slicing
  publication-title: IEEE Transactions on Cognitive Communications and Networking
  doi: 10.1109/TCCN.2024.3400524
– ident: 10.1016/j.eswa.2025.128568_b0350
– volume: 90
  start-page: 148
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0615
  article-title: Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2022.09.011
– volume: 22
  start-page: 2031
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0415
  article-title: Federated learning in mobile edge networks: A comprehensive survey
  publication-title: IEEE Communications Surveys & Tutorials
  doi: 10.1109/COMST.2020.2986024
– volume: 226
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0265
  article-title: A reliable and fair federated learning mechanism for mobile edge computing
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2023.109678
– volume: 27
  start-page: 1244
  issue: 8
  year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0045
  article-title: Fold-stratified cross-validation for unbiased and privacy-preserving federated learning
  publication-title: Journal of the American Medical Informatics Association
  doi: 10.1093/jamia/ocaa096
– ident: 10.1016/j.eswa.2025.128568_b0515
– volume: 37
  start-page: 50
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0380
  article-title: Federated learning: Challenges, methods, and future directions
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2020.2975749
– ident: 10.1016/j.eswa.2025.128568_b0745
  doi: 10.24963/ijcai.2024/575
– volume: 9
  start-page: 148090
  year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0030
  article-title: Enhancing differential privacy for federated learning at scale
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3124020
– year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0150
  article-title: Fairfed: Enabling group fairness in federated learning
– ident: 10.1016/j.eswa.2025.128568_b0585
– year: 2006
  ident: 10.1016/j.eswa.2025.128568_b0140
  article-title: Differential privacy
– volume: 4
  start-page: 31
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0705
  article-title: Perturbation methods for protecting data privacy: A review of techniques and applications
  publication-title: Automation and Machine Learning
– year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0005
  article-title: Hierarchical federated learning across heterogeneous cellular networks
– volume: 14
  start-page: 513
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0740
  article-title: A survey on federated learning: Challenges and applications
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-022-01647-y
– year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0780
  article-title: An accuracy-lossless perturbation method for defending privacy attacks in federated learning
– volume: 33
  start-page: 156
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2025.128568_b0730
  article-title: In-edge ai: Intelligentizing mobile edge computing, caching and communication by federated learning
  publication-title: IEEE Network
  doi: 10.1109/MNET.2019.1800286
– volume: 70
  year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0440
  article-title: High-accuracy low-cost privacy-preserving federated learning in IoT systems via adaptive perturbation
  publication-title: Journal of Information Security and Applications
  doi: 10.1016/j.jisa.2022.103309
– volume: 14
  start-page: 1
  issue: 1–2
  year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0310
  article-title: Advances and open problems in federated learning
  publication-title: Foundations and Trends® in Machine Learning
  doi: 10.1561/2200000083
– volume: 50
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0755
  article-title: Asynchronous federated learning on heterogeneous devices: A survey
  publication-title: Computer Science Review
  doi: 10.1016/j.cosrev.2023.100595
– ident: 10.1016/j.eswa.2025.128568_b0120
– volume: 12
  start-page: 1601
  issue: 10
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0845
  article-title: FedUB: Federated learning algorithm based on update bias
  publication-title: Mathematics
  doi: 10.3390/math12101601
– volume: 20
  start-page: 539
  issue: 4
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0420
  article-title: Federated learning on multimodal data: A comprehensive survey
  publication-title: Machine Intelligence Research
  doi: 10.1007/s11633-022-1398-0
– year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0435
  article-title: Flame: Differentially private federated learning in the shuffle model
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0260
  article-title: Federated learning for generalization, robustness, fairness: A survey and benchmark
– volume: 70
  start-page: 8639
  issue: 9
  year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0085
  article-title: BDFL: A byzantine-fault-tolerance decentralized federated learning method for autonomous vehicle
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2021.3102121
– volume: 167
  start-page: 840
  issue: 2
  year: 2005
  ident: 10.1016/j.eswa.2025.128568_b0580
  article-title: A new (t, n) multi-secret sharing scheme based on Shamir’s secret sharing
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2004.06.120
– volume: 15
  start-page: 911
  year: 2019
  ident: 10.1016/j.eswa.2025.128568_b0760
  article-title: VerifyNet: Secure and verifiable federated learning
  publication-title: IEEE Transactions on Information Forensics and Security
  doi: 10.1109/TIFS.2019.2929409
– year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0230
  article-title: Towards fair federated learning with zero-shot data augmentation
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0250
  article-title: Multimodal federated learning: Concept, methods, applications and future directions
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2024.102576
– ident: 10.1016/j.eswa.2025.128568_b0205
– volume: 8
  start-page: 209191
  year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0800
  article-title: EdgeFed: Optimized federated learning based on edge computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3038287
– year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0180
  article-title: Clustered sampling: Low-variance and improved representativity for clients selection in federated learning
– ident: 10.1016/j.eswa.2025.128568_b0820
– ident: 10.1016/j.eswa.2025.128568_b0735
– year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0865
  article-title: ShuffleFL: Gradient-preserving federated learning using trusted execution environment
– ident: 10.1016/j.eswa.2025.128568_b0295
– ident: 10.1016/j.eswa.2025.128568_b0305
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0455
  article-title: Vertical federated learning: Concepts, advances, and challenges
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 2019
  ident: 10.1016/j.eswa.2025.128568_b0355
  article-title: Federated learning for keyword spotting
– year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0870
  article-title: A survey of trustworthy federated learning with perspectives on security, robustness and privacy
– ident: 10.1016/j.eswa.2025.128568_b0035
– ident: 10.1016/j.eswa.2025.128568_b0050
– volume: 28
  start-page: 192
  issue: 6
  year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0545
  article-title: Federated learning for industrial internet of things in future industries
  publication-title: IEEE Wireless Communications
  doi: 10.1109/MWC.001.2100102
– volume: 133
  start-page: 53
  year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0540
  article-title: Dynamic and adaptive fault-tolerant asynchronous federated learning using volunteer edge devices
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2022.02.024
– year: 2019
  ident: 10.1016/j.eswa.2025.128568_b0190
  article-title: Privacy-preserving heterogeneous federated transfer learning
– volume: 2
  start-page: 464
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0220
  article-title: Shuffled model of federated learning: Privacy, accuracy and communication trade-offs
  publication-title: IEEE journal on selected areas in information theory
  doi: 10.1109/JSAIT.2021.3056102
– year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0330
  article-title: Development of Pneumonia Patient Classification Model using Fair Federated Learning
– ident: 10.1016/j.eswa.2025.128568_b0830
  doi: 10.1109/MSN63567.2024.00123
– volume: 59
  start-page: 16
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0645
  article-title: Opportunities of federated learning in connected, cooperative, and automated industrial systems
  publication-title: IEEE Communications Magazine
  doi: 10.1109/MCOM.001.2000200
– volume: 171
  start-page: 112
  year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0070
  article-title: Privacy preserving distributed machine learning with federated learning
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2021.02.014
– year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0235
  article-title: Spreadgnn: Decentralized multi-task federated learning for graph neural networks on molecular data
– volume: 28
  start-page: 805
  issue: 7
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0345
  article-title: HFAD: Fair Federated Learning and Hybrid Fusion Multimodal Industrial Anomaly Detection
  publication-title: Journal of the Korea Institute of Information and Communication Engineering
  doi: 10.6109/jkiice.2024.28.7.805
– year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0670
  article-title: Towards fairness-aware federated learning
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0680
  article-title: Multi-Dimensional Fair Federated Learning
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0905
  article-title: ISFL: Federated learning for non-iid data with local importance sampling
  publication-title: IEEE Internet of Things Journal
– volume: 92
  start-page: 431
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0110
  article-title: Methods and impact for using federated learning to collaborate on clinical research
  publication-title: Neurosurgery
  doi: 10.1227/neu.0000000000002198
– volume: 158
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0320
  article-title: Privacy-preserving artificial intelligence in healthcare: Techniques and applications
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2023.106848
– ident: 10.1016/j.eswa.2025.128568_b0465
  doi: 10.1109/INFOCOM52122.2024.10621227
– year: 2012
  ident: 10.1016/j.eswa.2025.128568_b0475
  article-title: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption
– year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0550
  article-title: Federated learning with buffered asynchronous aggregation
– volume: 35
  start-page: 29677
  year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0020
  article-title: Fedrolex: Model-heterogeneous federated learning with rolling sub-model extraction
  publication-title: Advances in Neural Information Processing Systems
– year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0215
  article-title: Shuffled model of differential privacy in federated learning
– volume: 9
  start-page: 17359
  issue: 18
  year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0405
  article-title: Fairness-aware federated learning with unreliable links in resource-constrained internet of things
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2022.3156046
– ident: 10.1016/j.eswa.2025.128568_b0185
– volume: 22
  start-page: 1345
  issue: 10
  year: 2009
  ident: 10.1016/j.eswa.2025.128568_b0570
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2009.191
– ident: 10.1016/j.eswa.2025.128568_b0590
– volume: 26
  start-page: 481
  issue: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0470
  article-title: Multi-center federated learning: Clients clustering for better personalization
  publication-title: World Wide Web
  doi: 10.1007/s11280-022-01046-x
– volume: 65
  year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0390
  article-title: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2020.101765
– volume: 15
  start-page: 243
  issue: 7
  year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0065
  article-title: A federated generalized linear model for privacy-preserving analysis
  publication-title: Algorithms
  doi: 10.3390/a15070243
– volume: 20
  start-page: 4230
  issue: 5
  year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0895
  article-title: A multi-shuffler framework to establish mutual confidence for secure federated learning
  publication-title: IEEE Transactions on Dependable and Secure Computing
  doi: 10.1109/TDSC.2022.3215574
– volume: 9
  start-page: 2081
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0480
  article-title: Federated learning based on stratified sampling and regularization
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-022-00895-3
– ident: 10.1016/j.eswa.2025.128568_b0815
  doi: 10.1145/3375627.3375840
– year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0825
  article-title: Learning context-aware policies from multiple smart homes via federated multi-task learning
– volume: 9
  start-page: 436
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0170
  article-title: Smart and collaborative industrial IoT: A federated learning and data space approach
  publication-title: Digital Communications and Networks
  doi: 10.1016/j.dcan.2023.01.022
– volume: 35
  start-page: 70
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0450
  article-title: A secure federated transfer learning framework
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2020.2988525
– volume: 105
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0605
  article-title: Fairness and privacy preserving in federated learning: A survey
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2023.102198
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0125
  article-title: Fedasa: A personalized federated learning with adaptive model aggregation for heterogeneous mobile edge computing
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2024.3446271
– year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0535
  article-title: Poster: Flatee: Federated learning across trusted execution environments
– volume: 18
  start-page: 92
  issue: 1
  year: 2005
  ident: 10.1016/j.eswa.2025.128568_b0430
  article-title: Random projection-based multiplicative data perturbation for privacy preserving distributed data mining
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 372
  year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0560
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: BMJ
– volume: 57
  start-page: 130
  issue: 5
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0365
  article-title: Survey: Federated learning data security and privacy-preserving in edge-internet of things
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-024-10774-7
– volume: 148
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0790
  article-title: Hybrid privacy preserving federated learning against irregular users in next-generation internet of things
  publication-title: Journal of Systems Architecture
  doi: 10.1016/j.sysarc.2024.103088
– volume: 15
  start-page: 310
  issue: 9
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0025
  article-title: Exploring homomorphic encryption and differential privacy techniques towards secure federated learning paradigm
  publication-title: Future internet
  doi: 10.3390/fi15090310
– ident: 10.1016/j.eswa.2025.128568_b0425
  doi: 10.4018/978-1-59140-557-3.ch189
– ident: 10.1016/j.eswa.2025.128568_b0520
– year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0655
  article-title: Perfedmask: Personalized federated learning with optimized masking vectors
– year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0105
  article-title: Asynchronous online federated learning for edge devices with non-iid data
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0575
  article-title: FedLF: Layer-Wise Fair Federated Learning
– ident: 10.1016/j.eswa.2025.128568_b0595
– volume: 23
  start-page: 8272
  issue: 19
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0325
  article-title: A federated learning model based on hardware acceleration for the early detection of Alzheimer’s disease
  publication-title: Sensors
  doi: 10.3390/s23198272
– volume: 37
  start-page: 27
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0290
  article-title: Dynamic sampling and selective masking for communication-efficient federated learning
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2021.3114610
– ident: 10.1016/j.eswa.2025.128568_b0620
– year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0485
  article-title: Federated Learning with Label-Masking Distillation
– ident: 10.1016/j.eswa.2025.128568_b0775
– start-page: 157
  year: 2008
  ident: 10.1016/j.eswa.2025.128568_b0090
  article-title: A survey of multiplicative perturbation for privacy-preserving data mining
  publication-title: Privacy-Preserving Data Mining: Models and Algorithms
  doi: 10.1007/978-0-387-70992-5_7
– ident: 10.1016/j.eswa.2025.128568_b0165
– year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0750
  article-title: Practical vertical federated learning with unsupervised representation learning
  publication-title: IEEE Transactions on Big Data
– ident: 10.1016/j.eswa.2025.128568_b0010
– volume: 56
  start-page: 1
  issue: 2
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0080
  article-title: Privacy and fairness in Federated learning: On the perspective of Tradeoff
  publication-title: ACM Computing Surveys
  doi: 10.1145/3606017
– year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0375
  article-title: Ditto: Fair and robust federated learning through personalization
– volume: 3
  start-page: 155
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0770
  article-title: Security of federated learning with IoT systems: Issues, limitations, challenges, and solutions
  publication-title: Internet of Things and Cyber-Physical Systems
  doi: 10.1016/j.iotcps.2023.04.001
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0890
  article-title: Personalized federation learning with model-contrastive learning for multi-modal user modeling in human-centric metaverse
  publication-title: IEEE Journal on Selected Areas in Communications
  doi: 10.1109/JSAC.2023.3345431
– volume: 36
  start-page: 182
  issue: 4
  year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0315
  article-title: Smpc-based federated learning for 6g-enabled internet of medical things
  publication-title: IEEE Network
  doi: 10.1109/MNET.007.2100717
– ident: 10.1016/j.eswa.2025.128568_b0720
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0100
  article-title: Fair federated learning under domain skew with local consistency and domain diversity
– year: 2019
  ident: 10.1016/j.eswa.2025.128568_b0850
  article-title: PEFL: A privacy-enhanced federated learning scheme for big data analytics
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0685
  article-title: Towards Multi-modal Transformers in Federated Learning
– ident: 10.1016/j.eswa.2025.128568_b0130
– ident: 10.1016/j.eswa.2025.128568_b0285
– year: 2017
  ident: 10.1016/j.eswa.2025.128568_b0510
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: 10.1016/j.eswa.2025.128568_b0690
– year: 2019
  ident: 10.1016/j.eswa.2025.128568_b0765
  article-title: Hybridalpha: An efficient approach for privacy-preserving federated learning
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0875
  article-title: FedsLLM: Federated Split Learning for Large Language Models over Communication Networks
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0280
  article-title: RVE-PFL: Robust Variational Encoder-based Personalised Federated Learning against Model Inversion attacks
– start-page: 27
  year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0555
  article-title: Tree-based models for federated learning systems
– year: 2012
  ident: 10.1016/j.eswa.2025.128568_b0155
  article-title: Somewhat practical fully homomorphic encryption
  publication-title: Cryptology ePrint Archive.
– volume: 13
  start-page: 1
  issue: 4
  year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0245
  article-title: The oarf benchmark suite: Characterization and implications for federated learning systems
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– year: 2025
  ident: 10.1016/j.eswa.2025.128568_b0335
  article-title: ACMFed: Fair semi-supervised federated learning with additional compromise model
  publication-title: IEEE Access
– volume: 619
  start-page: 968
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0395
  article-title: Heterogeneity-aware fair federated learning
  publication-title: Information Scientist
  doi: 10.1016/j.ins.2022.11.031
– volume: 56
  start-page: 1773
  issue: Suppl 2
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0665
  article-title: A systematic review of federated learning from clients’ perspective: Challenges and solutions
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-023-10563-8
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0805
  article-title: Fedpe: Adaptive model pruning-expanding for federated learning on mobile devices
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2024.3374706
– year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0410
  article-title: Over-the-air federated learning with privacy protection via correlated additive perturbations
– year: 2019
  ident: 10.1016/j.eswa.2025.128568_b0725
  article-title: Conclave: Secure multi-party computation on big data
– volume: 110
  year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0700
  article-title: Privacy preservation in federated learning: An insightful survey from the GDPR perspective
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2021.102402
– year: 2018
  ident: 10.1016/j.eswa.2025.128568_b0675
  article-title: Asynchronous federated learning for geospatial applications
– volume: 7
  start-page: 639
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0900
  article-title: From federated learning to federated neural architecture search: A survey
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-020-00247-z
– year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0505
  article-title: Learning from failures: Secure and fault-tolerant aggregation for federated learning
– volume: 8
  start-page: 6178
  issue: 8
  year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0400
  article-title: Privacy-preserving federated learning framework based on chained secure multiparty computing
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2020.3022911
– volume: 7
  start-page: 2192
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0195
  article-title: Federated region-learning for environment sensing in edge computing system
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2020.3016035
– volume: 56
  start-page: 1
  issue: 5
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0200
  article-title: Federated learning for mobility applications
  publication-title: ACM Computing Surveys
  doi: 10.1145/3637868
– volume: 7
  start-page: e374
  issue: 3
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0270
  article-title: Federated learning with hybrid differential privacy for secure and reliable cross‐IoT platform knowledge sharing
  publication-title: Security and Privacy
  doi: 10.1002/spy2.374
– volume: 6
  start-page: 1
  issue: 2
  year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0885
  article-title: Are you left out? an efficient and fair federated learning for personalized profiles on wearable devices of inferior networking conditions
  publication-title: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
– start-page: 23).
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0855
  article-title: {FLASH}: Towards a high-performance hardware acceleration architecture for cross-silo federated learning
– ident: 10.1016/j.eswa.2025.128568_b0715
  doi: 10.1109/AIPR50011.2020.9425266
– year: 1999
  ident: 10.1016/j.eswa.2025.128568_b0565
  article-title: Public-key cryptosystems based on composite degree residuosity classes
– volume: 287
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0225
  article-title: Fair federated learning with opposite GAN
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2024.111420
– year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0635
  article-title: Fair-fate: Fair federated learning with momentum
– year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0060
  article-title: Multi-Modal Federated Learning for Cancer Staging over Non-IID Datasets with Unbalanced Modalities
  publication-title: IEEE Transactions on Medical Imaging
– ident: 10.1016/j.eswa.2025.128568_b0385
– volume: 5
  issue: 1
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0840
  article-title: Unified fair federated learning for digital healthcare
  publication-title: Patterns
  doi: 10.1016/j.patter.2023.100907
– year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0255
  article-title: Learn from others and be yourself in heterogeneous federated learning
– ident: 10.1016/j.eswa.2025.128568_b0040
– ident: 10.1016/j.eswa.2025.128568_b0210
– volume: 13
  start-page: 4664
  issue: 23
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0340
  article-title: Addressing Bias and Fairness using Fair Federated Learning: A Synthetic Review
  publication-title: Electronics
  doi: 10.3390/electronics13234664
– year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0360
  article-title: Fedmask: Joint computation and communication-efficient personalized federated learning via heterogeneous masking
– volume: 152
  start-page: 83
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0640
  article-title: Federatedtrust: A solution for trustworthy federated learning
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2023.10.013
– year: 2017
  ident: 10.1016/j.eswa.2025.128568_b0530
  article-title: Secureml: A system for scalable privacy-preserving machine learning
– volume: 10
  start-page: 2864
  issue: 5
  year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0860
  article-title: Homomorphic encryption-based privacy-preserving federated learning in IoT-enabled healthcare system
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2022.3185327
– volume: 5
  start-page: 695
  year: 2023
  ident: 10.1016/j.eswa.2025.128568_b0240
  article-title: Gluefl: Reconciling client sampling and model masking for bandwidth efficient federated learning
  publication-title: Proceedings of Machine Learning and Systems
– year: 2017
  ident: 10.1016/j.eswa.2025.128568_b0055
  article-title: Practical secure aggregation for privacy-preserving machine learning
– year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0525
  article-title: Local learning matters: Rethinking data heterogeneity in federated learning
– year: 2019
  ident: 10.1016/j.eswa.2025.128568_b0695
  article-title: A hybrid approach to privacy-preserving federated learning
– year: 2020
  ident: 10.1016/j.eswa.2025.128568_b0835
  article-title: Fairfl: A fair federated learning approach to reducing demographic bias in privacy-sensitive classification models
– volume: 16
  start-page: 3051
  issue: 6
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0135
  article-title: Federated learning of XAI models in healthcare: A case study on Parkinson’s disease
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-024-10332-x
– volume: 15
  start-page: 35
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2025.128568_b0630
  article-title: Federated transfer learning: Concept and applications
  publication-title: Intelligenza Artificiale
  doi: 10.3233/IA-200075
– year: 2008
  ident: 10.1016/j.eswa.2025.128568_b0145
  article-title: Differential privacy: A survey of results
– volume: 36
  start-page: 6231
  issue: 11
  year: 2024
  ident: 10.1016/j.eswa.2025.128568_b0015
  article-title: Federated learning model for credit card fraud detection with data balancing techniques
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-023-09410-2
– year: 2022
  ident: 10.1016/j.eswa.2025.128568_b0785
  article-title: APPFed: A Hybrid Privacy-Preserving Framework for Federated Learning over Sensitive Data
– ident: 10.1016/j.eswa.2025.128568_b0810
SSID ssj0017007
Score 2.4840617
SecondaryResourceType review_article
Snippet In the rapidly advancing field of machine learning, federated learning (FL) has facilitated a paradigm shift, enabling collaborative model development across...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 128568
SubjectTerms Data science maturity
Distributed computing methodologies
Fair federated learning
Fairness
Privacy preservation
Title Overview of fair federated learning for fairness and privacy preservation
URI https://dx.doi.org/10.1016/j.eswa.2025.128568
Volume 293
WOSCitedRecordID wos001523407300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELZo4NALUGjFWz70hhZt1uvYPiIUxEuAVFrlttrHRBDaDSIhJP-embW9CaGqaKVeVpGjdSJ_9nj8eWY-xr7SxMjiVAVZ2CyCWGRENHVx4YFohakuIlkVq_5xoS4vdadjrp0q6qCSE1Blqcdj8_BfocY2BJtSZ_8C7rpTbMDPCDo-EXZ8vgv4qxEtf5uOQrc1-12qF5GSZ_nT8yAUW0jfVXbOlgq4G5HwO4XFepr2FWlPFZGHru6zz4ibufueXuX_sm757YTMSE3hVuTNedVmlVZmgoAqg3Pbr7eHfsXenkzgfuK7cLREJOdCPOp8mWlwkiUdVRA3rS6Pt7-RlUh8Y8strdA7gMEzFYiK5AHupdKK8MzVyP5GHVO_6NChz6JaH9hipKTRDbZ4eNrunNUXSyq0GfT-j7g8KhvyN_9Lv_dVZvyPm1W27A4O_NAC_oktQLnGVrwoB3c2ep2devx5v8sJY17jzz3-HPHnHn-O-HOHP5_F_zP7fty-OToJnF5GkEdSDHGvCAG0yCHOTAwRQGoUhAU6dcpADpXxzknfQMSpMKkWhcEVnKkCAA_dmRJfWKPsl7DBuMy1KVpSZJnC83sTdJRL3FLBaNUNQeSbbN-PTPJgy6IkPl6wl9A4JjSOiR3HTSb94CXOsbMOW4JY_-G9rX98b5t9nE7JHdYYPj7BLlvKR8O7weOemxIvijR1iQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overview+of+fair+federated+learning+for+fairness+and+privacy+preservation&rft.jtitle=Expert+systems+with+applications&rft.au=Kim%2C+Dohyoung&rft.au=Oh%2C+Kyoungsu&rft.au=Lee%2C+Youngho&rft.au=Woo%2C+Hyekyung&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=293&rft_id=info:doi/10.1016%2Fj.eswa.2025.128568&rft.externalDocID=S0957417425021876
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon