Variational Analysis in Semi-Infinite and Infinite Programming, I: Stability of Linear Inequality Systems of Feasible Solutions
This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to parametric problems of semi-infinite and infinite programming, where decision variables run over finite-dimensional and infinite-dimensional spaces, respectively. Part I is primarily de...
Uloženo v:
| Vydáno v: | SIAM journal on optimization Ročník 20; číslo 3; s. 1504 - 1526 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2009
|
| Témata: | |
| ISSN: | 1052-6234, 1095-7189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to parametric problems of semi-infinite and infinite programming, where decision variables run over finite-dimensional and infinite-dimensional spaces, respectively. Part I is primarily devoted to the study of robust Lipschitzian stability of feasible solutions maps for such problems described by parameterized systems of infinitely many linear inequalities in Banach spaces of decision variables indexed by an arbitrary set T. The parameter space of admissible perturbations under consideration is formed by all bounded functions on T equipped with the standard supremum norm. Unless the index set T is finite, this space is intrinsically infinite-dimensional (nonreflexive and nonseparable) of the ... type. By using advanced tools of variational analysis and exploiting specific features of linear infinite systems, we establish complete characterizations of robust Lipschitzian stability entirely via their initial data with computing the exact bound of Lipschitzian moduli. (ProQuest: ... denotes formulae/symbols omitted.) |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 1052-6234 1095-7189 |
| DOI: | 10.1137/090765948 |