Variational Analysis in Semi-Infinite and Infinite Programming, I: Stability of Linear Inequality Systems of Feasible Solutions

This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to parametric problems of semi-infinite and infinite programming, where decision variables run over finite-dimensional and infinite-dimensional spaces, respectively. Part I is primarily de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on optimization Ročník 20; číslo 3; s. 1504 - 1526
Hlavní autoři: Cánovas, M. J., López, M. A., Mordukhovich, B. S., Parra, J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2009
Témata:
ISSN:1052-6234, 1095-7189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to parametric problems of semi-infinite and infinite programming, where decision variables run over finite-dimensional and infinite-dimensional spaces, respectively. Part I is primarily devoted to the study of robust Lipschitzian stability of feasible solutions maps for such problems described by parameterized systems of infinitely many linear inequalities in Banach spaces of decision variables indexed by an arbitrary set T. The parameter space of admissible perturbations under consideration is formed by all bounded functions on T equipped with the standard supremum norm. Unless the index set T is finite, this space is intrinsically infinite-dimensional (nonreflexive and nonseparable) of the ... type. By using advanced tools of variational analysis and exploiting specific features of linear infinite systems, we establish complete characterizations of robust Lipschitzian stability entirely via their initial data with computing the exact bound of Lipschitzian moduli. (ProQuest: ... denotes formulae/symbols omitted.)
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1052-6234
1095-7189
DOI:10.1137/090765948