Improved multi-focus image fusion using online convolutional sparse coding based on sample-dependent dictionary

Multi-focus image fusion merges multiple images captured from different focused regions of a scene to create a fully-focused image. Convolutional sparse coding (CSC) methods are commonly employed for accurate extraction of focused regions, but they often disregard computational costs. To overcome th...

Full description

Saved in:
Bibliographic Details
Published in:Signal processing. Image communication Vol. 130; p. 117213
Main Authors: He, Sidi, Zhang, Chengfang, Li, Haoyue, Feng, Ziliang
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2025
Subjects:
ISSN:0923-5965
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multi-focus image fusion merges multiple images captured from different focused regions of a scene to create a fully-focused image. Convolutional sparse coding (CSC) methods are commonly employed for accurate extraction of focused regions, but they often disregard computational costs. To overcome this, an online convolutional sparse coding (OCSC) technique was introduced, but its performance is still limited by the number of filters used, affecting overall performance negatively. To address these limitations, a novel approach called Sample-Dependent Dictionary-based Online Convolutional Sparse Coding (SCSC) was proposed. SCSC enables the utilization of additional filters while maintaining low time and space complexity for processing high-dimensional or large data. Leveraging the computational efficiency and effective global feature extraction of SCSC, we propose a novel method for multi-focus image fusion. Our method involves a two-layer decomposition of each source image, yielding a base layer capturing the predominant features and a detail layer containing finer details. The amalgamation of the fused base and detail layers culminates in the reconstruction of the final image. The proposed method significantly mitigates artifacts, preserves fine details at the focus boundary, and demonstrates notable enhancements in both visual quality and objective evaluation of multi-focus image fusion. •Two-scale image decomposition is used to decompose source images.•A novel fusion rule is proposed to fuse detail layers.•The fusion rules designed are excellent in preservation of detailed information.•Our method significantly reduces artifacts at the focus boundary.•Experimental results demonstrate the superiority and effectiveness of our method.
AbstractList Multi-focus image fusion merges multiple images captured from different focused regions of a scene to create a fully-focused image. Convolutional sparse coding (CSC) methods are commonly employed for accurate extraction of focused regions, but they often disregard computational costs. To overcome this, an online convolutional sparse coding (OCSC) technique was introduced, but its performance is still limited by the number of filters used, affecting overall performance negatively. To address these limitations, a novel approach called Sample-Dependent Dictionary-based Online Convolutional Sparse Coding (SCSC) was proposed. SCSC enables the utilization of additional filters while maintaining low time and space complexity for processing high-dimensional or large data. Leveraging the computational efficiency and effective global feature extraction of SCSC, we propose a novel method for multi-focus image fusion. Our method involves a two-layer decomposition of each source image, yielding a base layer capturing the predominant features and a detail layer containing finer details. The amalgamation of the fused base and detail layers culminates in the reconstruction of the final image. The proposed method significantly mitigates artifacts, preserves fine details at the focus boundary, and demonstrates notable enhancements in both visual quality and objective evaluation of multi-focus image fusion. •Two-scale image decomposition is used to decompose source images.•A novel fusion rule is proposed to fuse detail layers.•The fusion rules designed are excellent in preservation of detailed information.•Our method significantly reduces artifacts at the focus boundary.•Experimental results demonstrate the superiority and effectiveness of our method.
ArticleNumber 117213
Author He, Sidi
Zhang, Chengfang
Li, Haoyue
Feng, Ziliang
Author_xml – sequence: 1
  givenname: Sidi
  surname: He
  fullname: He, Sidi
  organization: College of Computer Science, Sichuan University, No. 24, Section 1, South 1st ring road, cheng du, 610039, China
– sequence: 2
  givenname: Chengfang
  surname: Zhang
  fullname: Zhang, Chengfang
  email: chengfangzhang@scpolicec.edu.cn
  organization: Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College, 186 longtouguan Road, lu zhou, 646000, China
– sequence: 3
  givenname: Haoyue
  surname: Li
  fullname: Li, Haoyue
  organization: College of Computer Science, Sichuan University, No. 24, Section 1, South 1st ring road, cheng du, 610039, China
– sequence: 4
  givenname: Ziliang
  surname: Feng
  fullname: Feng, Ziliang
  organization: College of Computer Science, Sichuan University, No. 24, Section 1, South 1st ring road, cheng du, 610039, China
BookMark eNp9kMtqwzAQRbVIoUnaL-hGP2BXj8iOFl2U0Ecg0E27FrI0Dgq2ZCQ7kL-vnHTdzQzMzLncuSu08MEDQk-UlJTQ6vlUul4foWSEbUpKa0b5Ai2JZLwQshL3aJXSiZC8JXKJwr4fYjiDxf3Uja5og5kSvirgdkoueJyrP-LgO-cBm-DPoZvGvNAdToOOaR7a-aTRKetkIul-6KCwMIC34EdsnbkS8fKA7lrdJXj862v08_72vfssDl8f-93roTBM8LGgVssKgElTC77dCEEaIaFhLc--a8K2m4q3mloioKmb2tQEKGMgm0qCbrTha8RvuiaGlCK0aoj5q3hRlKg5J3VS1y_VnJO65ZSplxsF2drZQVTJOPAGrItgRmWD-5f_BVFTeLc
Cites_doi 10.1016/j.inffus.2014.10.004
10.1016/j.inffus.2022.11.010
10.1364/AO.57.010092
10.1007/s11042-020-08945-z
10.1109/TIP.2003.819861
10.1117/1.JEI.30.5.053016
10.1007/s00138-022-01326-6
10.1007/s00138-004-0171-4
10.1016/j.inffus.2020.08.022
10.1016/j.isprsjprs.2024.04.016
10.1007/s11042-020-08670-7
10.1109/CVPR.2015.7299149
10.1117/1.JEI.23.5.053011
10.1016/j.patrec.2006.05.004
10.1016/j.inffus.2014.09.004
10.1016/j.inffus.2007.04.003
10.1117/1.JEI.29.3.033016
10.1109/TIP.2017.2658954
10.1109/TPAMI.2020.3012548
10.1109/97.995823
10.1016/j.sigpro.2020.107513
10.1016/j.image.2019.06.002
10.1109/TIP.2020.2977573
10.1016/j.inffus.2012.01.007
10.1007/s00138-022-01322-w
10.1016/j.inffus.2014.05.004
10.1364/AO.55.010352
10.1016/0167-8655(89)90003-2
10.1007/s00138-013-0502-4
10.1109/LSP.2016.2618776
10.1117/1.JEI.28.2.023005
10.1049/el.2016.1451
10.1016/j.patrec.2006.09.005
10.1016/j.inffus.2011.07.001
10.1109/ACCESS.2020.2971137
10.1109/ACCESS.2019.2909591
10.1038/381607a0
10.3390/e23020247
10.1117/1.JEI.28.5.053001
10.1016/j.inffus.2016.12.001
10.1049/el:20000267
10.1016/j.sigpro.2021.108062
10.1016/j.image.2021.116521
10.1016/j.inffus.2018.01.015
10.1109/TIP.2015.2495260
10.1109/26.477498
10.1016/j.inffus.2011.08.002
10.1007/s11042-020-08661-8
10.1109/TIP.2018.2842152
10.1007/s00138-022-01345-3
10.1016/j.neucom.2019.01.048
10.1109/TIM.2009.2026612
10.1016/j.infrared.2016.07.016
10.1016/j.jvcir.2017.02.006
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.image.2024.117213
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
ExternalDocumentID 10_1016_j_image_2024_117213
S0923596524001140
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c253t-1da96ee29c75384550b59eb2f30247028463fa1d05eb7b7c70e122e9b69eabac3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001321933500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0923-5965
IngestDate Sat Nov 29 05:09:01 EST 2025
Thu Jan 23 08:30:51 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Detail preservation
Sparse representation
Multi-focus image fusion
Online convolutional sparse coding
CBPDN
Sample-dependent dictionary
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-1da96ee29c75384550b59eb2f30247028463fa1d05eb7b7c70e122e9b69eabac3
ParticipantIDs crossref_primary_10_1016_j_image_2024_117213
elsevier_sciencedirect_doi_10_1016_j_image_2024_117213
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Signal processing. Image communication
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Ma (b13) 2008; 9
Han, Cai, Cao, Xu (b64) 2013; 14
Aymaz, Köse, Aymaz (b23) 2020; 79
Xydeas, Petrovic (b60) 2000; 36
Wu, Mei (b35) 2022; 33
Ma, Zhou, Wang, Miao, Zong (b50) 2019; 335
Tan, Zhou, Rong, Qian, Yu (b53) 2018; 57
Zhou, Li, Li, Wang, Tan (b49) 2019; 7
Zhang, Fu, Li, Zou (b3) 2013; 52
Liu, Liu, Wang (b33) 2015; 24
Xu, Ma, Jiang, Guo, Ling (b40) 2020; 44
Li, Chen, Zhan, Zhang, Saruta, Terata (b16) 2019; 28
Zhang, Le, Shao, Xu, Ma (b37) 2021; 66
Ma, Hu, Liu, Fang, Xu (b34) 2019; 78
Jiang, Fan, Li (b39) 2022; 33
Nejati, Samavi, Shirani (b46) 2015; 25
Zhang, Cui, Wang, Wang (b19) 2020; 29
Zhong, Zhang, Liu, Zhang, Mo, Zhang, Hu, Chen, Qi (b6) 2023
Ilyas, Farid, Khan, Grzegorzek (b54) 2021; 23
Li, Kang, Hu, Yang (b14) 2013; 14
Wang, Bovik (b61) 2002; 9
Zhang (b10) 2021; 30
Luo, Zhang, Wu (b22) 2014; 23
Liu, Chen, Ward, Wang (b8) 2016; 23
Amin-Naji, Aghagolzadeh (b48) 2018; 6
Zhang, Cao, Zhu, Chen (b24) 2019; 28
Li, Chai, Li (b30) 2013; 24
De, Chanda (b17) 2013; 14
Liu, Chen, Peng, Wang (b52) 2017; 36
Yang, Li (b2) 2009; 59
Wang, Yao, Kwok (b12) 2018
Chew (b41) 1999
Gong, Sbalzarini (b56) 2017; 26
Zhang, Li, Tan, Li (b7) 2024; 211
Yao, Kwok, Gao, Chen, Liu (b45) 2016
Luo, Zhang, Zhang, Wu (b59) 2017; 45
Eskicioglu, Fisher (b62) 1995; 43
Xu, Fan, Zhang, Le, Huang (b38) 2020; 8
F. Heide, W. Heidrich, G. Wetzstein, Fast and flexible convolutional sparse coding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5135–5143.
Zhou (b63) 2004; 13
Wang, Ma, Liu, Li, Liu (b9) 2021; 99
Ch, Riaz, Iltaf, Ghafoor, Ali (b27) 2020; 79
Wang, Wu, Yu, Zhao (b5) 2022; 33
Piella, Heijmans (b57) 2003
Li, Cai, Tan (b21) 2006; 27
Li, Zhou, Tan, Chen, Zuo (b51) 2021; 184
Toet (b25) 1989; 9
Xu, Wang, Wu, Qian (b26) 2016; 78
Xie, Hu, Wang, Zhang, Qin (b29) 2022
Liu, Liu, Wang (b15) 2015; 23
Huang, Jing (b18) 2007; 28
Aymaz, Köse (b31) 2019; 45
Duan, Chen, Chen (b20) 2016; 55
Ma, Xu, Jiang, Mei, Zhang (b58) 2020; 29
Wen, Yang, Celik, Sushkova, Albertini (b36) 2020; 79
Wang, Yao, Kwok, Ni (b11) 2018; 27
Bin, Jiaxiong (b28) 2005; 16
Guo, Cao, Liu (b32) 2020; 171
Zeiler, Krishnan, Taylor, Fergus (b42) 2010
Olshausen, Field (b1) 1996; 381
Cheng, Xu, Wu (b55) 2023; 92
Li, Wu, Durrani (b47) 2018
Mi, Shang, Zhou, Wang (b4) 2016; 52
Wohlberg (b43) 2015; 25
Wang (10.1016/j.image.2024.117213_b11) 2018; 27
Xydeas (10.1016/j.image.2024.117213_b60) 2000; 36
Wang (10.1016/j.image.2024.117213_b5) 2022; 33
Ch (10.1016/j.image.2024.117213_b27) 2020; 79
Tan (10.1016/j.image.2024.117213_b53) 2018; 57
Ma (10.1016/j.image.2024.117213_b58) 2020; 29
Li (10.1016/j.image.2024.117213_b47) 2018
Wang (10.1016/j.image.2024.117213_b61) 2002; 9
Ma (10.1016/j.image.2024.117213_b50) 2019; 335
Zhou (10.1016/j.image.2024.117213_b49) 2019; 7
De (10.1016/j.image.2024.117213_b17) 2013; 14
Yao (10.1016/j.image.2024.117213_b45) 2016
Amin-Naji (10.1016/j.image.2024.117213_b48) 2018; 6
Aymaz (10.1016/j.image.2024.117213_b23) 2020; 79
Mi (10.1016/j.image.2024.117213_b4) 2016; 52
Ma (10.1016/j.image.2024.117213_b34) 2019; 78
Zhang (10.1016/j.image.2024.117213_b37) 2021; 66
Zhang (10.1016/j.image.2024.117213_b24) 2019; 28
Li (10.1016/j.image.2024.117213_b30) 2013; 24
Wang (10.1016/j.image.2024.117213_b12) 2018
Jiang (10.1016/j.image.2024.117213_b39) 2022; 33
Yang (10.1016/j.image.2024.117213_b2) 2009; 59
Olshausen (10.1016/j.image.2024.117213_b1) 1996; 381
Zhang (10.1016/j.image.2024.117213_b19) 2020; 29
Eskicioglu (10.1016/j.image.2024.117213_b62) 1995; 43
Li (10.1016/j.image.2024.117213_b21) 2006; 27
Chew (10.1016/j.image.2024.117213_b41) 1999
Zeiler (10.1016/j.image.2024.117213_b42) 2010
Wang (10.1016/j.image.2024.117213_b9) 2021; 99
Wen (10.1016/j.image.2024.117213_b36) 2020; 79
Zhong (10.1016/j.image.2024.117213_b6) 2023
Wu (10.1016/j.image.2024.117213_b35) 2022; 33
Li (10.1016/j.image.2024.117213_b51) 2021; 184
Bin (10.1016/j.image.2024.117213_b28) 2005; 16
Liu (10.1016/j.image.2024.117213_b33) 2015; 24
Piella (10.1016/j.image.2024.117213_b57) 2003
Xu (10.1016/j.image.2024.117213_b38) 2020; 8
Toet (10.1016/j.image.2024.117213_b25) 1989; 9
Liu (10.1016/j.image.2024.117213_b8) 2016; 23
Cheng (10.1016/j.image.2024.117213_b55) 2023; 92
Liu (10.1016/j.image.2024.117213_b52) 2017; 36
Zhou (10.1016/j.image.2024.117213_b63) 2004; 13
Li (10.1016/j.image.2024.117213_b14) 2013; 14
Nejati (10.1016/j.image.2024.117213_b46) 2015; 25
Luo (10.1016/j.image.2024.117213_b59) 2017; 45
Gong (10.1016/j.image.2024.117213_b56) 2017; 26
Wohlberg (10.1016/j.image.2024.117213_b43) 2015; 25
Xu (10.1016/j.image.2024.117213_b40) 2020; 44
Luo (10.1016/j.image.2024.117213_b22) 2014; 23
Zhang (10.1016/j.image.2024.117213_b10) 2021; 30
Wang (10.1016/j.image.2024.117213_b13) 2008; 9
Li (10.1016/j.image.2024.117213_b16) 2019; 28
Duan (10.1016/j.image.2024.117213_b20) 2016; 55
Han (10.1016/j.image.2024.117213_b64) 2013; 14
Liu (10.1016/j.image.2024.117213_b15) 2015; 23
Xu (10.1016/j.image.2024.117213_b26) 2016; 78
10.1016/j.image.2024.117213_b44
Zhang (10.1016/j.image.2024.117213_b3) 2013; 52
Guo (10.1016/j.image.2024.117213_b32) 2020; 171
Ilyas (10.1016/j.image.2024.117213_b54) 2021; 23
Zhang (10.1016/j.image.2024.117213_b7) 2024; 211
Huang (10.1016/j.image.2024.117213_b18) 2007; 28
Aymaz (10.1016/j.image.2024.117213_b31) 2019; 45
Xie (10.1016/j.image.2024.117213_b29) 2022
References_xml – volume: 43
  start-page: 2959
  year: 1995
  end-page: 2965
  ident: b62
  article-title: Image quality measures and their performance
  publication-title: IEEE Trans. Commun.
– volume: 78
  start-page: 133
  year: 2016
  end-page: 146
  ident: b26
  article-title: Infrared and multi-type images fusion algorithm based on contrast pyramid transform
  publication-title: Infrared Phys. Technol.
– volume: 33
  start-page: 1
  year: 2022
  end-page: 14
  ident: b35
  article-title: Multi-focus image fusion based on unsupervised learning
  publication-title: Mach. Vis. Appl.
– volume: 23
  start-page: 1882
  year: 2016
  end-page: 1886
  ident: b8
  article-title: Image fusion with convolutional sparse representation
  publication-title: IEEE Signal Process. Lett.
– volume: 25
  start-page: 301
  year: 2015
  end-page: 315
  ident: b43
  article-title: Efficient algorithms for convolutional sparse representations
  publication-title: IEEE Trans. Image Process.
– volume: 79
  start-page: 13311
  year: 2020
  end-page: 13350
  ident: b23
  article-title: Multi-focus image fusion for different datasets with super-resolution using gradient-based new fusion rule
  publication-title: Multimedia Tools Appl.
– volume: 92
  start-page: 80
  year: 2023
  end-page: 92
  ident: b55
  article-title: MUFusion: A general unsupervised image fusion network based on memory unit
  publication-title: Inf. Fusion
– volume: 9
  start-page: 81
  year: 2002
  end-page: 84
  ident: b61
  article-title: A universal image quality index
  publication-title: IEEE Signal Process. Lett.
– volume: 28
  start-page: 493
  year: 2007
  end-page: 500
  ident: b18
  article-title: Evaluation of focus measures in multi-focus image fusion
  publication-title: Pattern Recognit. Lett.
– volume: 24
  start-page: 147
  year: 2015
  end-page: 164
  ident: b33
  article-title: A general framework for image fusion based on multi-scale transform and sparse representation
  publication-title: Inf. Fusion
– volume: 28
  year: 2019
  ident: b24
  article-title: Two-scale decomposition and global sparse features for fusion of multifocus images
  publication-title: J. Electron. Imaging
– start-page: 1
  year: 2022
  end-page: 17
  ident: b29
  article-title: Novel and fast EMD-based image fusion via morphological filter
  publication-title: Vis. Comput.
– start-page: 2528
  year: 2010
  end-page: 2535
  ident: b42
  article-title: Deconvolutional networks
  publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 36
  start-page: 191
  year: 2017
  end-page: 207
  ident: b52
  article-title: Multi-focus image fusion with a deep convolutional neural network
  publication-title: Inf. Fusion
– volume: 14
  start-page: 127
  year: 2013
  end-page: 135
  ident: b64
  article-title: A new image fusion performance metric based on visual information fidelity
  publication-title: Inf. Fusion
– volume: 52
  year: 2013
  ident: b3
  article-title: Dictionary learning method for joint sparse representation-based image fusion
  publication-title: Opt. Eng., Bellingham
– volume: 33
  start-page: 1
  year: 2022
  end-page: 18
  ident: b39
  article-title: Multi-level receptive field feature reuse for multi-focus image fusion
  publication-title: Mach. Vis. Appl.
– volume: 52
  start-page: 1528
  year: 2016
  end-page: 1529
  ident: b4
  article-title: Image fusion-based video deraining using sparse representation
  publication-title: Electron. Lett.
– year: 2023
  ident: b6
  article-title: Unsupervised fusion of misaligned PAT and MRI images via mutually reinforcing cross-modality image generation and registration
  publication-title: IEEE Trans. Med. Imaging
– start-page: 5209
  year: 2018
  end-page: 5218
  ident: b12
  article-title: Online convolutional sparse coding with sample-dependent dictionary
  publication-title: International Conference on Machine Learning
– volume: 27
  start-page: 1948
  year: 2006
  end-page: 1956
  ident: b21
  article-title: A region-based multi-sensor image fusion scheme using pulse-coupled neural network
  publication-title: Pattern Recognit. Lett.
– volume: 16
  start-page: 189
  year: 2005
  end-page: 196
  ident: b28
  article-title: Image fusion method based on nonseparable wavelets
  publication-title: Mach. Vis. Appl.
– year: 1999
  ident: b41
  publication-title: Waves and Fields in Inhomogenous Media
– volume: 8
  start-page: 26316
  year: 2020
  end-page: 26327
  ident: b38
  article-title: A deep model for multi-focus image fusion based on gradients and connected regions
  publication-title: IEEE Access
– volume: 381
  start-page: 607
  year: 1996
  end-page: 609
  ident: b1
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
– volume: 44
  start-page: 502
  year: 2020
  end-page: 518
  ident: b40
  article-title: U2Fusion: A unified unsupervised image fusion network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 30
  year: 2021
  ident: b10
  article-title: Multifocus image fusion using convolutional dictionary learning with adaptive contrast enhancement
  publication-title: J. Electron. Imaging
– volume: 45
  start-page: 46
  year: 2017
  end-page: 61
  ident: b59
  article-title: Multi-focus image fusion using HOSVD and edge intensity
  publication-title: J. Vis. Commun. Image Represent.
– volume: 25
  start-page: 72
  year: 2015
  end-page: 84
  ident: b46
  article-title: Multi-focus image fusion using dictionary-based sparse representation
  publication-title: Inf. Fusion
– volume: 23
  start-page: 247
  year: 2021
  ident: b54
  article-title: Exploiting superpixels for multi-focus image fusion
  publication-title: Entropy
– volume: 45
  start-page: 113
  year: 2019
  end-page: 127
  ident: b31
  article-title: A novel image decomposition-based hybrid technique with super-resolution method for multi-focus image fusion
  publication-title: Inf. Fusion
– volume: 24
  start-page: 1167
  year: 2013
  end-page: 1181
  ident: b30
  article-title: A new fusion scheme for multifocus images based on focused pixels detection
  publication-title: Mach. Vis. Appl.
– volume: 23
  start-page: 139
  year: 2015
  end-page: 155
  ident: b15
  article-title: Multi-focus image fusion with dense SIFT
  publication-title: Inf. Fusion
– volume: 29
  start-page: 4980
  year: 2020
  end-page: 4995
  ident: b58
  article-title: DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion
  publication-title: IEEE Trans. Image Process.
– volume: 79
  start-page: 34531
  year: 2020
  end-page: 34543
  ident: b36
  article-title: Multifocus image fusion using convolutional neural network
  publication-title: Multimedia Tools Appl.
– volume: 26
  start-page: 1786
  year: 2017
  end-page: 1798
  ident: b56
  article-title: Curvature filters efficiently reduce certain variational energies
  publication-title: IEEE Trans. Image Process.
– volume: 79
  start-page: 12817
  year: 2020
  end-page: 12828
  ident: b27
  article-title: A multifocus image fusion using highlevel DWT components and guided filter
  publication-title: Multimedia Tools Appl.
– volume: 7
  start-page: 50780
  year: 2019
  end-page: 50796
  ident: b49
  article-title: Multifocus image fusion based on fast guided filter and focus pixels detection
  publication-title: IEEE Access
– volume: 13
  start-page: 600
  year: 2004
  end-page: 613
  ident: b63
  article-title: Image quality assessment: from error measurement to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 66
  start-page: 40
  year: 2021
  end-page: 53
  ident: b37
  article-title: MFF-GAN: An unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion
  publication-title: Inf. Fusion
– volume: 57
  start-page: 10092
  year: 2018
  end-page: 10101
  ident: b53
  article-title: Fusion of multi-focus images via a Gaussian curvature filter and synthetic focusing degree criterion
  publication-title: Appl. Opt.
– volume: 184
  year: 2021
  ident: b51
  article-title: Multi-focus image fusion based on nonsubsampled contourlet transform and residual removal
  publication-title: Signal Process.
– volume: 211
  start-page: 281
  year: 2024
  end-page: 297
  ident: b7
  article-title: Enhanced wavelet based spatiotemporal fusion networks using cross-paired remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 59
  start-page: 884
  year: 2009
  end-page: 892
  ident: b2
  article-title: Multifocus image fusion and restoration with sparse representation
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 335
  start-page: 9
  year: 2019
  end-page: 20
  ident: b50
  article-title: Multi-focus image fusion using boosted random walks-based algorithm with two-scale focus maps
  publication-title: Neurocomputing
– volume: 55
  start-page: 10352
  year: 2016
  end-page: 10362
  ident: b20
  article-title: Multifocus image fusion using superpixel segmentation and superpixel-based mean filtering
  publication-title: Appl. Opt.
– year: 2018
  ident: b47
  article-title: Multi-focus noisy image fusion using low-rank representation
– volume: 14
  start-page: 147
  year: 2013
  end-page: 162
  ident: b14
  article-title: Image matting for fusion of multi-focus images in dynamic scenes
  publication-title: Inf. Fusion
– volume: 36
  start-page: 308
  year: 2000
  end-page: 309
  ident: b60
  article-title: Objective image fusion performance measure
  publication-title: Electron. Lett.
– volume: 14
  start-page: 136
  year: 2013
  end-page: 146
  ident: b17
  article-title: Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure
  publication-title: Inf. Fusion
– volume: 9
  start-page: 245
  year: 1989
  end-page: 253
  ident: b25
  article-title: Image fusion by a ratio of low-pass pyramid
  publication-title: Pattern Recognit. Lett.
– volume: 28
  year: 2019
  ident: b16
  article-title: Multifocus image fusion using structure-preserving filter
  publication-title: J. Electron. Imaging
– year: 2016
  ident: b45
  article-title: Efficient inexact proximal gradient algorithm for nonconvex problems
– volume: 29
  year: 2020
  ident: b19
  article-title: Multifocus image fusion and depth reconstruction
  publication-title: J. Electron. Imaging
– volume: 9
  start-page: 176
  year: 2008
  end-page: 185
  ident: b13
  article-title: Medical image fusion using m-PCNN
  publication-title: Inf. Fusion
– volume: 78
  start-page: 125
  year: 2019
  end-page: 134
  ident: b34
  article-title: Multi-focus image fusion based on joint sparse representation and optimum theory
  publication-title: Signal Process., Image Commun.
– volume: 6
  start-page: 233
  year: 2018
  end-page: 250
  ident: b48
  article-title: Multi-focus image fusion in DCT domain using variance and energy of Laplacian and correlation coefficient for visual sensor networks
  publication-title: J. AI Data Min.
– volume: 33
  start-page: 1
  year: 2022
  end-page: 16
  ident: b5
  article-title: Joint patch clustering-based adaptive dictionary and sparse representation for multi-modality image fusion
  publication-title: Mach. Vis. Appl.
– volume: 23
  year: 2014
  ident: b22
  article-title: Adaptive multistrategy image fusion method
  publication-title: J. Electron. Imaging
– volume: 27
  start-page: 4850
  year: 2018
  end-page: 4859
  ident: b11
  article-title: Scalable online convolutional sparse coding
  publication-title: IEEE Trans. Image Process.
– volume: 171
  year: 2020
  ident: b32
  article-title: Dual-tree biquaternion wavelet transform and its application to color image fusion
  publication-title: Signal Process.
– volume: 99
  year: 2021
  ident: b9
  article-title: Multi-focus image fusion via Joint convolutional analysis and synthesis sparse representation
  publication-title: Signal Process., Image Commun.
– start-page: III
  year: 2003
  end-page: 173
  ident: b57
  article-title: A new quality metric for image fusion
  publication-title: Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429)
– reference: F. Heide, W. Heidrich, G. Wetzstein, Fast and flexible convolutional sparse coding, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 5135–5143.
– volume: 25
  start-page: 72
  year: 2015
  ident: 10.1016/j.image.2024.117213_b46
  article-title: Multi-focus image fusion using dictionary-based sparse representation
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2014.10.004
– volume: 92
  start-page: 80
  year: 2023
  ident: 10.1016/j.image.2024.117213_b55
  article-title: MUFusion: A general unsupervised image fusion network based on memory unit
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.11.010
– volume: 57
  start-page: 10092
  issue: 35
  year: 2018
  ident: 10.1016/j.image.2024.117213_b53
  article-title: Fusion of multi-focus images via a Gaussian curvature filter and synthetic focusing degree criterion
  publication-title: Appl. Opt.
  doi: 10.1364/AO.57.010092
– volume: 79
  start-page: 34531
  issue: 45
  year: 2020
  ident: 10.1016/j.image.2024.117213_b36
  article-title: Multifocus image fusion using convolutional neural network
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-08945-z
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.image.2024.117213_b63
  article-title: Image quality assessment: from error measurement to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 30
  issue: 5
  year: 2021
  ident: 10.1016/j.image.2024.117213_b10
  article-title: Multifocus image fusion using convolutional dictionary learning with adaptive contrast enhancement
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.30.5.053016
– volume: 33
  start-page: 1
  issue: 5
  year: 2022
  ident: 10.1016/j.image.2024.117213_b35
  article-title: Multi-focus image fusion based on unsupervised learning
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-022-01326-6
– volume: 16
  start-page: 189
  issue: 3
  year: 2005
  ident: 10.1016/j.image.2024.117213_b28
  article-title: Image fusion method based on nonseparable wavelets
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-004-0171-4
– volume: 66
  start-page: 40
  year: 2021
  ident: 10.1016/j.image.2024.117213_b37
  article-title: MFF-GAN: An unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.08.022
– volume: 211
  start-page: 281
  year: 2024
  ident: 10.1016/j.image.2024.117213_b7
  article-title: Enhanced wavelet based spatiotemporal fusion networks using cross-paired remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2024.04.016
– volume: 79
  start-page: 13311
  issue: 19
  year: 2020
  ident: 10.1016/j.image.2024.117213_b23
  article-title: Multi-focus image fusion for different datasets with super-resolution using gradient-based new fusion rule
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-08670-7
– ident: 10.1016/j.image.2024.117213_b44
  doi: 10.1109/CVPR.2015.7299149
– volume: 23
  issue: 5
  year: 2014
  ident: 10.1016/j.image.2024.117213_b22
  article-title: Adaptive multistrategy image fusion method
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.23.5.053011
– volume: 27
  start-page: 1948
  issue: 16
  year: 2006
  ident: 10.1016/j.image.2024.117213_b21
  article-title: A region-based multi-sensor image fusion scheme using pulse-coupled neural network
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2006.05.004
– volume: 24
  start-page: 147
  year: 2015
  ident: 10.1016/j.image.2024.117213_b33
  article-title: A general framework for image fusion based on multi-scale transform and sparse representation
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2014.09.004
– volume: 9
  start-page: 176
  issue: 2
  year: 2008
  ident: 10.1016/j.image.2024.117213_b13
  article-title: Medical image fusion using m-PCNN
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2007.04.003
– volume: 29
  issue: 3
  year: 2020
  ident: 10.1016/j.image.2024.117213_b19
  article-title: Multifocus image fusion and depth reconstruction
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.29.3.033016
– volume: 26
  start-page: 1786
  issue: 4
  year: 2017
  ident: 10.1016/j.image.2024.117213_b56
  article-title: Curvature filters efficiently reduce certain variational energies
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2658954
– volume: 44
  start-page: 502
  issue: 1
  year: 2020
  ident: 10.1016/j.image.2024.117213_b40
  article-title: U2Fusion: A unified unsupervised image fusion network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3012548
– volume: 9
  start-page: 81
  issue: 3
  year: 2002
  ident: 10.1016/j.image.2024.117213_b61
  article-title: A universal image quality index
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/97.995823
– volume: 171
  year: 2020
  ident: 10.1016/j.image.2024.117213_b32
  article-title: Dual-tree biquaternion wavelet transform and its application to color image fusion
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107513
– volume: 78
  start-page: 125
  year: 2019
  ident: 10.1016/j.image.2024.117213_b34
  article-title: Multi-focus image fusion based on joint sparse representation and optimum theory
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2019.06.002
– volume: 29
  start-page: 4980
  year: 2020
  ident: 10.1016/j.image.2024.117213_b58
  article-title: DDcGAN: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2977573
– volume: 6
  start-page: 233
  issue: 2
  year: 2018
  ident: 10.1016/j.image.2024.117213_b48
  article-title: Multi-focus image fusion in DCT domain using variance and energy of Laplacian and correlation coefficient for visual sensor networks
  publication-title: J. AI Data Min.
– volume: 14
  start-page: 136
  issue: 2
  year: 2013
  ident: 10.1016/j.image.2024.117213_b17
  article-title: Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2012.01.007
– volume: 33
  start-page: 1
  issue: 5
  year: 2022
  ident: 10.1016/j.image.2024.117213_b5
  article-title: Joint patch clustering-based adaptive dictionary and sparse representation for multi-modality image fusion
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-022-01322-w
– volume: 23
  start-page: 139
  year: 2015
  ident: 10.1016/j.image.2024.117213_b15
  article-title: Multi-focus image fusion with dense SIFT
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2014.05.004
– volume: 55
  start-page: 10352
  issue: 36
  year: 2016
  ident: 10.1016/j.image.2024.117213_b20
  article-title: Multifocus image fusion using superpixel segmentation and superpixel-based mean filtering
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.010352
– volume: 9
  start-page: 245
  issue: 4
  year: 1989
  ident: 10.1016/j.image.2024.117213_b25
  article-title: Image fusion by a ratio of low-pass pyramid
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(89)90003-2
– volume: 24
  start-page: 1167
  issue: 6
  year: 2013
  ident: 10.1016/j.image.2024.117213_b30
  article-title: A new fusion scheme for multifocus images based on focused pixels detection
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-013-0502-4
– volume: 23
  start-page: 1882
  issue: 12
  year: 2016
  ident: 10.1016/j.image.2024.117213_b8
  article-title: Image fusion with convolutional sparse representation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2618776
– volume: 28
  issue: 2
  year: 2019
  ident: 10.1016/j.image.2024.117213_b16
  article-title: Multifocus image fusion using structure-preserving filter
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.28.2.023005
– start-page: III
  year: 2003
  ident: 10.1016/j.image.2024.117213_b57
  article-title: A new quality metric for image fusion
– year: 2018
  ident: 10.1016/j.image.2024.117213_b47
– volume: 52
  start-page: 1528
  issue: 18
  year: 2016
  ident: 10.1016/j.image.2024.117213_b4
  article-title: Image fusion-based video deraining using sparse representation
  publication-title: Electron. Lett.
  doi: 10.1049/el.2016.1451
– year: 2023
  ident: 10.1016/j.image.2024.117213_b6
  article-title: Unsupervised fusion of misaligned PAT and MRI images via mutually reinforcing cross-modality image generation and registration
  publication-title: IEEE Trans. Med. Imaging
– volume: 28
  start-page: 493
  issue: 4
  year: 2007
  ident: 10.1016/j.image.2024.117213_b18
  article-title: Evaluation of focus measures in multi-focus image fusion
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2006.09.005
– start-page: 2528
  year: 2010
  ident: 10.1016/j.image.2024.117213_b42
  article-title: Deconvolutional networks
– volume: 14
  start-page: 147
  issue: 2
  year: 2013
  ident: 10.1016/j.image.2024.117213_b14
  article-title: Image matting for fusion of multi-focus images in dynamic scenes
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2011.07.001
– volume: 8
  start-page: 26316
  year: 2020
  ident: 10.1016/j.image.2024.117213_b38
  article-title: A deep model for multi-focus image fusion based on gradients and connected regions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971137
– year: 1999
  ident: 10.1016/j.image.2024.117213_b41
– year: 2016
  ident: 10.1016/j.image.2024.117213_b45
– volume: 7
  start-page: 50780
  year: 2019
  ident: 10.1016/j.image.2024.117213_b49
  article-title: Multifocus image fusion based on fast guided filter and focus pixels detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909591
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  ident: 10.1016/j.image.2024.117213_b1
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 23
  start-page: 247
  issue: 2
  year: 2021
  ident: 10.1016/j.image.2024.117213_b54
  article-title: Exploiting superpixels for multi-focus image fusion
  publication-title: Entropy
  doi: 10.3390/e23020247
– volume: 28
  issue: 5
  year: 2019
  ident: 10.1016/j.image.2024.117213_b24
  article-title: Two-scale decomposition and global sparse features for fusion of multifocus images
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.28.5.053001
– volume: 36
  start-page: 191
  year: 2017
  ident: 10.1016/j.image.2024.117213_b52
  article-title: Multi-focus image fusion with a deep convolutional neural network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.12.001
– volume: 36
  start-page: 308
  issue: 4
  year: 2000
  ident: 10.1016/j.image.2024.117213_b60
  article-title: Objective image fusion performance measure
  publication-title: Electron. Lett.
  doi: 10.1049/el:20000267
– volume: 184
  year: 2021
  ident: 10.1016/j.image.2024.117213_b51
  article-title: Multi-focus image fusion based on nonsubsampled contourlet transform and residual removal
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2021.108062
– volume: 99
  year: 2021
  ident: 10.1016/j.image.2024.117213_b9
  article-title: Multi-focus image fusion via Joint convolutional analysis and synthesis sparse representation
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2021.116521
– volume: 45
  start-page: 113
  year: 2019
  ident: 10.1016/j.image.2024.117213_b31
  article-title: A novel image decomposition-based hybrid technique with super-resolution method for multi-focus image fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.01.015
– volume: 25
  start-page: 301
  issue: 1
  year: 2015
  ident: 10.1016/j.image.2024.117213_b43
  article-title: Efficient algorithms for convolutional sparse representations
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2495260
– volume: 43
  start-page: 2959
  issue: 12
  year: 1995
  ident: 10.1016/j.image.2024.117213_b62
  article-title: Image quality measures and their performance
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/26.477498
– volume: 14
  start-page: 127
  issue: 2
  year: 2013
  ident: 10.1016/j.image.2024.117213_b64
  article-title: A new image fusion performance metric based on visual information fidelity
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2011.08.002
– volume: 79
  start-page: 12817
  issue: 19
  year: 2020
  ident: 10.1016/j.image.2024.117213_b27
  article-title: A multifocus image fusion using highlevel DWT components and guided filter
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-08661-8
– volume: 27
  start-page: 4850
  issue: 10
  year: 2018
  ident: 10.1016/j.image.2024.117213_b11
  article-title: Scalable online convolutional sparse coding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2842152
– volume: 33
  start-page: 1
  issue: 6
  year: 2022
  ident: 10.1016/j.image.2024.117213_b39
  article-title: Multi-level receptive field feature reuse for multi-focus image fusion
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-022-01345-3
– volume: 335
  start-page: 9
  year: 2019
  ident: 10.1016/j.image.2024.117213_b50
  article-title: Multi-focus image fusion using boosted random walks-based algorithm with two-scale focus maps
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.048
– volume: 59
  start-page: 884
  issue: 4
  year: 2009
  ident: 10.1016/j.image.2024.117213_b2
  article-title: Multifocus image fusion and restoration with sparse representation
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2026612
– volume: 52
  issue: 5
  year: 2013
  ident: 10.1016/j.image.2024.117213_b3
  article-title: Dictionary learning method for joint sparse representation-based image fusion
  publication-title: Opt. Eng., Bellingham
– start-page: 5209
  year: 2018
  ident: 10.1016/j.image.2024.117213_b12
  article-title: Online convolutional sparse coding with sample-dependent dictionary
– volume: 78
  start-page: 133
  year: 2016
  ident: 10.1016/j.image.2024.117213_b26
  article-title: Infrared and multi-type images fusion algorithm based on contrast pyramid transform
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2016.07.016
– start-page: 1
  year: 2022
  ident: 10.1016/j.image.2024.117213_b29
  article-title: Novel and fast EMD-based image fusion via morphological filter
  publication-title: Vis. Comput.
– volume: 45
  start-page: 46
  year: 2017
  ident: 10.1016/j.image.2024.117213_b59
  article-title: Multi-focus image fusion using HOSVD and edge intensity
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2017.02.006
SSID ssj0002409
Score 2.4066727
Snippet Multi-focus image fusion merges multiple images captured from different focused regions of a scene to create a fully-focused image. Convolutional sparse coding...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 117213
SubjectTerms CBPDN
Detail preservation
Multi-focus image fusion
Online convolutional sparse coding
Sample-dependent dictionary
Sparse representation
Title Improved multi-focus image fusion using online convolutional sparse coding based on sample-dependent dictionary
URI https://dx.doi.org/10.1016/j.image.2024.117213
Volume 130
WOSCitedRecordID wos001321933500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0923-5965
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002409
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc48Cggyks-cFtcNU4cx8eqKqIIVUgUtOIS2Y6zpILsqrupyh_h9zJ-ZbNtVdEDl2hlZSeW55M983keCL1leWZsxiSRmWIkM4XtBigVMXkOx0uqJHO3598-8ePjYjoVn0ejPzEX5vwnb9vi4kIs_quqYQyUbVNnb6HuXigMwG9QOjxB7fD8J8V7mgDsSBcrSOq57paT5peNzak7y41NOscP-BoZLuw8zMemjizA0bWDLtfFHnGVvU5YSltEmMSOuatJ1bh8CLmZUP2lmVkhC598YFsyTI7ch_UwDWVNvzrqtamaK-z1wQ_TzmoZTlUbL-Sba8v5765HIqy6e_l7Y6ma2ZC_oGzAXwQikqaECd8xot-Tw2WN31UT66em1274nns43XXLCO4-zXbXb2-W17507PXBiDHO7bR0QkorpPRC7qAtygGtY7S1f3Q4_dif8WAH-SqOYe6xnpWLHLwyl-ttnoEdc_IIPQgOCN73wHmMRqbdRg-DM4LDVr-EodjvI45to_uD4pVP0DwCDQ-Aht2ssAcadkDDHmh4A2jYAw17oGEHNHgRXwYaXgPtKfr6_vDk4AMJ7TuIpixdkaSSIjeGCg0ucWGz5xUTRtE6hZXhYNdmeVrLpNpjRnHFNd8zCaVGqFwYqaROn6FxO2_Nc4TBBSw05UaYKsk4M0KDDKkzMK3yDHzyHfQuLnC58FVayhvUuoPyqIQyGJregCwBVjf98cXtvvMS3Vsj_hUar8468xrd1eerZnn2JmDqL-Uko5U
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+multi-focus+image+fusion+using+online+convolutional+sparse+coding+based+on+sample-dependent+dictionary&rft.jtitle=Signal+processing.+Image+communication&rft.au=He%2C+Sidi&rft.au=Zhang%2C+Chengfang&rft.au=Li%2C+Haoyue&rft.au=Feng%2C+Ziliang&rft.date=2025-01-01&rft.issn=0923-5965&rft.volume=130&rft.spage=117213&rft_id=info:doi/10.1016%2Fj.image.2024.117213&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_image_2024_117213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-5965&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-5965&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-5965&client=summon