A parallel exponential integrator scheme for linear differential equations

New approximations of the matrix φ functions are developed. These approximations are rational functions of a specific form allowing simple and accurate schemes for linear systems. Furthermore, these approximations are fully parallelizable. Several tests show the efficiency of the method and its good...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied numerical mathematics Ročník 208; s. 356 - 364
Hlavní autori: Hecht, F., Kaber, S.-M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.02.2025
Predmet:
ISSN:0168-9274
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract New approximations of the matrix φ functions are developed. These approximations are rational functions of a specific form allowing simple and accurate schemes for linear systems. Furthermore, these approximations are fully parallelizable. Several tests show the efficiency of the method and its good parallelization properties.
AbstractList New approximations of the matrix φ functions are developed. These approximations are rational functions of a specific form allowing simple and accurate schemes for linear systems. Furthermore, these approximations are fully parallelizable. Several tests show the efficiency of the method and its good parallelization properties.
Author Kaber, S.-M.
Hecht, F.
Author_xml – sequence: 1
  givenname: F.
  surname: Hecht
  fullname: Hecht, F.
– sequence: 2
  givenname: S.-M.
  surname: Kaber
  fullname: Kaber, S.-M.
  email: sidi-mahmoud.kaber@sorbonne-universite.fr
BookMark eNp9kM1OwzAQhH0oEm3hCbjkBRLs2E7sA4eq4qeoEhc4W469BlepE-wUwdvj0p457Wp2ZzT6FmgWhgAI3RBcEUya212lx3DYVzWuWVYqTMQMzfNFlLJu2SVapLTDGHPO8Bw9r4pRR9330BfwPeaoMHndFz5M8B71NMQimQ_YQ-Hy2vsAOhbWOwfx_AmfBz35IaQrdOF0n-D6PJfo7eH-df1Ubl8eN-vVtjQ1p1NJDG84a5pOaOxaQVtpbSeBUN0IylpmHZa1hE47yTAYwQSntm07qbmsqXN0iegp18QhpQhOjdHvdfxRBKsjArVTfwjUEcFRzAiy6-7kglzty0NUyXgIBqyPYCZlB_-v_xfv3mrv
Cites_doi 10.1137/0729014
10.1137/S1064827595295337
10.1137/140964655
10.1016/0021-9045(69)90030-6
10.1002/gamm.201310002
10.1016/j.cam.2003.08.006
10.1017/S0962492910000048
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.apnum.2024.10.018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EndPage 364
ExternalDocumentID 10_1016_j_apnum_2024_10_018
S0168927424002940
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABAOU
ABEFU
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADNMO
AEBSH
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
KOM
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
VH1
VOH
WH7
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c253t-1c565466b8a0f78379ddb9e13a683474df0929ebaf940ec84853d77b9a5923ff3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001391517500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-9274
IngestDate Sat Nov 29 02:30:18 EST 2025
Sat Dec 21 16:01:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parallel computing
Exponential integrators
Matrix exponential
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c253t-1c565466b8a0f78379ddb9e13a683474df0929ebaf940ec84853d77b9a5923ff3
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_apnum_2024_10_018
elsevier_sciencedirect_doi_10_1016_j_apnum_2024_10_018
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Applied numerical mathematics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hecht, Kaber, Perrin, Plagne, Salomon (br0040) 2022
Lu (br0060) 2003; 161
Güttel (br0030) 2013; 36
Schmelzer, Trefethen (br0110) 2007; 29
Hochbruck, Lubich, Selhofer (br0050) 1998; 19
br0100
Minchev, Wright (br0080)
Göckler, Grimm (br0020) 2014; 35
Saad (br0090) 1992; 29
Cody, Meinardus, Varga (br0010) 1969; 2
Hochbruck, Ostermann (br0070) 2010; 19
Minchev (10.1016/j.apnum.2024.10.018_br0080)
Schmelzer (10.1016/j.apnum.2024.10.018_br0110) 2007; 29
Hecht (10.1016/j.apnum.2024.10.018_br0040)
Güttel (10.1016/j.apnum.2024.10.018_br0030) 2013; 36
Göckler (10.1016/j.apnum.2024.10.018_br0020) 2014; 35
Hochbruck (10.1016/j.apnum.2024.10.018_br0050) 1998; 19
Hochbruck (10.1016/j.apnum.2024.10.018_br0070) 2010; 19
Saad (10.1016/j.apnum.2024.10.018_br0090) 1992; 29
Cody (10.1016/j.apnum.2024.10.018_br0010) 1969; 2
Lu (10.1016/j.apnum.2024.10.018_br0060) 2003; 161
References_xml – ident: br0080
  article-title: A review of exponential integrators for first order semi-linear problems
– volume: 161
  year: 2003
  ident: br0060
  article-title: Computing a matrix function for exponential integrators
  publication-title: J. Comput. Appl. Math.
– volume: 29
  year: 1992
  ident: br0090
  article-title: Analysis of some Krylov subspace approximations to the matrix exponential operator
  publication-title: SIAM J. Numer. Anal.
– volume: 2
  year: 1969
  ident: br0010
  article-title: Chebyshev rational approximations to
  publication-title: J. Approx. Theory
– volume: 29
  year: 2007
  ident: br0110
  article-title: Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals
  publication-title: Electron. Trans. Numer. Anal.
– ident: br0100
– volume: 36
  year: 2013
  ident: br0030
  article-title: Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection
  publication-title: GAMM-Mitt.
– year: 2022
  ident: br0040
  article-title: Parallel approximation of the exponential of Hermitian matrices
– volume: 19
  year: 2010
  ident: br0070
  article-title: Exponential integrators
  publication-title: Acta Numer.
– volume: 35
  year: 2014
  ident: br0020
  article-title: Uniform approximation of
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 19
  year: 1998
  ident: br0050
  article-title: Exponential integrators for large systems of differential equations
  publication-title: SIAM J. Sci. Comput.
– volume: 29
  issue: 1
  year: 1992
  ident: 10.1016/j.apnum.2024.10.018_br0090
  article-title: Analysis of some Krylov subspace approximations to the matrix exponential operator
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0729014
– volume: 29
  year: 2007
  ident: 10.1016/j.apnum.2024.10.018_br0110
  article-title: Evaluating matrix functions for exponential integrators via Carathéodory-Fejér approximation and contour integrals
  publication-title: Electron. Trans. Numer. Anal.
– volume: 19
  issue: 5
  year: 1998
  ident: 10.1016/j.apnum.2024.10.018_br0050
  article-title: Exponential integrators for large systems of differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827595295337
– volume: 35
  issue: 4
  year: 2014
  ident: 10.1016/j.apnum.2024.10.018_br0020
  article-title: Uniform approximation of φ-functions in exponential integrators by a rational Krylov subspace method with simple poles
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/140964655
– ident: 10.1016/j.apnum.2024.10.018_br0040
– volume: 2
  year: 1969
  ident: 10.1016/j.apnum.2024.10.018_br0010
  article-title: Chebyshev rational approximations to exp(−x) in [0,+∞) and applications to heat-conduction problems
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(69)90030-6
– volume: 36
  issue: 1
  year: 2013
  ident: 10.1016/j.apnum.2024.10.018_br0030
  article-title: Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection
  publication-title: GAMM-Mitt.
  doi: 10.1002/gamm.201310002
– ident: 10.1016/j.apnum.2024.10.018_br0080
– volume: 161
  year: 2003
  ident: 10.1016/j.apnum.2024.10.018_br0060
  article-title: Computing a matrix function for exponential integrators
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2003.08.006
– volume: 19
  year: 2010
  ident: 10.1016/j.apnum.2024.10.018_br0070
  article-title: Exponential integrators
  publication-title: Acta Numer.
  doi: 10.1017/S0962492910000048
SSID ssj0005540
Score 2.4003406
Snippet New approximations of the matrix φ functions are developed. These approximations are rational functions of a specific form allowing simple and accurate schemes...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 356
SubjectTerms Exponential integrators
Matrix exponential
Parallel computing
Title A parallel exponential integrator scheme for linear differential equations
URI https://dx.doi.org/10.1016/j.apnum.2024.10.018
Volume 208
WOSCitedRecordID wos001391517500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0168-9274
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005540
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZ49MAFChTxaCsfuC2Jkji24-MKgSgChMRDe4ucxJaKlrDsA_HzGcd2NtUi1CL1EkVWEifzRZNvJuNvEDqMmCxNq7cgrqgJUCj4QaJFYHRMSCV1GTXq_PcX_OoqGwzEtWt0OWnaCfC6zl5fxei_Qg1jALZZOvsPcLcXhQHYB9BhC7DD9q-A7_eMnPdwqIZGvv-pNuVAjbKG1YV4GvcgoFWPVuzbkEw5btukNEeq51knjecVah1brWf2F8-w99gKvra0_EyVNtI_DVtHLgvX2isMLsNujiGhvizZJ74WFr_YXCQDX5nYJjvemSZR1nGHhLLOl5VYvfIFp23zBw-hHMEzQMiepKEpuHN--U817Bszq5nU1L4mIo2W0WrCqQCHttr_dTI4n9f30GY1bHuXXnKqKe5bmOp9WtKhGrdf0bqLEXDfYruJllS9hTYcAth548k2Ou9jDzXuQI3nUGMLNQaosYUad6HGLdTf0N3pye3xWeB6YwRlQsk0iEtqlqGxIpOR5hnhoqoKoWIiWUZSnlY6AuKrCqnBRqrMUqBlFeeFkBQovdZkB63UcF-7CHNJEh1VBVBPlca6FIxWkokYxihLVbyHjrxp8pGVQMl9beBD3lgyN5Y0g2DJPcS8-XLH4iw7ywHvj07c_-yJB2ht_tJ-RyvT8Uz9QF_Kl-nvyfiney_eAH8XbOE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+exponential+integrator+scheme+for+linear+differential+equations&rft.jtitle=Applied+numerical+mathematics&rft.au=Hecht%2C+F.&rft.au=Kaber%2C+S.-M.&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=0168-9274&rft.volume=208&rft.spage=356&rft.epage=364&rft_id=info:doi/10.1016%2Fj.apnum.2024.10.018&rft.externalDocID=S0168927424002940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9274&client=summon