Robust variability of grid cell properties within individual grid modules enhances encoding of local space

Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:eLife Ročník 13
Hlavní autori: Redman, William T, Acosta-Mendoza, Santiago, Wei, Xue-Xin, Goard, Michael J
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England eLife Sciences Publications, Ltd 20.02.2025
eLife Sciences Publications Ltd
Predmet:
ISSN:2050-084X, 2050-084X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.
AbstractList Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.
Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.
Author Goard, Michael J
Redman, William T
Wei, Xue-Xin
Acosta-Mendoza, Santiago
Author_xml – sequence: 1
  givenname: William T
  orcidid: 0000-0002-4147-2026
  surname: Redman
  fullname: Redman, William T
– sequence: 2
  givenname: Santiago
  orcidid: 0009-0003-6698-476X
  surname: Acosta-Mendoza
  fullname: Acosta-Mendoza, Santiago
– sequence: 3
  givenname: Xue-Xin
  surname: Wei
  fullname: Wei, Xue-Xin
– sequence: 4
  givenname: Michael J
  orcidid: 0000-0002-5366-8501
  surname: Goard
  fullname: Goard, Michael J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39976331$$D View this record in MEDLINE/PubMed
BookMark eNpVkk1r3DAQhkVISdJtbj0XH3vophpLsuRTKaFpAwuFkkBvQp-7WrySK9kb8u_jXach0WUGzcszmtH7Hp3GFB1CHwFfccboV7cK3l0Bxg2rT9BFjRleYkH_nr7Kz9FlKVs8HU6FgPYMnZO25Q0hcIG2f5Iey1DtVQ5Khy4Mj1Xy1ToHWxnXdVWfU-_yEFypHsKwCbEK0YZ9sKPqZtku2bGbyi5uVDTHxCQb4voA6pKZdKVXxn1A77zqirt8jgt0f_Pj7vrXcvX75-3199XS1IzUSwGNbYB6gMbVRAvwDSdcWWwcFy0mVDPCjG0FJ4ZyxTXXteAGmGk8tK4hC3Q7c21SW9nnsFP5USYV5PEi5bVU00CmcxJzjL3jngPRFOu6NUxZDaAw8xQYnVjfZlY_6p2zxsUhq-4N9G0lho1cp70EEBRacXjN52dCTv9GVwa5C-WwWRVdGosk0AjOeT3NvkCfXjd76fL_tybBl1lgciolO_8iASwPfpBHP8jZD-QJsN6pKQ
Cites_doi 10.1038/nn.2865
10.7554/eLife.10094
10.1103/PhysRevLett.109.018103
10.7554/eLife.31745
10.1101/2024.05.30.596577
10.1523/JNEUROSCI.4724-06.2007
10.1038/nrn2614
10.1038/nn.3450
10.1038/nn.2396
10.1073/pnas.0807744105
10.3389/fncir.2018.00121
10.1038/s41583-021-00499-9
10.1371/journal.pcbi.1004052
10.1016/j.cub.2017.06.034
10.1523/JNEUROSCI.5218-03.2004
10.1126/science.1500816
10.7554/eLife.75391
10.48550/arXiv.2311.02316
10.1016/j.cell.2022.02.017
10.1016/j.neuron.2023.03.027
10.1038/nn.2901
10.48550/arXiv.2209.15563
10.1371/journal.pcbi.1007796
10.1523/JNEUROSCI.5684-07.2008
10.1101/2021.10.30.466617
10.1007/11840817_77
10.1016/j.neuron.2015.07.012
10.1038/nn.2824
10.1126/science.aav5297
10.1038/s41593-017-0049-1
10.1038/s41593-017-0055-3
10.1038/nature14151
10.21105/joss.00861
10.1038/nature05601
10.1038/nn.3329
10.1038/s41593-019-0359-6
10.32470/CCN.2023.1356-0
10.1126/science.aav9199
10.1016/j.celrep.2023.113142
10.1038/nrn1932
10.1002/hipo.20244
10.1038/nature11587
10.1109/CDC51059.2022.9992592
10.7554/eLife.08362
10.1073/pnas.1421963112
10.1126/science.abf4588
10.1016/j.cell.2018.08.066
10.1523/JNEUROSCI.4353-05.2006
10.1016/j.neuron.2015.07.007
10.1080/09548980601064846
10.1038/nn.3310
10.1073/pnas.1214107109
10.1038/321579a0
10.1162/NECO_a_00319
10.1038/s41586-018-0102-6
10.1016/j.isci.2023.108102
10.1371/journal.pcbi.1000291
10.1016/j.conb.2015.12.008
10.1126/science.1222403
10.1101/2024.03.14.585049
10.48550/arXiv.1803.07770
10.1038/s41467-021-23260-3
10.1073/pnas.1503155112
10.1016/j.neuron.2017.03.004
10.7554/eLife.34700
10.1162/neco.2006.18.8.1951
10.1038/nature21692
10.1101/101899
10.1038/s41467-021-26022-3
10.7554/eLife.34560
10.1126/science.1125572
10.1016/j.neuron.2015.07.006
10.1101/2021.10.28.466284
10.1038/s41586-024-07557-z
10.48550/arXiv.2302.09160
10.1126/science.1166466
10.1038/nature03721
10.1073/pnas.1421753111
10.1038/s41593-017-0050-8
10.1038/nature11649
10.1038/nature24636
10.7554/eLife.56894
10.1038/s41586-018-0191-2
10.1038/s41586-021-04268-7
10.1126/science.aaf0941
10.1038/nature14153
10.1016/j.neuron.2022.10.003
10.1038/nature14467
10.1109/CVPRW59228.2023.00068
10.1523/JNEUROSCI.6048-08.2009
10.1038/s41593-019-0360-0
ContentType Journal Article
Copyright 2024, Redman, Acosta-Mendoza et al.
2024, Redman, Acosta-Mendoza et al 2024 Redman, Acosta-Mendoza et al
Copyright_xml – notice: 2024, Redman, Acosta-Mendoza et al.
– notice: 2024, Redman, Acosta-Mendoza et al 2024 Redman, Acosta-Mendoza et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.7554/eLife.100652
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_0700fe7f713b40b29c5adb11a05f4154
PMC11841986
39976331
10_7554_eLife_100652
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: 2318065
– fundername: NIH HHS
  grantid: R01 NS121919
– fundername: Whitehall Foundation
  grantid: 2022-05-009
– fundername: National Science Foundation
  grantid: 1934288
– fundername: NINDS NIH HHS
  grantid: R01 NS121919
– fundername: ;
  grantid: 1934288
– fundername: ;
  grantid: R01 NS121919
– fundername: ;
  grantid: 2022-05-009
– fundername: ;
  grantid: 2318065
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c2532-816d614f116e23b81f6737ad0ce789034b535cd9873c47a7b7b287c15c6f19e63
IEDL.DBID DOA
ISSN 2050-084X
IngestDate Fri Oct 03 12:45:19 EDT 2025
Tue Nov 04 02:06:17 EST 2025
Sun Nov 09 05:18:12 EST 2025
Sat May 10 01:41:05 EDT 2025
Sat Nov 29 08:16:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords mouse
entorhinal cortex
grid cells
spatial coding
neuroscience
Language English
License 2024, Redman, Acosta-Mendoza et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2532-816d614f116e23b81f6737ad0ce789034b535cd9873c47a7b7b287c15c6f19e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0009-0003-6698-476X
0000-0002-4147-2026
0000-0002-5366-8501
OpenAccessLink https://doaj.org/article/0700fe7f713b40b29c5adb11a05f4154
PMID 39976331
PQID 3168777225
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0700fe7f713b40b29c5adb11a05f4154
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11841986
proquest_miscellaneous_3168777225
pubmed_primary_39976331
crossref_primary_10_7554_eLife_100652
PublicationCentury 2000
PublicationDate 20250220
PublicationDateYYYYMMDD 2025-02-20
PublicationDate_xml – month: 2
  year: 2025
  text: 20250220
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2025
Publisher eLife Sciences Publications, Ltd
eLife Sciences Publications Ltd
Publisher_xml – name: eLife Sciences Publications, Ltd
– name: eLife Sciences Publications Ltd
References Blair (bib6) 2007; 27
Klukas (bib42) 2020; 16
Krupic (bib44) 2015; 518
Sargolini (bib73) 2006; 312
Killian (bib41) 2012; 491
Constantinescu (bib12) 2016; 352
Fyhn (bib26) 2007; 446
Weber (bib90) 2018; 7
Dong (bib18) 2021; 12
Ginosar (bib29) 2023; 111
Diehl (bib17) 2017; 94
Fuhs (bib25) 2006; 26
Mizrahi (bib56) 2004; 24
Redman (bib68) 2022; 11
Yoon (bib93) 2013; 16
McInnes (bib54) 2018
Aronov (bib3) 2017; 543
Solstad (bib79) 2006; 16
Low (bib48) 2014; 111
Schøyen (bib76) 2023; 26
Paik (bib62) 2011; 14
Wilming (bib92) 2018; 7
Redman (bib70) 2025
Blasdel (bib7) 1986; 321
Smith (bib78) 2011; 14
Acosta (bib1) 2023
Guanella (bib33) 2006
Schaeffer (bib75) 2024
Ester (bib23) 1996
Hainmueller (bib35) 2018; 558
Gardner (bib27) 2019; 22
Perez Nieves (bib63) 2021; 12
Cueva (bib14) 2018
Lu (bib49) 2015; 87
Butler (bib10) 2019; 363
Fiete (bib24) 2008; 28
Redman (bib67) 2022
Krupic (bib43) 2012; 337
McNaughton (bib55) 2006; 7
Chelaru (bib11) 2008; 105
Dunn (bib22) 2017
Kubie (bib45) 2015; 112
Stemmler (bib85) 2015; 1
Hafting (bib34) 2005; 436
Gardner (bib28) 2022; 602
Rueckemann (bib72) 2021; 22
Dordek (bib19) 2016; 5
Hawkins (bib36) 2018; 12
Mathis (bib53) 2012; 109
Dunn (bib21) 2015; 11
Schaeffer (bib74) 2023
Gjorgjieva (bib30) 2016; 37
Mallory (bib50) 2018; 21
Wei (bib91) 2015; 4
Nau (bib57) 2018; 21
Nayebi (bib58) 2021
Gu (bib32) 2018; 175
Couey (bib13) 2013; 16
Pettersen (bib65) 2024
Burak (bib8) 2009; 5
Zong (bib95) 2022; 185
Julian (bib38) 2018; 21
Jun (bib39) 2017; 551
Pfeiffer (bib66) 2018; 7
Shamir (bib77) 2006; 18
Solstad (bib80) 2008; 322
Khona (bib40) 2022
Trettel (bib88) 2019; 22
Sreenivasan (bib83) 2011; 14
Banino (bib5) 2018; 557
Gonzalez (bib31) 2019; 365
Sorscher (bib82) 2023; 111
de Almeida (bib15) 2009; 29
Sorscher (bib81) 2019
Stensola (bib86) 2012; 492
Lee (bib46) 2015; 87
Ziv (bib94) 2013; 16
Attardo (bib4) 2015; 523
Stensola (bib87) 2015; 518
Ismakov (bib37) 2017; 27
Mathis (bib52) 2012; 24
Steinmetz (bib84) 2021; 372
Dorrell (bib20) 2023
Ostrow (bib61) 2024
Agmon (bib2) 2020; 9
Neupane (bib59) 2024; 630
Pettersen (bib64) 2024
Bush (bib9) 2015; 87
Ormond (bib60) 2015; 112
Levy (bib47) 2023; 42
Mankin (bib51) 2012; 109
Derdikman (bib16) 2009; 12
Redman (bib69) 2023
Rolls (bib71) 2006; 17
van Strien (bib89) 2009; 10
38915504 - bioRxiv. 2024 Dec 11:2024.02.27.582373. doi: 10.1101/2024.02.27.582373.
References_xml – volume: 14
  start-page: 803
  year: 2011
  ident: bib78
  article-title: Life imitates op art
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2865
– volume: 5
  year: 2016
  ident: bib19
  article-title: Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis
  publication-title: eLife
  doi: 10.7554/eLife.10094
– volume: 109
  year: 2012
  ident: bib53
  article-title: Resolution of nested neuronal representations can be exponential in the number of neurons
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.109.018103
– volume-title: Software Heritage
  year: 2025
  ident: bib70
  article-title: Robust-grid-cell-variability
– volume: 7
  year: 2018
  ident: bib92
  article-title: Entorhinal cortex receptive fields are modulated by spatial attention, even without movement
  publication-title: eLife
  doi: 10.7554/eLife.31745
– volume-title: bioRxiv
  year: 2024
  ident: bib64
  article-title: Self-supervised grid cells without path integration
  doi: 10.1101/2024.05.30.596577
– volume: 27
  start-page: 3211
  year: 2007
  ident: bib6
  article-title: Scale-invariant memory representations emerge from moiré interference between grid fields that produce theta oscillations: a computational model
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4724-06.2007
– volume: 10
  start-page: 272
  year: 2009
  ident: bib89
  article-title: The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network
  publication-title: Nature Reviews. Neuroscience
  doi: 10.1038/nrn2614
– volume: 16
  start-page: 1077
  year: 2013
  ident: bib93
  article-title: Specific evidence of low-dimensional continuous attractor dynamics in grid cells
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3450
– volume: 12
  start-page: 1325
  year: 2009
  ident: bib16
  article-title: Fragmentation of grid cell maps in a multicompartment environment
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2396
– volume: 105
  start-page: 16344
  year: 2008
  ident: bib11
  article-title: Efficient coding in heterogeneous neuronal populations
  publication-title: PNAS
  doi: 10.1073/pnas.0807744105
– volume: 12
  year: 2018
  ident: bib36
  article-title: A framework for intelligence and cortical function based on grid cells in the neocortex
  publication-title: Frontiers in Neural Circuits
  doi: 10.3389/fncir.2018.00121
– volume: 22
  start-page: 637
  year: 2021
  ident: bib72
  article-title: The grid code for ordered experience
  publication-title: Nature Reviews. Neuroscience
  doi: 10.1038/s41583-021-00499-9
– volume: 11
  year: 2015
  ident: bib21
  article-title: Correlations and functional connections in a population of grid cells
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1004052
– volume: 27
  start-page: 2337
  year: 2017
  ident: bib37
  article-title: Grid cells encode local positional information
  publication-title: Current Biology
  doi: 10.1016/j.cub.2017.06.034
– volume: 24
  start-page: 3147
  year: 2004
  ident: bib56
  article-title: High-resolution in vivo imaging of hippocampal dendrites and spines
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5218-03.2004
– start-page: 121
  year: 2019
  ident: bib81
  article-title: A unified theory for the origin of grid cells through the lens of pattern formation
– volume: 1
  year: 2015
  ident: bib85
  article-title: Connecting multiple spatial scales to decode the population activity of grid cells
  publication-title: Science Advances
  doi: 10.1126/science.1500816
– volume: 11
  year: 2022
  ident: bib68
  article-title: Long-term transverse imaging of the hippocampus with glass microperiscopes
  publication-title: eLife
  doi: 10.7554/eLife.75391
– volume-title: arXiv
  year: 2024
  ident: bib75
  article-title: Self-supervised learning of representations for space generates multi-modular grid cells
  doi: 10.48550/arXiv.2311.02316
– volume-title: GitHub
  year: 2023
  ident: bib74
  article-title: Grid-pattern-formation
– volume: 185
  start-page: 1240
  year: 2022
  ident: bib95
  article-title: Large-scale two-photon calcium imaging in freely moving mice
  publication-title: Cell
  doi: 10.1016/j.cell.2022.02.017
– volume: 111
  start-page: 1858
  year: 2023
  ident: bib29
  article-title: Are grid cells used for navigation? on local metrics, subjective spaces, and black holes
  publication-title: Neuron
  doi: 10.1016/j.neuron.2023.03.027
– volume: 14
  start-page: 1330
  year: 2011
  ident: bib83
  article-title: Grid cells generate an analog error-correcting code for singularly precise neural computation
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2901
– volume-title: arXiv
  year: 2023
  ident: bib20
  article-title: Actionable neural representations: grid cells from minimal constraints
  doi: 10.48550/arXiv.2209.15563
– volume: 16
  year: 2020
  ident: bib42
  article-title: Efficient and flexible representation of higher-dimensional cognitive variables with grid cells
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1007796
– volume: 28
  start-page: 6858
  year: 2008
  ident: bib24
  article-title: What grid cells convey about rat location
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5684-07.2008
– volume-title: bioRxiv
  year: 2021
  ident: bib58
  article-title: Explaining heterogeneity in medial entorhinal cortex with task-driven neural networks
  doi: 10.1101/2021.10.30.466617
– start-page: 740
  year: 2006
  ident: bib33
  article-title: A model of grid cells based on A path integration mechanism
  doi: 10.1007/11840817_77
– volume: 87
  start-page: 1093
  year: 2015
  ident: bib46
  article-title: Neural population evidence of functional heterogeneity along the CA3 transverse axis: pattern completion versus pattern separation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.07.012
– volume: 14
  start-page: 919
  year: 2011
  ident: bib62
  article-title: Retinal origin of orientation maps in visual cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2824
– volume: 363
  start-page: 1447
  year: 2019
  ident: bib10
  article-title: Remembered reward locations restructure entorhinal spatial maps
  publication-title: Science
  doi: 10.1126/science.aav5297
– volume: 21
  start-page: 191
  year: 2018
  ident: bib38
  article-title: Human entorhinal cortex represents visual space using a boundary-anchored grid
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-017-0049-1
– volume: 21
  start-page: 270
  year: 2018
  ident: bib50
  article-title: Grid scale drives the scale and long-term stability of place maps
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-017-0055-3
– volume: 518
  start-page: 207
  year: 2015
  ident: bib87
  article-title: Shearing-induced asymmetry in entorhinal grid cells
  publication-title: Nature
  doi: 10.1038/nature14151
– volume-title: arXiv
  year: 2018
  ident: bib54
  article-title: Umap: Uniform Manifold Approximation and Projection for Dimension Reduction
  doi: 10.21105/joss.00861
– volume: 446
  start-page: 190
  year: 2007
  ident: bib26
  article-title: Hippocampal remapping and grid realignment in entorhinal cortex
  publication-title: Nature
  doi: 10.1038/nature05601
– volume: 16
  start-page: 264
  year: 2013
  ident: bib94
  article-title: Long-term dynamics of CA1 hippocampal place codes
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3329
– volume: 22
  start-page: 609
  year: 2019
  ident: bib88
  article-title: Grid cell co-activity patterns during sleep reflect spatial overlap of grid fields during active behaviors
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-019-0359-6
– volume-title: arXiv
  year: 2024
  ident: bib61
  article-title: Beyond geometry: comparing the temporal structure of computation in neural circuits with dynamical similarity analysis
  doi: 10.32470/CCN.2023.1356-0
– volume: 365
  start-page: 821
  year: 2019
  ident: bib31
  article-title: Persistence of neuronal representations through time and damage in the hippocampus
  publication-title: Science
  doi: 10.1126/science.aav9199
– volume: 42
  year: 2023
  ident: bib47
  article-title: A manifold neural population code for space in hippocampal coactivity dynamics independent of place fields
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2023.113142
– volume: 7
  start-page: 663
  year: 2006
  ident: bib55
  article-title: Path integration and the neural basis of the “cognitive map”
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn1932
– volume: 16
  start-page: 1026
  year: 2006
  ident: bib79
  article-title: From grid cells to place cells: a mathematical model
  publication-title: Hippocampus
  doi: 10.1002/hipo.20244
– volume: 491
  start-page: 761
  year: 2012
  ident: bib41
  article-title: A map of visual space in the primate entorhinal cortex
  publication-title: Nature
  doi: 10.1038/nature11587
– year: 2022
  ident: bib67
  article-title: Algorithmic (semi-)conjugacy via Koopman operator theory
  doi: 10.1109/CDC51059.2022.9992592
– volume: 4
  year: 2015
  ident: bib91
  article-title: A principle of economy predicts the functional architecture of grid cells
  publication-title: eLife
  doi: 10.7554/eLife.08362
– volume: 112
  start-page: 4116
  year: 2015
  ident: bib60
  article-title: Place field expansion after focal MEC inactivations is consistent with loss of Fourier components and path integrator gain reduction
  publication-title: PNAS
  doi: 10.1073/pnas.1421963112
– volume: 372
  year: 2021
  ident: bib84
  article-title: Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings
  publication-title: Science
  doi: 10.1126/science.abf4588
– volume: 175
  start-page: 736
  year: 2018
  ident: bib32
  article-title: A map-like micro-organization of grid cells in the medial entorhinal cortex
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.066
– volume: 26
  start-page: 4266
  year: 2006
  ident: bib25
  article-title: A spin glass model of path integration in rat medial entorhinal cortex
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4353-05.2006
– volume: 87
  start-page: 1078
  year: 2015
  ident: bib49
  article-title: Topography of place maps along the CA3-to-CA2 axis of the hippocampus
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.07.007
– volume: 17
  start-page: 447
  year: 2006
  ident: bib71
  article-title: Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning
  publication-title: Network
  doi: 10.1080/09548980601064846
– volume: 16
  start-page: 318
  year: 2013
  ident: bib13
  article-title: Recurrent inhibitory circuitry as a mechanism for grid formation
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3310
– start-page: 226
  year: 1996
  ident: bib23
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 109
  start-page: 19462
  year: 2012
  ident: bib51
  article-title: Neuronal code for extended time in the hippocampus
  publication-title: PNAS
  doi: 10.1073/pnas.1214107109
– volume: 321
  start-page: 579
  year: 1986
  ident: bib7
  article-title: Voltage-sensitive dyes reveal a modular organization in monkey striate cortex
  publication-title: Nature
  doi: 10.1038/321579a0
– volume: 24
  start-page: 2280
  year: 2012
  ident: bib52
  article-title: Optimal population codes for space: grid cells outperform place cells
  publication-title: Neural Computation
  doi: 10.1162/NECO_a_00319
– volume: 557
  start-page: 429
  year: 2018
  ident: bib5
  article-title: Vector-based navigation using grid-like representations in artificial agents
  publication-title: Nature
  doi: 10.1038/s41586-018-0102-6
– volume: 26
  year: 2023
  ident: bib76
  article-title: Coherently remapping toroidal cells but not Grid cells are responsible for path integration in virtual agents
  publication-title: iScience
  doi: 10.1016/j.isci.2023.108102
– volume: 5
  year: 2009
  ident: bib8
  article-title: Accurate path integration in continuous attractor network models of grid cells
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1000291
– volume: 37
  start-page: 44
  year: 2016
  ident: bib30
  article-title: Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2015.12.008
– volume: 337
  start-page: 853
  year: 2012
  ident: bib43
  article-title: Neural representations of location composed of spatially periodic bands
  publication-title: Science
  doi: 10.1126/science.1222403
– volume-title: bioRxiv
  year: 2024
  ident: bib65
  article-title: Decoding the cognitive map: learning place cells and remapping
  doi: 10.1101/2024.03.14.585049
– volume-title: arXiv
  year: 2018
  ident: bib14
  article-title: Emergence of grid-like representations by training recurrent neural networks to perform spatial localization
  doi: 10.48550/arXiv.1803.07770
– volume: 12
  year: 2021
  ident: bib18
  article-title: Distinct place cell dynamics in CA1 and CA3 encode experience in new environments
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-23260-3
– volume: 112
  start-page: 3860
  year: 2015
  ident: bib45
  article-title: Do the spatial frequencies of grid cells mold the firing fields of place cells?
  publication-title: PNAS
  doi: 10.1073/pnas.1503155112
– volume: 94
  start-page: 83
  year: 2017
  ident: bib17
  article-title: Grid and nongrid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.03.004
– volume: 7
  year: 2018
  ident: bib66
  article-title: Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo
  publication-title: eLife
  doi: 10.7554/eLife.34700
– volume: 18
  start-page: 1951
  year: 2006
  ident: bib77
  article-title: Implications of neuronal diversity on population coding
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.8.1951
– volume: 543
  start-page: 719
  year: 2017
  ident: bib3
  article-title: Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit
  publication-title: Nature
  doi: 10.1038/nature21692
– volume-title: arXiv
  year: 2017
  ident: bib22
  article-title: Grid cells show field-to-field variability and this explains the aperiodic response of inhibitory interneurons
  doi: 10.1101/101899
– volume: 12
  year: 2021
  ident: bib63
  article-title: Neural heterogeneity promotes robust learning
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-26022-3
– volume: 7
  year: 2018
  ident: bib90
  article-title: Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity
  publication-title: eLife
  doi: 10.7554/eLife.34560
– volume: 312
  start-page: 758
  year: 2006
  ident: bib73
  article-title: Conjunctive representation of position, direction, and velocity in entorhinal cortex
  publication-title: Science
  doi: 10.1126/science.1125572
– volume: 87
  start-page: 507
  year: 2015
  ident: bib9
  article-title: Using grid cells for navigation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.07.006
– volume-title: bioRxiv
  year: 2022
  ident: bib40
  article-title: From Smooth Cortical Gradients to Discrete Modules: Spontaneous and Topologically Robust Emergence of Modularity in Grid Cells
  doi: 10.1101/2021.10.28.466284
– volume: 630
  start-page: 704
  year: 2024
  ident: bib59
  article-title: Mental navigation in the primate entorhinal cortex
  publication-title: Nature
  doi: 10.1038/s41586-024-07557-z
– volume-title: arXiv
  year: 2023
  ident: bib69
  article-title: On equivalent optimization of machine learning methods
  doi: 10.48550/arXiv.2302.09160
– volume: 322
  start-page: 1865
  year: 2008
  ident: bib80
  article-title: Representation of geometric borders in the entorhinal cortex
  publication-title: Science
  doi: 10.1126/science.1166466
– volume: 436
  start-page: 801
  year: 2005
  ident: bib34
  article-title: Microstructure of a spatial map in the entorhinal cortex
  publication-title: Nature
  doi: 10.1038/nature03721
– volume: 111
  start-page: 18739
  year: 2014
  ident: bib48
  article-title: Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex
  publication-title: PNAS
  doi: 10.1073/pnas.1421753111
– volume: 21
  start-page: 188
  year: 2018
  ident: bib57
  article-title: Hexadirectional coding of visual space in human entorhinal cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-017-0050-8
– volume: 492
  start-page: 72
  year: 2012
  ident: bib86
  article-title: The entorhinal grid map is discretized
  publication-title: Nature
  doi: 10.1038/nature11649
– volume: 551
  start-page: 232
  year: 2017
  ident: bib39
  article-title: Fully integrated silicon probes for high-density recording of neural activity
  publication-title: Nature
  doi: 10.1038/nature24636
– volume: 9
  year: 2020
  ident: bib2
  article-title: A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability
  publication-title: eLife
  doi: 10.7554/eLife.56894
– volume: 558
  start-page: 292
  year: 2018
  ident: bib35
  article-title: Parallel emergence of stable and dynamic memory engrams in the hippocampus
  publication-title: Nature
  doi: 10.1038/s41586-018-0191-2
– volume: 602
  start-page: 123
  year: 2022
  ident: bib28
  article-title: Toroidal topology of population activity in grid cells
  publication-title: Nature
  doi: 10.1038/s41586-021-04268-7
– volume: 352
  start-page: 1464
  year: 2016
  ident: bib12
  article-title: Organizing conceptual knowledge in humans with a gridlike code
  publication-title: Science
  doi: 10.1126/science.aaf0941
– volume: 518
  start-page: 232
  year: 2015
  ident: bib44
  article-title: Grid cell symmetry is shaped by environmental geometry
  publication-title: Nature
  doi: 10.1038/nature14153
– volume: 111
  start-page: 121
  year: 2023
  ident: bib82
  article-title: A unified theory for the computational and mechanistic origins of grid cells
  publication-title: Neuron
  doi: 10.1016/j.neuron.2022.10.003
– volume: 523
  start-page: 592
  year: 2015
  ident: bib4
  article-title: Impermanence of dendritic spines in live adult CA1 hippocampus
  publication-title: Nature
  doi: 10.1038/nature14467
– start-page: 610
  year: 2023
  ident: bib1
  article-title: Quantifying extrinsic curvature in neural manifolds
  doi: 10.1109/CVPRW59228.2023.00068
– volume: 29
  start-page: 7504
  year: 2009
  ident: bib15
  article-title: The input-output transformation of the hippocampal granule cells: from grid cells to place fields
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.6048-08.2009
– volume: 22
  start-page: 598
  year: 2019
  ident: bib27
  article-title: Correlation structure of grid cells is preserved during sleep
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-019-0360-0
– reference: 38915504 - bioRxiv. 2024 Dec 11:2024.02.27.582373. doi: 10.1101/2024.02.27.582373.
SSID ssj0000748819
Score 2.4005969
Snippet Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
SubjectTerms Action Potentials
Animals
entorhinal cortex
Entorhinal Cortex - cytology
Entorhinal Cortex - physiology
grid cells
Grid Cells - physiology
Models, Neurological
Neuroscience
Space Perception - physiology
spatial coding
Title Robust variability of grid cell properties within individual grid modules enhances encoding of local space
URI https://www.ncbi.nlm.nih.gov/pubmed/39976331
https://www.proquest.com/docview/3168777225
https://pubmed.ncbi.nlm.nih.gov/PMC11841986
https://doaj.org/article/0700fe7f713b40b29c5adb11a05f4154
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (NC Live)
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZt0kIvpe-6aRcV2qOJZVmWdUxKQgvJYkIL25OxpHHj0NphH4H8-85Im2W3FHrpRRjL2GJmPDOfGH3D2AeNKbSH1qSA0RABSqbStixU6iV44heTrQtdS870dFrNZqbeavVFNWGRHjgK7hBNMutAdwimbJHZ3DjVeitEm6kOg09gAs202QJTwQdrNExhYqW7xpB5CGd9B1QTUKp8JwYFqv6_5Zd_lkluxZ3TJ-zxOmHkR3GhT9k9GJ6xh7GF5O1zdnUx2tViyW8Q80bK7Vs-dvzHvPecNuX5Ne22z4k2ldOeaz_wfnMGKz72a_SrnzgNwyWZAF24kUIavSjEOo5ux8EL9u305Ounz-m6f0LqciXR0YnSY_TthCghl7YSHTWlaX3mgI6_ysIqqZw3lZau0K222iJ-ckK5shMGSvmS7Q3jAK8Z7zRoL0BV4BA_SswRct1ZA9YaWSphE_bxTqLNdaTJaBBekOSbIPkmSj5hxyTuzTNEbh1uoMqbtcqbf6k8Ye_vlNXgz0DCbAcYV4uGunBpxAu5StirqLzNpzATQ18qRcKqHbXurGV3ZugvA-E2grBCmKp88z9Wf8Ae5dRDmI7FZ2_Z3nK-gnfsgbtZ9ov5hN3XMx3GasL2j0-m9cUkmDaO53lNo8Zxv_5yXn__Dai3AC0
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+variability+of+grid+cell+properties+within+individual+grid+modules+enhances+encoding+of+local+space&rft.jtitle=eLife&rft.au=Redman%2C+William+T&rft.au=Acosta-Mendoza%2C+Santiago&rft.au=Wei%2C+Xue-Xin&rft.au=Goard%2C+Michael+J&rft.date=2025-02-20&rft.pub=eLife+Sciences+Publications%2C+Ltd&rft.eissn=2050-084X&rft.volume=13&rft_id=info:doi/10.7554%2FeLife.100652&rft_id=info%3Apmid%2F39976331&rft.externalDocID=PMC11841986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon