Robust variability of grid cell properties within individual grid modules enhances encoding of local space
Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the...
Uložené v:
| Vydané v: | eLife Ročník 13 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
eLife Sciences Publications, Ltd
20.02.2025
eLife Sciences Publications Ltd |
| Predmet: | |
| ISSN: | 2050-084X, 2050-084X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells. |
|---|---|
| AbstractList | Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells. Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells. |
| Author | Goard, Michael J Redman, William T Wei, Xue-Xin Acosta-Mendoza, Santiago |
| Author_xml | – sequence: 1 givenname: William T orcidid: 0000-0002-4147-2026 surname: Redman fullname: Redman, William T – sequence: 2 givenname: Santiago orcidid: 0009-0003-6698-476X surname: Acosta-Mendoza fullname: Acosta-Mendoza, Santiago – sequence: 3 givenname: Xue-Xin surname: Wei fullname: Wei, Xue-Xin – sequence: 4 givenname: Michael J orcidid: 0000-0002-5366-8501 surname: Goard fullname: Goard, Michael J |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39976331$$D View this record in MEDLINE/PubMed |
| BookMark | eNpVkk1r3DAQhkVISdJtbj0XH3vophpLsuRTKaFpAwuFkkBvQp-7WrySK9kb8u_jXach0WUGzcszmtH7Hp3GFB1CHwFfccboV7cK3l0Bxg2rT9BFjRleYkH_nr7Kz9FlKVs8HU6FgPYMnZO25Q0hcIG2f5Iey1DtVQ5Khy4Mj1Xy1ToHWxnXdVWfU-_yEFypHsKwCbEK0YZ9sKPqZtku2bGbyi5uVDTHxCQb4voA6pKZdKVXxn1A77zqirt8jgt0f_Pj7vrXcvX75-3199XS1IzUSwGNbYB6gMbVRAvwDSdcWWwcFy0mVDPCjG0FJ4ZyxTXXteAGmGk8tK4hC3Q7c21SW9nnsFP5USYV5PEi5bVU00CmcxJzjL3jngPRFOu6NUxZDaAw8xQYnVjfZlY_6p2zxsUhq-4N9G0lho1cp70EEBRacXjN52dCTv9GVwa5C-WwWRVdGosk0AjOeT3NvkCfXjd76fL_tybBl1lgciolO_8iASwPfpBHP8jZD-QJsN6pKQ |
| Cites_doi | 10.1038/nn.2865 10.7554/eLife.10094 10.1103/PhysRevLett.109.018103 10.7554/eLife.31745 10.1101/2024.05.30.596577 10.1523/JNEUROSCI.4724-06.2007 10.1038/nrn2614 10.1038/nn.3450 10.1038/nn.2396 10.1073/pnas.0807744105 10.3389/fncir.2018.00121 10.1038/s41583-021-00499-9 10.1371/journal.pcbi.1004052 10.1016/j.cub.2017.06.034 10.1523/JNEUROSCI.5218-03.2004 10.1126/science.1500816 10.7554/eLife.75391 10.48550/arXiv.2311.02316 10.1016/j.cell.2022.02.017 10.1016/j.neuron.2023.03.027 10.1038/nn.2901 10.48550/arXiv.2209.15563 10.1371/journal.pcbi.1007796 10.1523/JNEUROSCI.5684-07.2008 10.1101/2021.10.30.466617 10.1007/11840817_77 10.1016/j.neuron.2015.07.012 10.1038/nn.2824 10.1126/science.aav5297 10.1038/s41593-017-0049-1 10.1038/s41593-017-0055-3 10.1038/nature14151 10.21105/joss.00861 10.1038/nature05601 10.1038/nn.3329 10.1038/s41593-019-0359-6 10.32470/CCN.2023.1356-0 10.1126/science.aav9199 10.1016/j.celrep.2023.113142 10.1038/nrn1932 10.1002/hipo.20244 10.1038/nature11587 10.1109/CDC51059.2022.9992592 10.7554/eLife.08362 10.1073/pnas.1421963112 10.1126/science.abf4588 10.1016/j.cell.2018.08.066 10.1523/JNEUROSCI.4353-05.2006 10.1016/j.neuron.2015.07.007 10.1080/09548980601064846 10.1038/nn.3310 10.1073/pnas.1214107109 10.1038/321579a0 10.1162/NECO_a_00319 10.1038/s41586-018-0102-6 10.1016/j.isci.2023.108102 10.1371/journal.pcbi.1000291 10.1016/j.conb.2015.12.008 10.1126/science.1222403 10.1101/2024.03.14.585049 10.48550/arXiv.1803.07770 10.1038/s41467-021-23260-3 10.1073/pnas.1503155112 10.1016/j.neuron.2017.03.004 10.7554/eLife.34700 10.1162/neco.2006.18.8.1951 10.1038/nature21692 10.1101/101899 10.1038/s41467-021-26022-3 10.7554/eLife.34560 10.1126/science.1125572 10.1016/j.neuron.2015.07.006 10.1101/2021.10.28.466284 10.1038/s41586-024-07557-z 10.48550/arXiv.2302.09160 10.1126/science.1166466 10.1038/nature03721 10.1073/pnas.1421753111 10.1038/s41593-017-0050-8 10.1038/nature11649 10.1038/nature24636 10.7554/eLife.56894 10.1038/s41586-018-0191-2 10.1038/s41586-021-04268-7 10.1126/science.aaf0941 10.1038/nature14153 10.1016/j.neuron.2022.10.003 10.1038/nature14467 10.1109/CVPRW59228.2023.00068 10.1523/JNEUROSCI.6048-08.2009 10.1038/s41593-019-0360-0 |
| ContentType | Journal Article |
| Copyright | 2024, Redman, Acosta-Mendoza et al. 2024, Redman, Acosta-Mendoza et al 2024 Redman, Acosta-Mendoza et al |
| Copyright_xml | – notice: 2024, Redman, Acosta-Mendoza et al. – notice: 2024, Redman, Acosta-Mendoza et al 2024 Redman, Acosta-Mendoza et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.7554/eLife.100652 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2050-084X |
| ExternalDocumentID | oai_doaj_org_article_0700fe7f713b40b29c5adb11a05f4154 PMC11841986 39976331 10_7554_eLife_100652 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation grantid: 2318065 – fundername: NIH HHS grantid: R01 NS121919 – fundername: Whitehall Foundation grantid: 2022-05-009 – fundername: National Science Foundation grantid: 1934288 – fundername: NINDS NIH HHS grantid: R01 NS121919 – fundername: ; grantid: 1934288 – fundername: ; grantid: R01 NS121919 – fundername: ; grantid: 2022-05-009 – fundername: ; grantid: 2318065 |
| GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RHI RNS RPM UKHRP ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c2532-816d614f116e23b81f6737ad0ce789034b535cd9873c47a7b7b287c15c6f19e63 |
| IEDL.DBID | DOA |
| ISSN | 2050-084X |
| IngestDate | Fri Oct 03 12:45:19 EDT 2025 Tue Nov 04 02:06:17 EST 2025 Sun Nov 09 05:18:12 EST 2025 Sat May 10 01:41:05 EDT 2025 Sat Nov 29 08:16:30 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | mouse entorhinal cortex grid cells spatial coding neuroscience |
| Language | English |
| License | 2024, Redman, Acosta-Mendoza et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2532-816d614f116e23b81f6737ad0ce789034b535cd9873c47a7b7b287c15c6f19e63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
| ORCID | 0009-0003-6698-476X 0000-0002-4147-2026 0000-0002-5366-8501 |
| OpenAccessLink | https://doaj.org/article/0700fe7f713b40b29c5adb11a05f4154 |
| PMID | 39976331 |
| PQID | 3168777225 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0700fe7f713b40b29c5adb11a05f4154 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11841986 proquest_miscellaneous_3168777225 pubmed_primary_39976331 crossref_primary_10_7554_eLife_100652 |
| PublicationCentury | 2000 |
| PublicationDate | 20250220 |
| PublicationDateYYYYMMDD | 2025-02-20 |
| PublicationDate_xml | – month: 2 year: 2025 text: 20250220 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | eLife |
| PublicationTitleAlternate | Elife |
| PublicationYear | 2025 |
| Publisher | eLife Sciences Publications, Ltd eLife Sciences Publications Ltd |
| Publisher_xml | – name: eLife Sciences Publications, Ltd – name: eLife Sciences Publications Ltd |
| References | Blair (bib6) 2007; 27 Klukas (bib42) 2020; 16 Krupic (bib44) 2015; 518 Sargolini (bib73) 2006; 312 Killian (bib41) 2012; 491 Constantinescu (bib12) 2016; 352 Fyhn (bib26) 2007; 446 Weber (bib90) 2018; 7 Dong (bib18) 2021; 12 Ginosar (bib29) 2023; 111 Diehl (bib17) 2017; 94 Fuhs (bib25) 2006; 26 Mizrahi (bib56) 2004; 24 Redman (bib68) 2022; 11 Yoon (bib93) 2013; 16 McInnes (bib54) 2018 Aronov (bib3) 2017; 543 Solstad (bib79) 2006; 16 Low (bib48) 2014; 111 Schøyen (bib76) 2023; 26 Paik (bib62) 2011; 14 Wilming (bib92) 2018; 7 Redman (bib70) 2025 Blasdel (bib7) 1986; 321 Smith (bib78) 2011; 14 Acosta (bib1) 2023 Guanella (bib33) 2006 Schaeffer (bib75) 2024 Ester (bib23) 1996 Hainmueller (bib35) 2018; 558 Gardner (bib27) 2019; 22 Perez Nieves (bib63) 2021; 12 Cueva (bib14) 2018 Lu (bib49) 2015; 87 Butler (bib10) 2019; 363 Fiete (bib24) 2008; 28 Redman (bib67) 2022 Krupic (bib43) 2012; 337 McNaughton (bib55) 2006; 7 Chelaru (bib11) 2008; 105 Dunn (bib22) 2017 Kubie (bib45) 2015; 112 Stemmler (bib85) 2015; 1 Hafting (bib34) 2005; 436 Gardner (bib28) 2022; 602 Rueckemann (bib72) 2021; 22 Dordek (bib19) 2016; 5 Hawkins (bib36) 2018; 12 Mathis (bib53) 2012; 109 Dunn (bib21) 2015; 11 Schaeffer (bib74) 2023 Gjorgjieva (bib30) 2016; 37 Mallory (bib50) 2018; 21 Wei (bib91) 2015; 4 Nau (bib57) 2018; 21 Nayebi (bib58) 2021 Gu (bib32) 2018; 175 Couey (bib13) 2013; 16 Pettersen (bib65) 2024 Burak (bib8) 2009; 5 Zong (bib95) 2022; 185 Julian (bib38) 2018; 21 Jun (bib39) 2017; 551 Pfeiffer (bib66) 2018; 7 Shamir (bib77) 2006; 18 Solstad (bib80) 2008; 322 Khona (bib40) 2022 Trettel (bib88) 2019; 22 Sreenivasan (bib83) 2011; 14 Banino (bib5) 2018; 557 Gonzalez (bib31) 2019; 365 Sorscher (bib82) 2023; 111 de Almeida (bib15) 2009; 29 Sorscher (bib81) 2019 Stensola (bib86) 2012; 492 Lee (bib46) 2015; 87 Ziv (bib94) 2013; 16 Attardo (bib4) 2015; 523 Stensola (bib87) 2015; 518 Ismakov (bib37) 2017; 27 Mathis (bib52) 2012; 24 Steinmetz (bib84) 2021; 372 Dorrell (bib20) 2023 Ostrow (bib61) 2024 Agmon (bib2) 2020; 9 Neupane (bib59) 2024; 630 Pettersen (bib64) 2024 Bush (bib9) 2015; 87 Ormond (bib60) 2015; 112 Levy (bib47) 2023; 42 Mankin (bib51) 2012; 109 Derdikman (bib16) 2009; 12 Redman (bib69) 2023 Rolls (bib71) 2006; 17 van Strien (bib89) 2009; 10 38915504 - bioRxiv. 2024 Dec 11:2024.02.27.582373. doi: 10.1101/2024.02.27.582373. |
| References_xml | – volume: 14 start-page: 803 year: 2011 ident: bib78 article-title: Life imitates op art publication-title: Nature Neuroscience doi: 10.1038/nn.2865 – volume: 5 year: 2016 ident: bib19 article-title: Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis publication-title: eLife doi: 10.7554/eLife.10094 – volume: 109 year: 2012 ident: bib53 article-title: Resolution of nested neuronal representations can be exponential in the number of neurons publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.109.018103 – volume-title: Software Heritage year: 2025 ident: bib70 article-title: Robust-grid-cell-variability – volume: 7 year: 2018 ident: bib92 article-title: Entorhinal cortex receptive fields are modulated by spatial attention, even without movement publication-title: eLife doi: 10.7554/eLife.31745 – volume-title: bioRxiv year: 2024 ident: bib64 article-title: Self-supervised grid cells without path integration doi: 10.1101/2024.05.30.596577 – volume: 27 start-page: 3211 year: 2007 ident: bib6 article-title: Scale-invariant memory representations emerge from moiré interference between grid fields that produce theta oscillations: a computational model publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.4724-06.2007 – volume: 10 start-page: 272 year: 2009 ident: bib89 article-title: The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network publication-title: Nature Reviews. Neuroscience doi: 10.1038/nrn2614 – volume: 16 start-page: 1077 year: 2013 ident: bib93 article-title: Specific evidence of low-dimensional continuous attractor dynamics in grid cells publication-title: Nature Neuroscience doi: 10.1038/nn.3450 – volume: 12 start-page: 1325 year: 2009 ident: bib16 article-title: Fragmentation of grid cell maps in a multicompartment environment publication-title: Nature Neuroscience doi: 10.1038/nn.2396 – volume: 105 start-page: 16344 year: 2008 ident: bib11 article-title: Efficient coding in heterogeneous neuronal populations publication-title: PNAS doi: 10.1073/pnas.0807744105 – volume: 12 year: 2018 ident: bib36 article-title: A framework for intelligence and cortical function based on grid cells in the neocortex publication-title: Frontiers in Neural Circuits doi: 10.3389/fncir.2018.00121 – volume: 22 start-page: 637 year: 2021 ident: bib72 article-title: The grid code for ordered experience publication-title: Nature Reviews. Neuroscience doi: 10.1038/s41583-021-00499-9 – volume: 11 year: 2015 ident: bib21 article-title: Correlations and functional connections in a population of grid cells publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1004052 – volume: 27 start-page: 2337 year: 2017 ident: bib37 article-title: Grid cells encode local positional information publication-title: Current Biology doi: 10.1016/j.cub.2017.06.034 – volume: 24 start-page: 3147 year: 2004 ident: bib56 article-title: High-resolution in vivo imaging of hippocampal dendrites and spines publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.5218-03.2004 – start-page: 121 year: 2019 ident: bib81 article-title: A unified theory for the origin of grid cells through the lens of pattern formation – volume: 1 year: 2015 ident: bib85 article-title: Connecting multiple spatial scales to decode the population activity of grid cells publication-title: Science Advances doi: 10.1126/science.1500816 – volume: 11 year: 2022 ident: bib68 article-title: Long-term transverse imaging of the hippocampus with glass microperiscopes publication-title: eLife doi: 10.7554/eLife.75391 – volume-title: arXiv year: 2024 ident: bib75 article-title: Self-supervised learning of representations for space generates multi-modular grid cells doi: 10.48550/arXiv.2311.02316 – volume-title: GitHub year: 2023 ident: bib74 article-title: Grid-pattern-formation – volume: 185 start-page: 1240 year: 2022 ident: bib95 article-title: Large-scale two-photon calcium imaging in freely moving mice publication-title: Cell doi: 10.1016/j.cell.2022.02.017 – volume: 111 start-page: 1858 year: 2023 ident: bib29 article-title: Are grid cells used for navigation? on local metrics, subjective spaces, and black holes publication-title: Neuron doi: 10.1016/j.neuron.2023.03.027 – volume: 14 start-page: 1330 year: 2011 ident: bib83 article-title: Grid cells generate an analog error-correcting code for singularly precise neural computation publication-title: Nature Neuroscience doi: 10.1038/nn.2901 – volume-title: arXiv year: 2023 ident: bib20 article-title: Actionable neural representations: grid cells from minimal constraints doi: 10.48550/arXiv.2209.15563 – volume: 16 year: 2020 ident: bib42 article-title: Efficient and flexible representation of higher-dimensional cognitive variables with grid cells publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1007796 – volume: 28 start-page: 6858 year: 2008 ident: bib24 article-title: What grid cells convey about rat location publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.5684-07.2008 – volume-title: bioRxiv year: 2021 ident: bib58 article-title: Explaining heterogeneity in medial entorhinal cortex with task-driven neural networks doi: 10.1101/2021.10.30.466617 – start-page: 740 year: 2006 ident: bib33 article-title: A model of grid cells based on A path integration mechanism doi: 10.1007/11840817_77 – volume: 87 start-page: 1093 year: 2015 ident: bib46 article-title: Neural population evidence of functional heterogeneity along the CA3 transverse axis: pattern completion versus pattern separation publication-title: Neuron doi: 10.1016/j.neuron.2015.07.012 – volume: 14 start-page: 919 year: 2011 ident: bib62 article-title: Retinal origin of orientation maps in visual cortex publication-title: Nature Neuroscience doi: 10.1038/nn.2824 – volume: 363 start-page: 1447 year: 2019 ident: bib10 article-title: Remembered reward locations restructure entorhinal spatial maps publication-title: Science doi: 10.1126/science.aav5297 – volume: 21 start-page: 191 year: 2018 ident: bib38 article-title: Human entorhinal cortex represents visual space using a boundary-anchored grid publication-title: Nature Neuroscience doi: 10.1038/s41593-017-0049-1 – volume: 21 start-page: 270 year: 2018 ident: bib50 article-title: Grid scale drives the scale and long-term stability of place maps publication-title: Nature Neuroscience doi: 10.1038/s41593-017-0055-3 – volume: 518 start-page: 207 year: 2015 ident: bib87 article-title: Shearing-induced asymmetry in entorhinal grid cells publication-title: Nature doi: 10.1038/nature14151 – volume-title: arXiv year: 2018 ident: bib54 article-title: Umap: Uniform Manifold Approximation and Projection for Dimension Reduction doi: 10.21105/joss.00861 – volume: 446 start-page: 190 year: 2007 ident: bib26 article-title: Hippocampal remapping and grid realignment in entorhinal cortex publication-title: Nature doi: 10.1038/nature05601 – volume: 16 start-page: 264 year: 2013 ident: bib94 article-title: Long-term dynamics of CA1 hippocampal place codes publication-title: Nature Neuroscience doi: 10.1038/nn.3329 – volume: 22 start-page: 609 year: 2019 ident: bib88 article-title: Grid cell co-activity patterns during sleep reflect spatial overlap of grid fields during active behaviors publication-title: Nature Neuroscience doi: 10.1038/s41593-019-0359-6 – volume-title: arXiv year: 2024 ident: bib61 article-title: Beyond geometry: comparing the temporal structure of computation in neural circuits with dynamical similarity analysis doi: 10.32470/CCN.2023.1356-0 – volume: 365 start-page: 821 year: 2019 ident: bib31 article-title: Persistence of neuronal representations through time and damage in the hippocampus publication-title: Science doi: 10.1126/science.aav9199 – volume: 42 year: 2023 ident: bib47 article-title: A manifold neural population code for space in hippocampal coactivity dynamics independent of place fields publication-title: Cell Reports doi: 10.1016/j.celrep.2023.113142 – volume: 7 start-page: 663 year: 2006 ident: bib55 article-title: Path integration and the neural basis of the “cognitive map” publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn1932 – volume: 16 start-page: 1026 year: 2006 ident: bib79 article-title: From grid cells to place cells: a mathematical model publication-title: Hippocampus doi: 10.1002/hipo.20244 – volume: 491 start-page: 761 year: 2012 ident: bib41 article-title: A map of visual space in the primate entorhinal cortex publication-title: Nature doi: 10.1038/nature11587 – year: 2022 ident: bib67 article-title: Algorithmic (semi-)conjugacy via Koopman operator theory doi: 10.1109/CDC51059.2022.9992592 – volume: 4 year: 2015 ident: bib91 article-title: A principle of economy predicts the functional architecture of grid cells publication-title: eLife doi: 10.7554/eLife.08362 – volume: 112 start-page: 4116 year: 2015 ident: bib60 article-title: Place field expansion after focal MEC inactivations is consistent with loss of Fourier components and path integrator gain reduction publication-title: PNAS doi: 10.1073/pnas.1421963112 – volume: 372 year: 2021 ident: bib84 article-title: Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings publication-title: Science doi: 10.1126/science.abf4588 – volume: 175 start-page: 736 year: 2018 ident: bib32 article-title: A map-like micro-organization of grid cells in the medial entorhinal cortex publication-title: Cell doi: 10.1016/j.cell.2018.08.066 – volume: 26 start-page: 4266 year: 2006 ident: bib25 article-title: A spin glass model of path integration in rat medial entorhinal cortex publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.4353-05.2006 – volume: 87 start-page: 1078 year: 2015 ident: bib49 article-title: Topography of place maps along the CA3-to-CA2 axis of the hippocampus publication-title: Neuron doi: 10.1016/j.neuron.2015.07.007 – volume: 17 start-page: 447 year: 2006 ident: bib71 article-title: Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning publication-title: Network doi: 10.1080/09548980601064846 – volume: 16 start-page: 318 year: 2013 ident: bib13 article-title: Recurrent inhibitory circuitry as a mechanism for grid formation publication-title: Nature Neuroscience doi: 10.1038/nn.3310 – start-page: 226 year: 1996 ident: bib23 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – volume: 109 start-page: 19462 year: 2012 ident: bib51 article-title: Neuronal code for extended time in the hippocampus publication-title: PNAS doi: 10.1073/pnas.1214107109 – volume: 321 start-page: 579 year: 1986 ident: bib7 article-title: Voltage-sensitive dyes reveal a modular organization in monkey striate cortex publication-title: Nature doi: 10.1038/321579a0 – volume: 24 start-page: 2280 year: 2012 ident: bib52 article-title: Optimal population codes for space: grid cells outperform place cells publication-title: Neural Computation doi: 10.1162/NECO_a_00319 – volume: 557 start-page: 429 year: 2018 ident: bib5 article-title: Vector-based navigation using grid-like representations in artificial agents publication-title: Nature doi: 10.1038/s41586-018-0102-6 – volume: 26 year: 2023 ident: bib76 article-title: Coherently remapping toroidal cells but not Grid cells are responsible for path integration in virtual agents publication-title: iScience doi: 10.1016/j.isci.2023.108102 – volume: 5 year: 2009 ident: bib8 article-title: Accurate path integration in continuous attractor network models of grid cells publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1000291 – volume: 37 start-page: 44 year: 2016 ident: bib30 article-title: Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance publication-title: Current Opinion in Neurobiology doi: 10.1016/j.conb.2015.12.008 – volume: 337 start-page: 853 year: 2012 ident: bib43 article-title: Neural representations of location composed of spatially periodic bands publication-title: Science doi: 10.1126/science.1222403 – volume-title: bioRxiv year: 2024 ident: bib65 article-title: Decoding the cognitive map: learning place cells and remapping doi: 10.1101/2024.03.14.585049 – volume-title: arXiv year: 2018 ident: bib14 article-title: Emergence of grid-like representations by training recurrent neural networks to perform spatial localization doi: 10.48550/arXiv.1803.07770 – volume: 12 year: 2021 ident: bib18 article-title: Distinct place cell dynamics in CA1 and CA3 encode experience in new environments publication-title: Nature Communications doi: 10.1038/s41467-021-23260-3 – volume: 112 start-page: 3860 year: 2015 ident: bib45 article-title: Do the spatial frequencies of grid cells mold the firing fields of place cells? publication-title: PNAS doi: 10.1073/pnas.1503155112 – volume: 94 start-page: 83 year: 2017 ident: bib17 article-title: Grid and nongrid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes publication-title: Neuron doi: 10.1016/j.neuron.2017.03.004 – volume: 7 year: 2018 ident: bib66 article-title: Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo publication-title: eLife doi: 10.7554/eLife.34700 – volume: 18 start-page: 1951 year: 2006 ident: bib77 article-title: Implications of neuronal diversity on population coding publication-title: Neural Computation doi: 10.1162/neco.2006.18.8.1951 – volume: 543 start-page: 719 year: 2017 ident: bib3 article-title: Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit publication-title: Nature doi: 10.1038/nature21692 – volume-title: arXiv year: 2017 ident: bib22 article-title: Grid cells show field-to-field variability and this explains the aperiodic response of inhibitory interneurons doi: 10.1101/101899 – volume: 12 year: 2021 ident: bib63 article-title: Neural heterogeneity promotes robust learning publication-title: Nature Communications doi: 10.1038/s41467-021-26022-3 – volume: 7 year: 2018 ident: bib90 article-title: Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity publication-title: eLife doi: 10.7554/eLife.34560 – volume: 312 start-page: 758 year: 2006 ident: bib73 article-title: Conjunctive representation of position, direction, and velocity in entorhinal cortex publication-title: Science doi: 10.1126/science.1125572 – volume: 87 start-page: 507 year: 2015 ident: bib9 article-title: Using grid cells for navigation publication-title: Neuron doi: 10.1016/j.neuron.2015.07.006 – volume-title: bioRxiv year: 2022 ident: bib40 article-title: From Smooth Cortical Gradients to Discrete Modules: Spontaneous and Topologically Robust Emergence of Modularity in Grid Cells doi: 10.1101/2021.10.28.466284 – volume: 630 start-page: 704 year: 2024 ident: bib59 article-title: Mental navigation in the primate entorhinal cortex publication-title: Nature doi: 10.1038/s41586-024-07557-z – volume-title: arXiv year: 2023 ident: bib69 article-title: On equivalent optimization of machine learning methods doi: 10.48550/arXiv.2302.09160 – volume: 322 start-page: 1865 year: 2008 ident: bib80 article-title: Representation of geometric borders in the entorhinal cortex publication-title: Science doi: 10.1126/science.1166466 – volume: 436 start-page: 801 year: 2005 ident: bib34 article-title: Microstructure of a spatial map in the entorhinal cortex publication-title: Nature doi: 10.1038/nature03721 – volume: 111 start-page: 18739 year: 2014 ident: bib48 article-title: Cellular resolution optical access to brain regions in fissures: imaging medial prefrontal cortex and grid cells in entorhinal cortex publication-title: PNAS doi: 10.1073/pnas.1421753111 – volume: 21 start-page: 188 year: 2018 ident: bib57 article-title: Hexadirectional coding of visual space in human entorhinal cortex publication-title: Nature Neuroscience doi: 10.1038/s41593-017-0050-8 – volume: 492 start-page: 72 year: 2012 ident: bib86 article-title: The entorhinal grid map is discretized publication-title: Nature doi: 10.1038/nature11649 – volume: 551 start-page: 232 year: 2017 ident: bib39 article-title: Fully integrated silicon probes for high-density recording of neural activity publication-title: Nature doi: 10.1038/nature24636 – volume: 9 year: 2020 ident: bib2 article-title: A theory of joint attractor dynamics in the hippocampus and the entorhinal cortex accounts for artificial remapping and grid cell field-to-field variability publication-title: eLife doi: 10.7554/eLife.56894 – volume: 558 start-page: 292 year: 2018 ident: bib35 article-title: Parallel emergence of stable and dynamic memory engrams in the hippocampus publication-title: Nature doi: 10.1038/s41586-018-0191-2 – volume: 602 start-page: 123 year: 2022 ident: bib28 article-title: Toroidal topology of population activity in grid cells publication-title: Nature doi: 10.1038/s41586-021-04268-7 – volume: 352 start-page: 1464 year: 2016 ident: bib12 article-title: Organizing conceptual knowledge in humans with a gridlike code publication-title: Science doi: 10.1126/science.aaf0941 – volume: 518 start-page: 232 year: 2015 ident: bib44 article-title: Grid cell symmetry is shaped by environmental geometry publication-title: Nature doi: 10.1038/nature14153 – volume: 111 start-page: 121 year: 2023 ident: bib82 article-title: A unified theory for the computational and mechanistic origins of grid cells publication-title: Neuron doi: 10.1016/j.neuron.2022.10.003 – volume: 523 start-page: 592 year: 2015 ident: bib4 article-title: Impermanence of dendritic spines in live adult CA1 hippocampus publication-title: Nature doi: 10.1038/nature14467 – start-page: 610 year: 2023 ident: bib1 article-title: Quantifying extrinsic curvature in neural manifolds doi: 10.1109/CVPRW59228.2023.00068 – volume: 29 start-page: 7504 year: 2009 ident: bib15 article-title: The input-output transformation of the hippocampal granule cells: from grid cells to place fields publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.6048-08.2009 – volume: 22 start-page: 598 year: 2019 ident: bib27 article-title: Correlation structure of grid cells is preserved during sleep publication-title: Nature Neuroscience doi: 10.1038/s41593-019-0360-0 – reference: 38915504 - bioRxiv. 2024 Dec 11:2024.02.27.582373. doi: 10.1101/2024.02.27.582373. |
| SSID | ssj0000748819 |
| Score | 2.4005969 |
| Snippet | Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| SubjectTerms | Action Potentials Animals entorhinal cortex Entorhinal Cortex - cytology Entorhinal Cortex - physiology grid cells Grid Cells - physiology Models, Neurological Neuroscience Space Perception - physiology spatial coding |
| Title | Robust variability of grid cell properties within individual grid modules enhances encoding of local space |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39976331 https://www.proquest.com/docview/3168777225 https://pubmed.ncbi.nlm.nih.gov/PMC11841986 https://doaj.org/article/0700fe7f713b40b29c5adb11a05f4154 |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M7P dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZt0kIvpe-6aRcV2qOJZVmWdUxKQgvJYkIL25OxpHHj0NphH4H8-85Im2W3FHrpRRjL2GJmPDOfGH3D2AeNKbSH1qSA0RABSqbStixU6iV44heTrQtdS870dFrNZqbeavVFNWGRHjgK7hBNMutAdwimbJHZ3DjVeitEm6kOg09gAs202QJTwQdrNExhYqW7xpB5CGd9B1QTUKp8JwYFqv6_5Zd_lkluxZ3TJ-zxOmHkR3GhT9k9GJ6xh7GF5O1zdnUx2tViyW8Q80bK7Vs-dvzHvPecNuX5Ne22z4k2ldOeaz_wfnMGKz72a_SrnzgNwyWZAF24kUIavSjEOo5ux8EL9u305Ounz-m6f0LqciXR0YnSY_TthCghl7YSHTWlaX3mgI6_ysIqqZw3lZau0K222iJ-ckK5shMGSvmS7Q3jAK8Z7zRoL0BV4BA_SswRct1ZA9YaWSphE_bxTqLNdaTJaBBekOSbIPkmSj5hxyTuzTNEbh1uoMqbtcqbf6k8Ye_vlNXgz0DCbAcYV4uGunBpxAu5StirqLzNpzATQ18qRcKqHbXurGV3ZugvA-E2grBCmKp88z9Wf8Ae5dRDmI7FZ2_Z3nK-gnfsgbtZ9ov5hN3XMx3GasL2j0-m9cUkmDaO53lNo8Zxv_5yXn__Dai3AC0 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+variability+of+grid+cell+properties+within+individual+grid+modules+enhances+encoding+of+local+space&rft.jtitle=eLife&rft.au=Redman%2C+William+T&rft.au=Acosta-Mendoza%2C+Santiago&rft.au=Wei%2C+Xue-Xin&rft.au=Goard%2C+Michael+J&rft.date=2025-02-20&rft.pub=eLife+Sciences+Publications%2C+Ltd&rft.eissn=2050-084X&rft.volume=13&rft_id=info:doi/10.7554%2FeLife.100652&rft_id=info%3Apmid%2F39976331&rft.externalDocID=PMC11841986 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |