Positive-definite regularized estimation for high-dimensional covariance on scalar regression

Covariance is an important measure of marginal dependence among variables. However, heterogeneity in subject covariances and regression models for high-dimensional covariance matrices is not well studied. Compared to regression analysis for conditional means, modeling high-dimensional covariances is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biometrics Ročník 81; číslo 1
Hlavní autoři: He, Jie, Qiu, Yumou, Zhou, Xiao-Hua
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 07.01.2025
Témata:
ISSN:0006-341X, 1541-0420, 1541-0420
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Covariance is an important measure of marginal dependence among variables. However, heterogeneity in subject covariances and regression models for high-dimensional covariance matrices is not well studied. Compared to regression analysis for conditional means, modeling high-dimensional covariances is much more challenging due to the large set of free parameters and the intrinsic positive-definite property that puts constraints on the regression parameters. In this paper, we propose a regularized estimation method for the regression coefficients of covariances under sufficient and necessary constraints for the positive definiteness of the conditional average covariance matrices given covariates. The proposed estimator satisfies the sparsity and positive-definite properties simultaneously. An alternating direction method of multipliers (ADMM) algorithm is proposed to solve the constrained and regularized optimization problem. We show the convergence of the proposed ADMM algorithm and derive the convergence rates of the proposed estimators for the regression coefficients and the heterogeneous covariances. The proposed method is evaluated by simulation studies, and its practical application is demonstrated by a case study on brain connectivity.
AbstractList Covariance is an important measure of marginal dependence among variables. However, heterogeneity in subject covariances and regression models for high-dimensional covariance matrices is not well studied. Compared to regression analysis for conditional means, modeling high-dimensional covariances is much more challenging due to the large set of free parameters and the intrinsic positive-definite property that puts constraints on the regression parameters. In this paper, we propose a regularized estimation method for the regression coefficients of covariances under sufficient and necessary constraints for the positive definiteness of the conditional average covariance matrices given covariates. The proposed estimator satisfies the sparsity and positive-definite properties simultaneously. An alternating direction method of multipliers (ADMM) algorithm is proposed to solve the constrained and regularized optimization problem. We show the convergence of the proposed ADMM algorithm and derive the convergence rates of the proposed estimators for the regression coefficients and the heterogeneous covariances. The proposed method is evaluated by simulation studies, and its practical application is demonstrated by a case study on brain connectivity.Covariance is an important measure of marginal dependence among variables. However, heterogeneity in subject covariances and regression models for high-dimensional covariance matrices is not well studied. Compared to regression analysis for conditional means, modeling high-dimensional covariances is much more challenging due to the large set of free parameters and the intrinsic positive-definite property that puts constraints on the regression parameters. In this paper, we propose a regularized estimation method for the regression coefficients of covariances under sufficient and necessary constraints for the positive definiteness of the conditional average covariance matrices given covariates. The proposed estimator satisfies the sparsity and positive-definite properties simultaneously. An alternating direction method of multipliers (ADMM) algorithm is proposed to solve the constrained and regularized optimization problem. We show the convergence of the proposed ADMM algorithm and derive the convergence rates of the proposed estimators for the regression coefficients and the heterogeneous covariances. The proposed method is evaluated by simulation studies, and its practical application is demonstrated by a case study on brain connectivity.
Covariance is an important measure of marginal dependence among variables. However, heterogeneity in subject covariances and regression models for high-dimensional covariance matrices is not well studied. Compared to regression analysis for conditional means, modeling high-dimensional covariances is much more challenging due to the large set of free parameters and the intrinsic positive-definite property that puts constraints on the regression parameters. In this paper, we propose a regularized estimation method for the regression coefficients of covariances under sufficient and necessary constraints for the positive definiteness of the conditional average covariance matrices given covariates. The proposed estimator satisfies the sparsity and positive-definite properties simultaneously. An alternating direction method of multipliers (ADMM) algorithm is proposed to solve the constrained and regularized optimization problem. We show the convergence of the proposed ADMM algorithm and derive the convergence rates of the proposed estimators for the regression coefficients and the heterogeneous covariances. The proposed method is evaluated by simulation studies, and its practical application is demonstrated by a case study on brain connectivity.
Author He, Jie
Qiu, Yumou
Zhou, Xiao-Hua
Author_xml – sequence: 1
  givenname: Jie
  surname: He
  fullname: He, Jie
– sequence: 2
  givenname: Yumou
  surname: Qiu
  fullname: Qiu, Yumou
– sequence: 3
  givenname: Xiao-Hua
  orcidid: 0000-0001-7935-1222
  surname: Zhou
  fullname: Zhou, Xiao-Hua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40056426$$D View this record in MEDLINE/PubMed
BookMark eNo9kE1PwzAMhiM0xD7gyhH1yKWb0yTtckQTX9IkOIDEBVVp6oygthlJOwl-PZk2OFm2Hr-ynykZda5DQi4pzClItqisa3u9GD6VAVqckAkVnKbAMxiRCQDkKeP0bUymIXzGVgrIzsiYA4icZ_mEvD-7YHu7w7RGYzvbY-JxMzTK2x-sEwy9bVVvXZcY55MPu_lIa9tiF-JINYl2u0iqTmMSkaBVXNwHeAx74pycGtUEvDjWGXm9u31ZPaTrp_vH1c061ZnI-tQYhCzPpaEZCCUrAYYvOVsiL7QqRCaNkIwpYapKFDmFWgspqDZYK2aM4mxGrg-5W---hnh02dqgsWlUh24IJaOFYFJGNRG9OqJD1WJdbn180H-Xf0oiMD8A2rsQPJp_hEK5d14enJdH5-wXwK14eg
Cites_doi 10.5705/ss.2010.051
10.1016/j.brainres.2010.10.102
10.1080/01621459.2022.2034632
10.1080/01621459.2021.1917417
10.1080/01621459.2020.1855183
10.2307/2109358
10.1093/biostatistics/kxz057
10.1198/jasa.2009.0101
10.1080/01621459.2014.950375
10.1214/154957805100000104
10.1214/08-AOS600
10.1080/01621459.2012.725386
10.1016/j.neuron.2011.09.006
10.1001/jamapsychiatry.2015.0101
10.1080/01621459.1996.10476677
10.1080/01621459.2021.1970570
10.1080/10618600.2013.858633
10.1214/009053607000000758
10.1080/01621459.2015.1131699
10.1561/2200000016
10.1137/1.9781611970838
10.1214/23-AOAS1785
10.1186/s11689-022-09460-y
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/biomtc/ujaf017
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
ExternalDocumentID 40056426
10_1093_biomtc_ujaf017
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 82173623
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20241363
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1OC
23N
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AANLZ
AAONW
AAUAY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABXVV
ABYWD
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXQS
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADOZA
ADVOB
ADXAS
ADZMN
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUYR
AFBPY
AFEBI
AFGKR
AFVYC
AFWVQ
AFZJQ
AGTJU
AHGBF
AHMBA
AIAGR
AIURR
AJBYB
AJNCP
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DXH
EAP
EBS
ESX
F00
F01
F04
F5P
FD6
G-S
G.N
GODZA
H.T
H.X
H13
HZI
HZ~
IX1
J0M
JAC
K48
KOP
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O8X
O9-
OIG
OJZSN
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROX
RX1
RXW
SUPJJ
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZZTAW
~02
~IA
~KM
~WT
AGORE
CGR
CUY
CVF
ECM
EIF
GS5
NPM
7X8
ID FETCH-LOGICAL-c252t-ffe02669f1205a9b50f48438e47ca7529f5933a5fbb57610dc5951cfeda3ffa43
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001439404200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-341X
1541-0420
IngestDate Sat Sep 27 19:29:00 EDT 2025
Mon Sep 15 04:48:07 EDT 2025
Sat Nov 29 08:08:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords fMRI data
high dimensionality
ADMM algorithm
regularization
conditional average covariance matrix
positive-definiteness constraint
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c252t-ffe02669f1205a9b50f48438e47ca7529f5933a5fbb57610dc5951cfeda3ffa43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7935-1222
PMID 40056426
PQID 3175399541
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3175399541
pubmed_primary_40056426
crossref_primary_10_1093_biomtc_ujaf017
PublicationCentury 2000
PublicationDate 2025-Jan-07
PublicationDateYYYYMMDD 2025-01-07
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-Jan-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2025
References Zhao (2025030817502773500_bib23) 2014; 23
Fortin (2025030817502773500_bib9) 2000
Power (2025030817502773500_bib15) 2011; 72
Wang (2025030817502773500_bib19) 2022; 117
Bollerslev (2025030817502773500_bib3) 1990; 72
Rothman (2025030817502773500_bib18) 2009; 104
Zhou (2025030817502773500_bib25) 2021; , 118
Wiggins (2025030817502773500_bib20) 2011; 1380
Boyd (2025030817502773500_bib4) 2011; 3
Zhang (2025030817502773500_bib22) 2022; 118
Bradley (2025030817502773500_bib5) 2005; 2
Cerliani (2025030817502773500_bib7) 2015; 72
Bickel (2025030817502773500_bib1) 2008; 36
Cai (2025030817502773500_bib6) 2012; 22
Hoff (2025030817502773500_bib11) 2012; 22
Qiu (2025030817502773500_bib16) 2015; 110
Chiu (2025030817502773500_bib8) 1996; 91
Zou (2025030817502773500_bib26) 2017; 112
Padmanabhan (2025030817502773500_bib14) 2017; 2
Glowinski (2025030817502773500_bib10) 1989
Hu (2025030817502773500_bib12) 2024; 18
Qiu (2025030817502773500_bib17) 2022; 117
Zhao (2025030817502773500_bib24) 2021; 22
Bickel (2025030817502773500_bib2) 2008; 36
Lee (2025030817502773500_bib13) 2022; 14
Xue (2025030817502773500_bib21) 2012; 107
References_xml – volume: 22
  start-page: 729
  year: 2012
  ident: 2025030817502773500_bib11
  article-title: A covariance regression model
  publication-title: Statistica Sinica
  doi: 10.5705/ss.2010.051
– volume: 1380
  start-page: 187
  year: 2011
  ident: 2025030817502773500_bib20
  article-title: Using a self-organizing map algorithm to detect age-related changes in functional connectivity during rest in autism spectrum disorders
  publication-title: Brain Research
  doi: 10.1016/j.brainres.2010.10.102
– volume: 118
  start-page: 2088
  year: 2022
  ident: 2025030817502773500_bib22
  article-title: High-dimensional Gaussian graphical regression models with covariates
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2022.2034632
– volume: 22
  start-page: 1319
  year: 2012
  ident: 2025030817502773500_bib6
  article-title: Minimax estimation of large covariance matrices under $l_1$-norm
  publication-title: Statistica Sinica
– volume: 117
  start-page: 2268
  year: 2022
  ident: 2025030817502773500_bib17
  article-title: Inference on multi-level partial correlations based on multi-subject time series data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2021.1917417
– volume: 117
  start-page: 1338
  year: 2022
  ident: 2025030817502773500_bib19
  article-title: High-dimensional vector autoregressive time series modeling via tensor decomposition
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2020.1855183
– volume: 72
  start-page: 498
  year: 1990
  ident: 2025030817502773500_bib3
  article-title: Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model
  publication-title: The Review of Economics and Statistics
  doi: 10.2307/2109358
– volume: 22
  start-page: 629
  year: 2021
  ident: 2025030817502773500_bib24
  article-title: Covariate assisted principal regression for covariance matrix outcomes
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxz057
– volume: 104
  start-page: 177
  year: 2009
  ident: 2025030817502773500_bib18
  article-title: Generalized thresholding of large covariance matrices
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2009.0101
– volume: 110
  start-page: 1160
  year: 2015
  ident: 2025030817502773500_bib16
  article-title: Bandwidth selection for high-dimensional covariance matrix estimation
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2014.950375
– volume: 2
  start-page: 107
  year: 2005
  ident: 2025030817502773500_bib5
  article-title: Basic properties of strong mixing conditions. A survey and some open questions
  publication-title: Probability Surveys
  doi: 10.1214/154957805100000104
– volume: 2
  start-page: 476
  year: 2017
  ident: 2025030817502773500_bib14
  article-title: The default mode network in autism
  publication-title: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
– volume: 36
  start-page: 2577
  year: 2008
  ident: 2025030817502773500_bib1
  article-title: Covariance regularization by thresholding
  publication-title: The Annals of Statistics
  doi: 10.1214/08-AOS600
– volume-title: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems
  year: 2000
  ident: 2025030817502773500_bib9
– volume: 107
  start-page: 1480
  year: 2012
  ident: 2025030817502773500_bib21
  article-title: Positive-definite $l_1$-penalized estimation of large covariance matrices
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2012.725386
– volume: 72
  start-page: 665
  year: 2011
  ident: 2025030817502773500_bib15
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 72
  start-page: 767
  year: 2015
  ident: 2025030817502773500_bib7
  article-title: Increased functional connectivity between subcortical and cortical resting-state networks in autism spectrum disorder
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.0101
– volume: 91
  start-page: 198
  year: 1996
  ident: 2025030817502773500_bib8
  article-title: The matrix-logarithmic covariance model
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1996.10476677
– volume: , 118
  start-page: 1056
  year: 2021
  ident: 2025030817502773500_bib25
  article-title: Cross-fitted residual regression for high-dimensional heteroscedasticity pursuit
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2021.1970570
– volume: 23
  start-page: 895
  year: 2014
  ident: 2025030817502773500_bib23
  article-title: Positive semidefinite rank-based correlation matrix estimation with application to semiparametric graph estimation
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2013.858633
– volume: 36
  start-page: 199
  year: 2008
  ident: 2025030817502773500_bib2
  article-title: Regularized estimation of large covariance matrices
  publication-title: The Annals of Statistics
  doi: 10.1214/009053607000000758
– volume: 112
  start-page: 266
  year: 2017
  ident: 2025030817502773500_bib26
  article-title: Covariance regression analysis
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2015.1131699
– volume: 3
  start-page: 1
  year: 2011
  ident: 2025030817502773500_bib4
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000016
– volume-title: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics
  year: 1989
  ident: 2025030817502773500_bib10
  doi: 10.1137/1.9781611970838
– volume: 18
  start-page: 184
  year: 2024
  ident: 2025030817502773500_bib12
  article-title: Applied regression analysis of correlations for correlated data
  publication-title: The Annals of Applied Statistics
  doi: 10.1214/23-AOAS1785
– volume: 14
  start-page: 51
  year: 2022
  ident: 2025030817502773500_bib13
  article-title: Default mode and fronto-parietal network associations with IQ development across childhood in autism
  publication-title: Journal of Neurodevelopmental Disorders
  doi: 10.1186/s11689-022-09460-y
SSID ssj0009502
Score 2.4398108
Snippet Covariance is an important measure of marginal dependence among variables. However, heterogeneity in subject covariances and regression models for...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Algorithms
Biometry - methods
Brain - physiology
Computer Simulation
Data Interpretation, Statistical
Humans
Models, Statistical
Regression Analysis
Title Positive-definite regularized estimation for high-dimensional covariance on scalar regression
URI https://www.ncbi.nlm.nih.gov/pubmed/40056426
https://www.proquest.com/docview/3175399541
Volume 81
WOSCitedRecordID wos001439404200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6xDaTxgKAwVn5MRkLwMEVLHbtOHhGs6kMpA3UoLyhyElsK0pIuXarBX885TpOUgTQeeImqk-NEvi_XO_vuO4DXVGjXjxnFTzzFAAX_EZwYYeAIzRONgQ-nNW_B15mYz_0wDM6aHpurup2AyHP_-jpY_ldVowyVbUpn_0Hd7aQowN-odLyi2vF6K8Wf1WlYa-WkSmfGozwu637zZfYTnUtDqnHRJRgatmInNQz_lp3jOCnWOLKuI8AhK9SgLM0ENl023zoDNpX7huC_dcundkM-a8HyOatqG19dFFW3RV3UwjCThTOtZH_fgfJ630H0TSVDAaP2VEX9QdbYV9uSpY-jG2bbUloZwgHT131SfZfatSWd2wzZ80_R5Hw2ixan4eLN8tIxzcPMIXvTSWUH9qjgAdrnvQ9fcGCPfdkmn25er2Xv9E7sQ0-aR257J38JOWrXY_EQHjQxA3lndf0I7qh8APdsF9EfA7j_saXeXQ1g34QPln37MXy7AQbSAwPpwEAQDOR3MJAODASHWDCQDgxP4Hxyung_dZqGGk5COb1ytFYYco8DPaIul0HMXc185vmKiUQKTgPNA8-TXMcxhqH49SYcHfBEq1R6WkvmHcBuXuTqEMgYbx3jHOM4HqFPH0vTHjlQqZt4Iy_WbAhvNwsZLS1vSmTzHbzILnnULPkQXm3WOULTZs6rZK6KahUZ19ZUXrPREJ5aBbRzMcNhi97ls1vc_Rz2OwC_gN2rslIv4W6yRm2UR7AjQv-oQcwvXDh_lw
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive-definite+regularized+estimation+for+high-dimensional+covariance+on+scalar+regression&rft.jtitle=Biometrics&rft.au=He%2C+Jie&rft.au=Qiu%2C+Yumou&rft.au=Zhou%2C+Xiao-Hua&rft.date=2025-01-07&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=81&rft.issue=1&rft_id=info:doi/10.1093%2Fbiomtc%2Fujaf017&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon