Trends in Design, Optimization, Languages, and Analytical Processing of Big Data (DOLAP 2020)

Data science requires the creation of complex data ecosystems to support data analysis, which we refer to as data-based information systems (DBIS). The diversity of techniques to manage and analyse data has contributed to a wide variety of DBIS. On the one hand, current data management solutions spa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information systems (Oxford) Ročník 104; s. 101929
Hlavní autoři: Hose, Katja, Romero, Oscar, Song, Il-Yeol
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.02.2022
Elsevier Science Ltd
Témata:
ISSN:0306-4379, 1873-6076
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Data science requires the creation of complex data ecosystems to support data analysis, which we refer to as data-based information systems (DBIS). The diversity of techniques to manage and analyse data has contributed to a wide variety of DBIS. On the one hand, current data management solutions span classical relational databases, distributed (relational and non-relational) systems, document-oriented databases, column stores, in-memory databases, property and knowledge graph databases, stream processors, scientific databases, etc. On the other hand, data analytics techniques range from classical statistical-based data mining, to machine learning, process-oriented data analysis, stream and complex event processing, graph analytics, etc. On top of that, hardware-accelerated solutions, specially related to deep learning and CPU-intensive analytical solutions are complicating the big picture. Nowadays, a prominent research trend is to devise specific data management techniques to accelerate and improve the overall throughput and answer time of DBIS. DOLAP, the International Workshop On Design, Optimization, Languages and Analytical Processing of Big Data, has become a reference discussion forum where to witness the current advances in data management for modern data analytics needs. We summarize the advances presented in DOLAP 2020 and the best papers selected for the DOLAP 2020 Information Systems Special Issue.
AbstractList Data science requires the creation of complex data ecosystems to support data analysis, which we refer to as data-based information systems (DBIS). The diversity of techniques to manage and analyse data has contributed to a wide variety of DBIS. On the one hand, current data management solutions span classical relational databases, distributed (relational and non-relational) systems, document-oriented databases, column stores, in-memory databases, property and knowledge graph databases, stream processors, scientific databases, etc. On the other hand, data analytics techniques range from classical statistical-based data mining, to machine learning, process-oriented data analysis, stream and complex event processing, graph analytics, etc. On top of that, hardware-accelerated solutions, specially related to deep learning and CPU-intensive analytical solutions are complicating the big picture. Nowadays, a prominent research trend is to devise specific data management techniques to accelerate and improve the overall throughput and answer time of DBIS. DOLAP, the International Workshop On Design, Optimization, Languages and Analytical Processing of Big Data, has become a reference discussion forum where to witness the current advances in data management for modern data analytics needs. We summarize the advances presented in DOLAP 2020 and the best papers selected for the DOLAP 2020 Information Systems Special Issue.
Data science requires the creation of complex data ecosystems to support data analysis, which we refer to as data-based information systems (DBIS). The diversity of techniques to manage and analyse data has contributed to a wide variety of DBIS. On the one hand, current data management solutions span classical relational databases, distributed (relational and non-relational) systems, document-oriented databases, column stores, in-memory databases, property and knowledge graph databases, stream processors, scientific databases, etc. On the other hand, data analytics techniques range from classical statistical-based data mining, to machine learning, process-oriented data analysis, stream and complex event processing, graph analytics, etc. On top of that, hardware-accelerated solutions, specially related to deep learning and CPU-intensive analytical solutions are complicating the big picture. Nowadays, a prominent research trend is to devise specific data management techniques to accelerate and improve the overall throughput and answer time of DBIS. DOLAP, the International Workshop On Design, Optimization, Languages and Analytical Processing of Big Data, has become a reference discussion forum where to witness the current advances in data management for modern data analytics needs. We summarize the advances presented in DOLAP 2020 and the best papers selected for the DOLAP 2020 Information Systems Special Issue.
ArticleNumber 101929
Author Song, Il-Yeol
Hose, Katja
Romero, Oscar
Author_xml – sequence: 1
  givenname: Katja
  surname: Hose
  fullname: Hose, Katja
  email: khose@cs.aau.dk
  organization: Aalborg University, Aalborg, Denmark
– sequence: 2
  givenname: Oscar
  surname: Romero
  fullname: Romero, Oscar
  email: oromero@essi.upc.edu
  organization: Universitat Politècnica de Catalunya, Barcelona, Spain
– sequence: 3
  givenname: Il-Yeol
  surname: Song
  fullname: Song, Il-Yeol
  email: songiy@drexel.edu
  organization: Drexel University, Philadelphia, United States
BookMark eNp9kM1LAzEUxINUsFXvHgNeFLo1yW6yXW-19QsW6kGPEtIku7zSZmuSCvrXm1pPgp4eA-83zMwA9VznLEJnlIwooeJqOYIwYoTRnaxYdYD6dFzmmSCl6KE-yYnIirysjtAghCUhhPGq6qPXZ2-dCRgcntkArRvi-SbCGj5VhC6pWrl2q1obhlg5gydOrT4iaLXCT77TNgRwLe4afAMtnqmo8MVsXk-ecIpCLk_QYaNWwZ7-3GP0cnf7PH3I6vn943RSZ5pxFjPBOW8qapigVWWFoIKO9aIpDLEm54bzQhhOWE5yWmhSaEbH40YYY8tFrhqj82N0vvfd-O5ta0OUy27rU9Qgd56iTL40fYn9l_ZdCN42UkP8rhm9gpWkRO6mlEsJiUtTyv2UCSS_wI2HtfIf_yHXe8Sm2u9gvQwarNPWgLc6StPB3_AXgP2JVQ
CitedBy_id crossref_primary_10_1088_1755_1315_1087_1_012014
ContentType Journal Article
Copyright 2021
Copyright Elsevier Science Ltd. Feb 2022
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Science Ltd. Feb 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.is.2021.101929
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-6076
ExternalDocumentID 10_1016_j_is_2021_101929
S0306437921001319
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
13V
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
63O
7-5
71M
77K
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HF~
HLZ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SSV
SSZ
T5K
TN5
UHS
VH1
WUQ
XSW
ZCG
ZY4
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c252t-6555f91d26199e661618cbf4d0ed35d5546d50230314c04c2188f6dde7b3afdc3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000727723200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-4379
IngestDate Fri Nov 14 18:50:00 EST 2025
Sat Nov 29 07:20:34 EST 2025
Tue Nov 18 22:25:53 EST 2025
Fri Feb 23 02:42:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Design
Data analytics
Big data
Data management
Optimization
Processing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c252t-6555f91d26199e661618cbf4d0ed35d5546d50230314c04c2188f6dde7b3afdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2619671991
PQPubID 2035446
ParticipantIDs proquest_journals_2619671991
crossref_citationtrail_10_1016_j_is_2021_101929
crossref_primary_10_1016_j_is_2021_101929
elsevier_sciencedirect_doi_10_1016_j_is_2021_101929
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Information systems (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
SSID ssj0002599
Score 2.3092167
Snippet Data science requires the creation of complex data ecosystems to support data analysis, which we refer to as data-based information systems (DBIS). The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101929
SubjectTerms Big Data
Data analysis
Data analytics
Data management
Data mining
Data processing
Data science
Deep learning
Design
Design analysis
Design optimization
Exact solutions
Information retrieval
Information systems
Information technology
Knowledge representation
Languages
Machine learning
Management
Management techniques
Mathematical analysis
Optimization
Processing
Relational data bases
Title Trends in Design, Optimization, Languages, and Analytical Processing of Big Data (DOLAP 2020)
URI https://dx.doi.org/10.1016/j.is.2021.101929
https://www.proquest.com/docview/2619671991
Volume 104
WOSCitedRecordID wos000727723200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6076
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002599
  issn: 0306-4379
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKxgM88GOAGAzkB4SYaETixHbyWFinDap2gg6Vh8lyHQe16tKyhmn_Av8159hOOwQVPPASVU6TtL4v57vzd3cIvRgncSE5o4HmJiWniHkgE0rMdmEiY5YlSZ3F_7nH-_10NMpOWq0fPhfmcsbLMr26yhb_VdQwBsI2qbP_IO7mpjAAn0HocASxw_HvBN-wXA9qdoaZxAEohnOXcWmzoW2UcunJm3VtEhvWdqkDjg39dvIVkFFJY4keDHqdk9cETD8fP5h6HnyTA-lKQ9exXJuMuBZrOHJtHD_IatosBx_n59om2wyWSjZc4U-OK3w8C77o-Ww9OkGIJzT7kJlPm_GaasVVqlO2QhaYgoh2MbIaOOVxwELbFKZR0WGypmSj36p-G4WYwp3B6yeRGcjcH7xWZbs_EIenvZ4YdkfDl4tvgWlAZjbqXTeWG2ibgA8FCnK7c9wdvW-WdfATM7slZX-z2_O2ZMHrD_2TjfPLal-bMMN76I7zPXDHYuY-aulyB931fT2wm7wddHutSOUDdGYBhScltoBq43U4tXEDpjYGKOEVlPAKSnheYIASNlDCr2ogYQOk_Yfo9LA7fHcUuKYcgSKUVAGjlBZZlBvPO9Ng3bEoVYbtGeo8prkhPebUOLZxlKgwUWBCpgWDRZSPY1nkKn6Etsp5qR8jTMZSs1BLpjhJaMolVbHxL7JUcSop2UVv_DQK5SrWm8YpM-GpiVMxWQoz8cJO_C7ab65Y2GotG74be8kIZ21aK1IAojZcteeFKNxLD-dhLhg3JMInm08_RbdWL8ke2qouvutn6Ka6rCbLi-cOcT8BxDaeVQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trends+in+Design%2C+Optimization%2C+Languages%2C+and+Analytical+Processing+of+Big+Data+%28DOLAP+2020%29&rft.jtitle=Information+systems+%28Oxford%29&rft.au=Hose%2C+Katja&rft.au=Romero%2C+Oscar&rft.au=Song%2C+Il-Yeol&rft.date=2022-02-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0306-4379&rft.eissn=1873-6076&rft.volume=104&rft.spage=1&rft_id=info:doi/10.1016%2Fj.is.2021.101929&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4379&client=summon