Trends in Design, Optimization, Languages, and Analytical Processing of Big Data (DOLAP 2020)
Data science requires the creation of complex data ecosystems to support data analysis, which we refer to as data-based information systems (DBIS). The diversity of techniques to manage and analyse data has contributed to a wide variety of DBIS. On the one hand, current data management solutions spa...
Uloženo v:
| Vydáno v: | Information systems (Oxford) Ročník 104; s. 101929 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.02.2022
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0306-4379, 1873-6076 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Data science requires the creation of complex data ecosystems to support data analysis, which we refer to as data-based information systems (DBIS). The diversity of techniques to manage and analyse data has contributed to a wide variety of DBIS. On the one hand, current data management solutions span classical relational databases, distributed (relational and non-relational) systems, document-oriented databases, column stores, in-memory databases, property and knowledge graph databases, stream processors, scientific databases, etc. On the other hand, data analytics techniques range from classical statistical-based data mining, to machine learning, process-oriented data analysis, stream and complex event processing, graph analytics, etc. On top of that, hardware-accelerated solutions, specially related to deep learning and CPU-intensive analytical solutions are complicating the big picture.
Nowadays, a prominent research trend is to devise specific data management techniques to accelerate and improve the overall throughput and answer time of DBIS. DOLAP, the International Workshop On Design, Optimization, Languages and Analytical Processing of Big Data, has become a reference discussion forum where to witness the current advances in data management for modern data analytics needs. We summarize the advances presented in DOLAP 2020 and the best papers selected for the DOLAP 2020 Information Systems Special Issue. |
|---|---|
| AbstractList | Data science requires the creation of complex data ecosystems to support data analysis, which we refer to as data-based information systems (DBIS). The diversity of techniques to manage and analyse data has contributed to a wide variety of DBIS. On the one hand, current data management solutions span classical relational databases, distributed (relational and non-relational) systems, document-oriented databases, column stores, in-memory databases, property and knowledge graph databases, stream processors, scientific databases, etc. On the other hand, data analytics techniques range from classical statistical-based data mining, to machine learning, process-oriented data analysis, stream and complex event processing, graph analytics, etc. On top of that, hardware-accelerated solutions, specially related to deep learning and CPU-intensive analytical solutions are complicating the big picture.
Nowadays, a prominent research trend is to devise specific data management techniques to accelerate and improve the overall throughput and answer time of DBIS. DOLAP, the International Workshop On Design, Optimization, Languages and Analytical Processing of Big Data, has become a reference discussion forum where to witness the current advances in data management for modern data analytics needs. We summarize the advances presented in DOLAP 2020 and the best papers selected for the DOLAP 2020 Information Systems Special Issue. Data science requires the creation of complex data ecosystems to support data analysis, which we refer to as data-based information systems (DBIS). The diversity of techniques to manage and analyse data has contributed to a wide variety of DBIS. On the one hand, current data management solutions span classical relational databases, distributed (relational and non-relational) systems, document-oriented databases, column stores, in-memory databases, property and knowledge graph databases, stream processors, scientific databases, etc. On the other hand, data analytics techniques range from classical statistical-based data mining, to machine learning, process-oriented data analysis, stream and complex event processing, graph analytics, etc. On top of that, hardware-accelerated solutions, specially related to deep learning and CPU-intensive analytical solutions are complicating the big picture. Nowadays, a prominent research trend is to devise specific data management techniques to accelerate and improve the overall throughput and answer time of DBIS. DOLAP, the International Workshop On Design, Optimization, Languages and Analytical Processing of Big Data, has become a reference discussion forum where to witness the current advances in data management for modern data analytics needs. We summarize the advances presented in DOLAP 2020 and the best papers selected for the DOLAP 2020 Information Systems Special Issue. |
| ArticleNumber | 101929 |
| Author | Song, Il-Yeol Hose, Katja Romero, Oscar |
| Author_xml | – sequence: 1 givenname: Katja surname: Hose fullname: Hose, Katja email: khose@cs.aau.dk organization: Aalborg University, Aalborg, Denmark – sequence: 2 givenname: Oscar surname: Romero fullname: Romero, Oscar email: oromero@essi.upc.edu organization: Universitat Politècnica de Catalunya, Barcelona, Spain – sequence: 3 givenname: Il-Yeol surname: Song fullname: Song, Il-Yeol email: songiy@drexel.edu organization: Drexel University, Philadelphia, United States |
| BookMark | eNp9kM1LAzEUxINUsFXvHgNeFLo1yW6yXW-19QsW6kGPEtIku7zSZmuSCvrXm1pPgp4eA-83zMwA9VznLEJnlIwooeJqOYIwYoTRnaxYdYD6dFzmmSCl6KE-yYnIirysjtAghCUhhPGq6qPXZ2-dCRgcntkArRvi-SbCGj5VhC6pWrl2q1obhlg5gydOrT4iaLXCT77TNgRwLe4afAMtnqmo8MVsXk-ecIpCLk_QYaNWwZ7-3GP0cnf7PH3I6vn943RSZ5pxFjPBOW8qapigVWWFoIKO9aIpDLEm54bzQhhOWE5yWmhSaEbH40YYY8tFrhqj82N0vvfd-O5ta0OUy27rU9Qgd56iTL40fYn9l_ZdCN42UkP8rhm9gpWkRO6mlEsJiUtTyv2UCSS_wI2HtfIf_yHXe8Sm2u9gvQwarNPWgLc6StPB3_AXgP2JVQ |
| CitedBy_id | crossref_primary_10_1088_1755_1315_1087_1_012014 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright Elsevier Science Ltd. Feb 2022 |
| Copyright_xml | – notice: 2021 – notice: Copyright Elsevier Science Ltd. Feb 2022 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.is.2021.101929 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1873-6076 |
| ExternalDocumentID | 10_1016_j_is_2021_101929 S0306437921001319 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 13V 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 63O 7-5 71M 77K 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABTAH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HAMUX HF~ HLZ HVGLF HZ~ H~9 IHE J1W KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSB SSD SSL SSV SSZ T5K TN5 UHS VH1 WUQ XSW ZCG ZY4 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c252t-6555f91d26199e661618cbf4d0ed35d5546d50230314c04c2188f6dde7b3afdc3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000727723200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0306-4379 |
| IngestDate | Fri Nov 14 18:50:00 EST 2025 Sat Nov 29 07:20:34 EST 2025 Tue Nov 18 22:25:53 EST 2025 Fri Feb 23 02:42:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Design Data analytics Big data Data management Optimization Processing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c252t-6555f91d26199e661618cbf4d0ed35d5546d50230314c04c2188f6dde7b3afdc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2619671991 |
| PQPubID | 2035446 |
| ParticipantIDs | proquest_journals_2619671991 crossref_citationtrail_10_1016_j_is_2021_101929 crossref_primary_10_1016_j_is_2021_101929 elsevier_sciencedirect_doi_10_1016_j_is_2021_101929 |
| PublicationCentury | 2000 |
| PublicationDate | February 2022 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Information systems (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| SSID | ssj0002599 |
| Score | 2.3092167 |
| Snippet | Data science requires the creation of complex data ecosystems to support data analysis, which we refer to as data-based information systems (DBIS). The... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 101929 |
| SubjectTerms | Big Data Data analysis Data analytics Data management Data mining Data processing Data science Deep learning Design Design analysis Design optimization Exact solutions Information retrieval Information systems Information technology Knowledge representation Languages Machine learning Management Management techniques Mathematical analysis Optimization Processing Relational data bases |
| Title | Trends in Design, Optimization, Languages, and Analytical Processing of Big Data (DOLAP 2020) |
| URI | https://dx.doi.org/10.1016/j.is.2021.101929 https://www.proquest.com/docview/2619671991 |
| Volume | 104 |
| WOSCitedRecordID | wos000727723200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6076 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002599 issn: 0306-4379 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKxgM88GOAGAzkB4SYaETixHbyWFinDap2gg6Vh8lyHQe16tKyhmn_Av8159hOOwQVPPASVU6TtL4v57vzd3cIvRgncSE5o4HmJiWniHkgE0rMdmEiY5YlSZ3F_7nH-_10NMpOWq0fPhfmcsbLMr26yhb_VdQwBsI2qbP_IO7mpjAAn0HocASxw_HvBN-wXA9qdoaZxAEohnOXcWmzoW2UcunJm3VtEhvWdqkDjg39dvIVkFFJY4keDHqdk9cETD8fP5h6HnyTA-lKQ9exXJuMuBZrOHJtHD_IatosBx_n59om2wyWSjZc4U-OK3w8C77o-Ww9OkGIJzT7kJlPm_GaasVVqlO2QhaYgoh2MbIaOOVxwELbFKZR0WGypmSj36p-G4WYwp3B6yeRGcjcH7xWZbs_EIenvZ4YdkfDl4tvgWlAZjbqXTeWG2ibgA8FCnK7c9wdvW-WdfATM7slZX-z2_O2ZMHrD_2TjfPLal-bMMN76I7zPXDHYuY-aulyB931fT2wm7wddHutSOUDdGYBhScltoBq43U4tXEDpjYGKOEVlPAKSnheYIASNlDCr2ogYQOk_Yfo9LA7fHcUuKYcgSKUVAGjlBZZlBvPO9Ng3bEoVYbtGeo8prkhPebUOLZxlKgwUWBCpgWDRZSPY1nkKn6Etsp5qR8jTMZSs1BLpjhJaMolVbHxL7JUcSop2UVv_DQK5SrWm8YpM-GpiVMxWQoz8cJO_C7ab65Y2GotG74be8kIZ21aK1IAojZcteeFKNxLD-dhLhg3JMInm08_RbdWL8ke2qouvutn6Ka6rCbLi-cOcT8BxDaeVQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trends+in+Design%2C+Optimization%2C+Languages%2C+and+Analytical+Processing+of+Big+Data+%28DOLAP+2020%29&rft.jtitle=Information+systems+%28Oxford%29&rft.au=Hose%2C+Katja&rft.au=Romero%2C+Oscar&rft.au=Song%2C+Il-Yeol&rft.date=2022-02-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0306-4379&rft.eissn=1873-6076&rft.volume=104&rft.spage=1&rft_id=info:doi/10.1016%2Fj.is.2021.101929&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4379&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4379&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4379&client=summon |