Environment humidity and temperature prediction in agriculture using Mamdani inference systems
This paper presents the results of a humidity and temperature prediction model in the environment for agriculture, using diffuse sets and optimizing their parameters by heuristic methods, such as genetic algorithms, and exact methods such as Quasi-Newton. It has been identified that non-specialized...
Uloženo v:
| Vydáno v: | International journal of electrical and computer engineering (Malacca, Malacca) Ročník 11; číslo 4; s. 3502 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Yogyakarta
IAES Institute of Advanced Engineering and Science
01.08.2021
|
| Témata: | |
| ISSN: | 2088-8708, 2722-2578, 2088-8708 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents the results of a humidity and temperature prediction model in the environment for agriculture, using diffuse sets and optimizing their parameters by heuristic methods, such as genetic algorithms, and exact methods such as Quasi-Newton. It has been identified that non-specialized users could have difficulties in understanding the system dynamics and the behavior of variables over time. The aim of this research is obtain models with a high level of interpretability and accuracy that allows predicting the temperature and humidity values for the environment. The use of fuzzy logic to present a solution has great advantages as this system is highly rated for interpretability. Furthermore, by relating the obtained values for environment humidity and temperature to qualitative categories as high, medium or low, it allows non-specialized users to have a better understanding of the system dynamics. Two optimization techniques are applied to two different diffuse sets that allow the prediction of the humidity and temperature. It is found that the best implementation involves a Mamdani fuzzy inference system optimized with Quasi-Newton algorithm that uses a set of initial values attained through a previous optimization process with a genetic algorithm. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2088-8708 2722-2578 2088-8708 |
| DOI: | 10.11591/ijece.v11i4.pp3502-3509 |