Development and optimization of a finite element model with remeshing and Lagrangian formulation for the simulation of high deformation manufacturing processes
High deformation manufacturing processes, such as forming and machining, are complex physical phenomena involving severe thermo-mechanical and chemical loads. Traditional industrial-scale empirical methods involve high tooling and preparation costs and long lead times before manufacturing, which is...
Saved in:
| Published in: | Procedia CIRP Vol. 133; pp. 460 - 465 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
2025
|
| Subjects: | |
| ISSN: | 2212-8271, 2212-8271 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | High deformation manufacturing processes, such as forming and machining, are complex physical phenomena involving severe thermo-mechanical and chemical loads. Traditional industrial-scale empirical methods involve high tooling and preparation costs and long lead times before manufacturing, which is undesirable in modern industry. The use of predictive models helps to reduce these weaknesses. Finite Element Method (FEM) models are a useful, reliable and cost-effective tool for studying manufacturing processes. Several approaches have been used to model these processes with the FEM. The Lagrangian formulation with implicit time integration scheme is the most widely used because of its reliability. However, element distortion due to severe plastic deformation and chip separation, in the case of machining, has always been a major concern of this approach. This paper therefore presents the development of a customizable and optimized FEM model with Lagrangian formulation and remeshing technique that solve the mesh distortion problem. The model was developed using the general-purpose software Abaqus/Standard commanded by Python scripting. The remeshing criterion is based on the relative plastic deformation at each load increment controlled by two subroutines working together UVARM+URDFIL. A forming problem was selected to optimize the mesh size and number of remeshings with the goal of reducing the simulation time. Then, the proposed model was compared to Lagrangian models without remeshing and Arbitrary Lagrangian-Eulerian (ALE) formulation. The model was also experimentally validated demonstrating improvements over other approaches and formulations, and laying the foundation for further development, such as applying it to the machining process. |
|---|---|
| AbstractList | High deformation manufacturing processes, such as forming and machining, are complex physical phenomena involving severe thermo-mechanical and chemical loads. Traditional industrial-scale empirical methods involve high tooling and preparation costs and long lead times before manufacturing, which is undesirable in modern industry. The use of predictive models helps to reduce these weaknesses. Finite Element Method (FEM) models are a useful, reliable and cost-effective tool for studying manufacturing processes. Several approaches have been used to model these processes with the FEM. The Lagrangian formulation with implicit time integration scheme is the most widely used because of its reliability. However, element distortion due to severe plastic deformation and chip separation, in the case of machining, has always been a major concern of this approach. This paper therefore presents the development of a customizable and optimized FEM model with Lagrangian formulation and remeshing technique that solve the mesh distortion problem. The model was developed using the general-purpose software Abaqus/Standard commanded by Python scripting. The remeshing criterion is based on the relative plastic deformation at each load increment controlled by two subroutines working together UVARM+URDFIL. A forming problem was selected to optimize the mesh size and number of remeshings with the goal of reducing the simulation time. Then, the proposed model was compared to Lagrangian models without remeshing and Arbitrary Lagrangian-Eulerian (ALE) formulation. The model was also experimentally validated demonstrating improvements over other approaches and formulations, and laying the foundation for further development, such as applying it to the machining process. |
| Author | Ducobu, François Germain, Guénaël Valdivia-Maldonado, Ignacio-Manuel Ortiz-de-Zarate, Gorka Oruna, Ainara Arrazola, Pedro J. |
| Author_xml | – sequence: 1 givenname: Ignacio-Manuel surname: Valdivia-Maldonado fullname: Valdivia-Maldonado, Ignacio-Manuel email: imvaldivia@mondragon.edu organization: Mondragon Unibertsitatea, Faculty of Engineering, Loramendi 4, 20500, Arrasate-Mondragón, Spain – sequence: 2 givenname: Ainara surname: Oruna fullname: Oruna, Ainara organization: Mondragon Unibertsitatea, Faculty of Engineering, Loramendi 4, 20500, Arrasate-Mondragón, Spain – sequence: 3 givenname: Gorka surname: Ortiz-de-Zarate fullname: Ortiz-de-Zarate, Gorka organization: Mondragon Unibertsitatea, Faculty of Engineering, Loramendi 4, 20500, Arrasate-Mondragón, Spain – sequence: 4 givenname: François surname: Ducobu fullname: Ducobu, François organization: UMONS Research Institute for Materials Science and Engineering, University of Mons, Place du Parc 20, Mons, 7000, Belgium – sequence: 5 givenname: Guénaël surname: Germain fullname: Germain, Guénaël organization: LAMPA, Arts et Métiers Institute of Technology, 2 boulevard du Ronceray BP 93525, 49035 Angers, France – sequence: 6 givenname: Pedro J. surname: Arrazola fullname: Arrazola, Pedro J. organization: Mondragon Unibertsitatea, Faculty of Engineering, Loramendi 4, 20500, Arrasate-Mondragón, Spain |
| BookMark | eNp9kE1OwzAQhS0EEqX0Bix8gQZ7kjTtBgmVX6kSG1hbjj1OXCV2ZadFcBmuStIgxIrZzOhp3qeZd0FOnXdIyBVnCWd8cb1NdsErGxJgkCcMElasTsgEgMN8CQU__TOfk1mMW9ZXkbGUw4R83eEBG79r0XVUOk39rrOt_ZSd9Y56QyU11tkOKTZ4XGq9xoa-266moVdibV11dG5kFaSrrHTU-NDum5HRz7SrkUb7K_XY2lY11Tgsjlor3d5I1e3DwBtewhgxXpIzI5uIs58-JW8P96_rp_nm5fF5fbuZK8hhNc-NYgrKgpkiLVW60hwLZMCXJpe4gpSzQss8VwtYLHXG8xJAacXS0ugcM8bSKclGrgo-xoBG7IJtZfgQnIkhZ7EVY85iyFkwEH3Ove1mtGF_28FiEFFZdAq1Dag6ob39H_ANtAePKw |
| Cites_doi | 10.1007/s11831-022-09794-9 10.4028/www.scientific.net/MSF.575-578.1139 10.1016/j.ijheatmasstransfer.2022.123747 10.1007/s00170-018-1759-6 10.1016/j.procir.2018.05.033 10.1016/j.procir.2021.09.002 10.1016/j.procir.2019.04.059 10.1016/j.cirp.2021.03.002 10.1007/s11831-018-09313-9 10.1007/s00170-021-08446-9 10.1016/j.cirpj.2016.10.004 10.1016/j.procir.2015.03.022 10.1002/nme.1620382108 10.1016/j.simpat.2015.03.011 10.1016/j.cirp.2013.05.006 10.1016/j.msea.2019.03.011 10.4028/www.scientific.net/AMR.223.535 10.1016/j.procir.2017.03.203 10.1016/j.jmbbm.2022.105185 10.1016/j.procir.2017.03.195 10.1016/j.procir.2017.03.188 10.1016/j.procir.2019.04.067 10.1016/j.procir.2020.02.105 10.3390/met11081154 10.1016/S0924-0136(00)00480-5 10.1016/j.cirp.2015.04.060 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.procir.2025.02.079 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2212-8271 |
| EndPage | 465 |
| ExternalDocumentID | 10_1016_j_procir_2025_02_079 S2212827125001672 |
| GroupedDBID | 0R~ 4.4 457 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB HZ~ IXB KQ8 M41 M~E O-L O9- OK1 ROL SSZ AAYXX CITATION |
| ID | FETCH-LOGICAL-c2529-5fc0c2b70f73bc39d1e7e0218f5ae923107da55c6268d415b22cdc03bfd5e4003 |
| ISSN | 2212-8271 |
| IngestDate | Thu Nov 13 04:14:00 EST 2025 Sat Oct 11 16:52:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Abaqus Remeshing Finite Element Method (FEM) Manufacturing Python scripting |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2529-5fc0c2b70f73bc39d1e7e0218f5ae923107da55c6268d415b22cdc03bfd5e4003 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.procir.2025.02.079 |
| PageCount | 6 |
| ParticipantIDs | crossref_primary_10_1016_j_procir_2025_02_079 elsevier_sciencedirect_doi_10_1016_j_procir_2025_02_079 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-00-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 2025-00-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Procedia CIRP |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Saez-de Buruaga, Gainza, Aristimuno, Soler, Ortiz-de Zarate, Aizpuru, Mielgo, Arrazola (bib1644) 2019; 82 Ortiz-de Zarate, Madariaga, Garay, Azpitarte, Sacristan, Cuesta, Arrazola (bib1648) 2018; 71 A. Sela, G. Ortiz-De-Zarate, D. Soler, G. Germain, L. Gallegos, P. J. Arrazola, “Adiabatic self-heating determination for ti6al4v at different temperatures,” International Journal of Heat and Mass Transfer, vol. 204, p. 123747, 2023. Arrazola, Ozel, Umbrello, Davies, Jawahir (bib1625) 2013; 62 J. M. Rodrıguez, J. M. Carbonell, P. Jons´en, “Numerical methods for the modelling of chip formation,” Archives of Computational Methods in Engineering, vol. 27, pp. 387–412, 4 2020. W. Cheng, J. C. Outeiro, “Modelling orthogonal cutting of Ti-6Al-4V titanium alloy using a constitutive model considering the state of stress,” The International Journal of Advanced Manufacturing Technology,vol. 119, no. 7-8, pp. 4329–4347, 2022. E. Segebade, M. Gerstenmeyer, F. Zanger, V. Schulze, “Cutting simulations using a commercially available 2d/3d fem software for forming,”Procedia CIRP, vol. 58, pp. 73–78, 2017. 16th CIRP Conference on Modelling of Machining Operations (16th CIRP CMMO). Ortiz-de Zarate, Soriano, Madariaga, Garay, Rodriguez, Arrazola (bib1645) 2021; 102 F. Zanger, N. Boev, V. Schulze, “Novel approach for 3d simulation of a cutting process with adaptive remeshing technique,” Procedia CIRP, vol. 31, pp. 88–93, 2015. 15th CIRP Conference on Modelling of Machining Operations (15th CMMO). G. Ortiz-de Zarate, A. Madariaga, P. J. Arrazola, T. H. Childs, “A novel methodology to characterize tool-chip contact in metal cutting using partially restricted contact length tools,” CIRP Annals, vol. 70, no. 1, pp. 61– 64, 2021. C. C. Wang, “Finite element simulation for forging process using euler’s fixed meshing method,” in Materials Science Forum, vol. 575, pp. 1139–1144, Trans Tech Publ, 2008. M. Movahhedy, M. Gadala, Y. Altintas, “Simulation of the orthogonal metal cutting process using an arbitrary lagrangian–eulerian finiteelement method,” Journal of materials processing technology, vol. 103, no. 2, pp. 267–275, 2000. Wang, Liu (bib1634) 2015; 55 M. Sadeghifar, R. Sedaghati, W. Jomaa, V. Songmene, “A comprehensive review of finite element modeling of orthogonal machining process: chip formation and surface integrity predictions,” International Journal of Advanced Manufacturing Technology, vol. 96, pp. 3747–3791, 6 2018. A. Sela, D. Soler, G. Ortiz-de Zarate, G. Germain, F. Ducobu, P. J. Arrazola, “Inverse identification of the ductile failure law for ti6al4v based on orthogonal cutting experimental outcomes,” Metals, vol. 11, no. 8, p. 1154, 2021. M. E. Korkmaz, M. K. Gupta, “A state of the art on simulation and modelling methods in machining: future prospects and challenges,” Archives of Computational Methods in Engineering, vol. 30, no. 1, pp. 161–189, 2023. V. Schulze, F. Zanger, “Development of a simulation model to investigate tool wear in Ti-6Al-4V alloy machining,” in Advanced materials research, vol. 223, pp. 535–544, Trans Tech Publ, 2011. S. N. Melkote, R. Liu, P. Fernandez-Zelaia, T. Marusich, “A physically based constitutive model for simulation of segmented chip formation in orthogonal cutting of commercially pure titanium,” CIRP Annals, vol. 64, no. 1, pp. 65–68, 2015. T. Marusich, M. Ortiz, “Modelling and simulation of high-speed machining,” International Journal for numerical methods in engineering, vol. 38, no. 21, pp. 3675–3694, 1995. Umbrello, Bordin, Imbrogno, Bruschi (bib1643) 2017; 18 A. Mir, X. Luo, I. Llavori, A. Roy, D. L. Zlatanovic, S. N. Joshi, S. Goel, “Challenges and issues in continuum modelling of tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 130, 6 2022. Ortiz-de Zarate, Sela, Ducobu, Saez-de Buruaga, Soler, Childs, Arrazola (bib1647) 2019; 82 Ortiz-de Zarate, Sela, Madariaga, Childs, Arrazola (bib1641) 2020; 87 Ducobu, Arrazola, Rivière-Lorphèvre, De Zarate, Madariaga, Filippi (bib1633) 2017; 58 Xu, Zhang, Liu, He, Zhao (bib1637) 2019; 752 Zanger, Bollig, Schulze (bib1629) 2017; 58 Arrazola (10.1016/j.procir.2025.02.079_bib1625) 2013; 62 Ortiz-de Zarate (10.1016/j.procir.2025.02.079_bib1645) 2021; 102 Ducobu (10.1016/j.procir.2025.02.079_bib1633) 2017; 58 Umbrello (10.1016/j.procir.2025.02.079_bib1643) 2017; 18 Ortiz-de Zarate (10.1016/j.procir.2025.02.079_bib1647) 2019; 82 10.1016/j.procir.2025.02.079_bib1642 10.1016/j.procir.2025.02.079_bib1640 10.1016/j.procir.2025.02.079_bib1646 10.1016/j.procir.2025.02.079_bib1628 10.1016/j.procir.2025.02.079_bib1627 10.1016/j.procir.2025.02.079_bib1649 10.1016/j.procir.2025.02.079_bib1626 Zanger (10.1016/j.procir.2025.02.079_bib1629) 2017; 58 10.1016/j.procir.2025.02.079_bib1631 10.1016/j.procir.2025.02.079_bib1630 10.1016/j.procir.2025.02.079_bib1650 10.1016/j.procir.2025.02.079_bib1635 10.1016/j.procir.2025.02.079_bib1632 Wang (10.1016/j.procir.2025.02.079_bib1634) 2015; 55 Xu (10.1016/j.procir.2025.02.079_bib1637) 2019; 752 10.1016/j.procir.2025.02.079_bib1639 10.1016/j.procir.2025.02.079_bib1638 Ortiz-de Zarate (10.1016/j.procir.2025.02.079_bib1648) 2018; 71 10.1016/j.procir.2025.02.079_bib1636 Saez-de Buruaga (10.1016/j.procir.2025.02.079_bib1644) 2019; 82 Ortiz-de Zarate (10.1016/j.procir.2025.02.079_bib1641) 2020; 87 |
| References_xml | – reference: C. C. Wang, “Finite element simulation for forging process using euler’s fixed meshing method,” in Materials Science Forum, vol. 575, pp. 1139–1144, Trans Tech Publ, 2008. – reference: S. N. Melkote, R. Liu, P. Fernandez-Zelaia, T. Marusich, “A physically based constitutive model for simulation of segmented chip formation in orthogonal cutting of commercially pure titanium,” CIRP Annals, vol. 64, no. 1, pp. 65–68, 2015. – reference: J. M. Rodrıguez, J. M. Carbonell, P. Jons´en, “Numerical methods for the modelling of chip formation,” Archives of Computational Methods in Engineering, vol. 27, pp. 387–412, 4 2020. – volume: 18 start-page: 92 year: 2017 end-page: 100 ident: bib1643 article-title: “3d finite element modelling of surface modification in dry and cryogenic machining of ebm Ti6Al4V alloy,” publication-title: CIRP Journal of Manufacturing Science and Technology – reference: T. Marusich, M. Ortiz, “Modelling and simulation of high-speed machining,” International Journal for numerical methods in engineering, vol. 38, no. 21, pp. 3675–3694, 1995. – reference: M. E. Korkmaz, M. K. Gupta, “A state of the art on simulation and modelling methods in machining: future prospects and challenges,” Archives of Computational Methods in Engineering, vol. 30, no. 1, pp. 161–189, 2023. – reference: M. Sadeghifar, R. Sedaghati, W. Jomaa, V. Songmene, “A comprehensive review of finite element modeling of orthogonal machining process: chip formation and surface integrity predictions,” International Journal of Advanced Manufacturing Technology, vol. 96, pp. 3747–3791, 6 2018. – volume: 58 start-page: 140 year: 2017 end-page: 145 ident: bib1629 article-title: “Simulative investigations on different friction coefficient models,” publication-title: Procedia CIRP – volume: 87 start-page: 533 year: 2020 end-page: 538 ident: bib1641 article-title: “Sensitivity analysis of the input parameters of a physical based ductile failure model of Ti-6Al-4V for the prediction of surface integrity,” publication-title: Procedia CIRP – volume: 62 start-page: 695 year: 2013 end-page: 718 ident: bib1625 article-title: “Recent advances in modelling of metal machining processes,” publication-title: CIRP Annals - Manufacturing Technology – volume: 82 start-page: 77 year: 2019 end-page: 82 ident: bib1644 article-title: “Fem modeling of hard turning 42crmos4 steel,” publication-title: Procedia CIRP – reference: G. Ortiz-de Zarate, A. Madariaga, P. J. Arrazola, T. H. Childs, “A novel methodology to characterize tool-chip contact in metal cutting using partially restricted contact length tools,” CIRP Annals, vol. 70, no. 1, pp. 61– 64, 2021. – volume: 752 start-page: 167 year: 2019 end-page: 179 ident: bib1637 article-title: “Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining ti6al4v,” publication-title: Materials Science and Engineering: A – volume: 82 start-page: 65 year: 2019 end-page: 70 ident: bib1647 article-title: “Evaluation of different flow stress laws coupled with a physical based ductile failure criterion for the modelling of the chip formation process of ti-6al-4v under broaching conditions,” publication-title: Procedia CIRP – reference: W. Cheng, J. C. Outeiro, “Modelling orthogonal cutting of Ti-6Al-4V titanium alloy using a constitutive model considering the state of stress,” The International Journal of Advanced Manufacturing Technology,vol. 119, no. 7-8, pp. 4329–4347, 2022. – reference: E. Segebade, M. Gerstenmeyer, F. Zanger, V. Schulze, “Cutting simulations using a commercially available 2d/3d fem software for forming,”Procedia CIRP, vol. 58, pp. 73–78, 2017. 16th CIRP Conference on Modelling of Machining Operations (16th CIRP CMMO). – volume: 71 start-page: 466 year: 2018 end-page: 471 ident: bib1648 article-title: “Experimental and fem analysis of surface integrity when broaching ti64,” publication-title: Procedia Cirp – reference: A. Sela, D. Soler, G. Ortiz-de Zarate, G. Germain, F. Ducobu, P. J. Arrazola, “Inverse identification of the ductile failure law for ti6al4v based on orthogonal cutting experimental outcomes,” Metals, vol. 11, no. 8, p. 1154, 2021. – reference: F. Zanger, N. Boev, V. Schulze, “Novel approach for 3d simulation of a cutting process with adaptive remeshing technique,” Procedia CIRP, vol. 31, pp. 88–93, 2015. 15th CIRP Conference on Modelling of Machining Operations (15th CMMO). – reference: M. Movahhedy, M. Gadala, Y. Altintas, “Simulation of the orthogonal metal cutting process using an arbitrary lagrangian–eulerian finiteelement method,” Journal of materials processing technology, vol. 103, no. 2, pp. 267–275, 2000. – volume: 55 start-page: 63 year: 2015 end-page: 76 ident: bib1634 article-title: “Shear localization sensitivity analysis for johnson– cook constitutive parameters on serrated chips in high speed machining of ti6al4v,” publication-title: Simulation Modelling Practice and Theory – reference: A. Mir, X. Luo, I. Llavori, A. Roy, D. L. Zlatanovic, S. N. Joshi, S. Goel, “Challenges and issues in continuum modelling of tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 130, 6 2022. – reference: V. Schulze, F. Zanger, “Development of a simulation model to investigate tool wear in Ti-6Al-4V alloy machining,” in Advanced materials research, vol. 223, pp. 535–544, Trans Tech Publ, 2011. – volume: 102 start-page: 7 year: 2021 end-page: 12 ident: bib1645 article-title: “Experimental and fem analysis of dry and cryogenic turning of hardened steel 100cr6 using cbn wiper tools,” publication-title: Procedia CIRP – volume: 58 start-page: 245 year: 2017 end-page: 250 ident: bib1633 article-title: “The cel method as an alternative to the current modelling approaches for Ti6Al4V orthogonal cutting simulation,” publication-title: Procedia CIRP – reference: A. Sela, G. Ortiz-De-Zarate, D. Soler, G. Germain, L. Gallegos, P. J. Arrazola, “Adiabatic self-heating determination for ti6al4v at different temperatures,” International Journal of Heat and Mass Transfer, vol. 204, p. 123747, 2023. – ident: 10.1016/j.procir.2025.02.079_bib1628 doi: 10.1007/s11831-022-09794-9 – ident: 10.1016/j.procir.2025.02.079_bib1631 doi: 10.4028/www.scientific.net/MSF.575-578.1139 – ident: 10.1016/j.procir.2025.02.079_bib1649 doi: 10.1016/j.ijheatmasstransfer.2022.123747 – ident: 10.1016/j.procir.2025.02.079_bib1626 doi: 10.1007/s00170-018-1759-6 – volume: 71 start-page: 466 year: 2018 ident: 10.1016/j.procir.2025.02.079_bib1648 article-title: “Experimental and fem analysis of surface integrity when broaching ti64,” publication-title: Procedia Cirp doi: 10.1016/j.procir.2018.05.033 – volume: 102 start-page: 7 year: 2021 ident: 10.1016/j.procir.2025.02.079_bib1645 article-title: “Experimental and fem analysis of dry and cryogenic turning of hardened steel 100cr6 using cbn wiper tools,” publication-title: Procedia CIRP doi: 10.1016/j.procir.2021.09.002 – volume: 82 start-page: 77 year: 2019 ident: 10.1016/j.procir.2025.02.079_bib1644 article-title: “Fem modeling of hard turning 42crmos4 steel,” publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.04.059 – ident: 10.1016/j.procir.2025.02.079_bib1650 doi: 10.1016/j.cirp.2021.03.002 – ident: 10.1016/j.procir.2025.02.079_bib1627 doi: 10.1007/s11831-018-09313-9 – ident: 10.1016/j.procir.2025.02.079_bib1630 doi: 10.1007/s00170-021-08446-9 – volume: 18 start-page: 92 year: 2017 ident: 10.1016/j.procir.2025.02.079_bib1643 article-title: “3d finite element modelling of surface modification in dry and cryogenic machining of ebm Ti6Al4V alloy,” publication-title: CIRP Journal of Manufacturing Science and Technology doi: 10.1016/j.cirpj.2016.10.004 – ident: 10.1016/j.procir.2025.02.079_bib1639 doi: 10.1016/j.procir.2015.03.022 – ident: 10.1016/j.procir.2025.02.079_bib1635 doi: 10.1002/nme.1620382108 – volume: 55 start-page: 63 year: 2015 ident: 10.1016/j.procir.2025.02.079_bib1634 article-title: “Shear localization sensitivity analysis for johnson– cook constitutive parameters on serrated chips in high speed machining of ti6al4v,” publication-title: Simulation Modelling Practice and Theory doi: 10.1016/j.simpat.2015.03.011 – volume: 62 start-page: 695 year: 2013 ident: 10.1016/j.procir.2025.02.079_bib1625 article-title: “Recent advances in modelling of metal machining processes,” publication-title: CIRP Annals - Manufacturing Technology doi: 10.1016/j.cirp.2013.05.006 – volume: 752 start-page: 167 year: 2019 ident: 10.1016/j.procir.2025.02.079_bib1637 article-title: “Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining ti6al4v,” publication-title: Materials Science and Engineering: A doi: 10.1016/j.msea.2019.03.011 – ident: 10.1016/j.procir.2025.02.079_bib1636 doi: 10.4028/www.scientific.net/AMR.223.535 – volume: 58 start-page: 140 year: 2017 ident: 10.1016/j.procir.2025.02.079_bib1629 article-title: “Simulative investigations on different friction coefficient models,” publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.03.203 – ident: 10.1016/j.procir.2025.02.079_bib1638 doi: 10.1016/j.jmbbm.2022.105185 – ident: 10.1016/j.procir.2025.02.079_bib1646 doi: 10.1016/j.procir.2017.03.195 – volume: 58 start-page: 245 year: 2017 ident: 10.1016/j.procir.2025.02.079_bib1633 article-title: “The cel method as an alternative to the current modelling approaches for Ti6Al4V orthogonal cutting simulation,” publication-title: Procedia CIRP doi: 10.1016/j.procir.2017.03.188 – volume: 82 start-page: 65 year: 2019 ident: 10.1016/j.procir.2025.02.079_bib1647 article-title: “Evaluation of different flow stress laws coupled with a physical based ductile failure criterion for the modelling of the chip formation process of ti-6al-4v under broaching conditions,” publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.04.067 – volume: 87 start-page: 533 year: 2020 ident: 10.1016/j.procir.2025.02.079_bib1641 article-title: “Sensitivity analysis of the input parameters of a physical based ductile failure model of Ti-6Al-4V for the prediction of surface integrity,” publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.02.105 – ident: 10.1016/j.procir.2025.02.079_bib1642 doi: 10.3390/met11081154 – ident: 10.1016/j.procir.2025.02.079_bib1632 doi: 10.1016/S0924-0136(00)00480-5 – ident: 10.1016/j.procir.2025.02.079_bib1640 doi: 10.1016/j.cirp.2015.04.060 |
| SSID | ssj0000740312 |
| Score | 2.278673 |
| Snippet | High deformation manufacturing processes, such as forming and machining, are complex physical phenomena involving severe thermo-mechanical and chemical loads.... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 460 |
| SubjectTerms | Abaqus Finite Element Method (FEM) Manufacturing Python scripting Remeshing |
| Title | Development and optimization of a finite element model with remeshing and Lagrangian formulation for the simulation of high deformation manufacturing processes |
| URI | https://dx.doi.org/10.1016/j.procir.2025.02.079 |
| Volume | 133 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2212-8271 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000740312 issn: 2212-8271 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWhQMcEE9RXvKB28ooOBucPVblVakUBKWquESOH6uUkqy2m6riwF_h3_E7mPEk3pStECBxibJeOV7tfLK_mcw3w9jjXJXGWG-ESVIjJqrUokysF25qpZelUXkopH2wq_b28sPD6bvR6EevhTk9VnWdn51N5__V1DAGxkbp7F-YOz4UBuAejA5XMDtc_8jwgzSg8GaggU3hS6e2JDWkr5Bojh1ljlMzHArIYrCQYlI4c1fP4CSbhTgIUNuu0VdMTDyp4hAyTvDyx9ZFMSTmxbYomyAd5JwECV3GYseGg0oBADre3nkfdWYH-hg1Ylq8gRvwE2wI5u7Mam2qBgbr1sWskLeLljRtWygr1qvhZfVVWCc-YWHzELJ91Sw-x--ft6Yp2563h1wB1VTnIiCkk6aA3JooB_dNCaexyCV1dnniLhjrN_40HWzdE-pr0LGACXWwWDtgKNZxhMebqbCerMxCzVfqiPNL6e4PuCyuCjwT5R5AFS5JBS4cpph-W8UCgcbB3oovvOLv7FWeIRVxfbGLWdSAGe1fZ9c6l4ZvERRvsJGrb7Krg0KXt9j3ASg5QIsPQckbzzUnUPIOlDyAkiMoeQRlmLkCJR-AEu85gJKvQImPRVDyASj5OVDyCMrb7OPLF_vbr0XXGkQYmcmpyLxJjCxV4lVamnRqnzrlkK76TLvgsyirs8yAu55b4KillMbCdlR6mzk4ttI7bKNuaneXcZ8okzsvLUr5tM1ynWEJJ_MM5juvsk0m-r-6mFMFmKJPjTwqyDQFmqZIZAGm2WSqt0fRsVhipwVg6Lcz7_3zzPvsCn6i0OADtrFctO4hu2xOl9XJ4lEA20-DCc6o |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+optimization+of+a+finite+element+model+with+remeshing+and+Lagrangian+formulation+for+the+simulation+of+high+deformation+manufacturing+processes&rft.jtitle=Procedia+CIRP&rft.au=Valdivia-Maldonado%2C+Ignacio-Manuel&rft.au=Oruna%2C+Ainara&rft.au=Ortiz-de-Zarate%2C+Gorka&rft.au=Ducobu%2C+Fran%C3%A7ois&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=2212-8271&rft.eissn=2212-8271&rft.volume=133&rft.spage=460&rft.epage=465&rft_id=info:doi/10.1016%2Fj.procir.2025.02.079&rft.externalDocID=S2212827125001672 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8271&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8271&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8271&client=summon |