Development and optimization of a finite element model with remeshing and Lagrangian formulation for the simulation of high deformation manufacturing processes

High deformation manufacturing processes, such as forming and machining, are complex physical phenomena involving severe thermo-mechanical and chemical loads. Traditional industrial-scale empirical methods involve high tooling and preparation costs and long lead times before manufacturing, which is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia CIRP Ročník 133; s. 460 - 465
Hlavní autoři: Valdivia-Maldonado, Ignacio-Manuel, Oruna, Ainara, Ortiz-de-Zarate, Gorka, Ducobu, François, Germain, Guénaël, Arrazola, Pedro J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2025
Témata:
ISSN:2212-8271, 2212-8271
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract High deformation manufacturing processes, such as forming and machining, are complex physical phenomena involving severe thermo-mechanical and chemical loads. Traditional industrial-scale empirical methods involve high tooling and preparation costs and long lead times before manufacturing, which is undesirable in modern industry. The use of predictive models helps to reduce these weaknesses. Finite Element Method (FEM) models are a useful, reliable and cost-effective tool for studying manufacturing processes. Several approaches have been used to model these processes with the FEM. The Lagrangian formulation with implicit time integration scheme is the most widely used because of its reliability. However, element distortion due to severe plastic deformation and chip separation, in the case of machining, has always been a major concern of this approach. This paper therefore presents the development of a customizable and optimized FEM model with Lagrangian formulation and remeshing technique that solve the mesh distortion problem. The model was developed using the general-purpose software Abaqus/Standard commanded by Python scripting. The remeshing criterion is based on the relative plastic deformation at each load increment controlled by two subroutines working together UVARM+URDFIL. A forming problem was selected to optimize the mesh size and number of remeshings with the goal of reducing the simulation time. Then, the proposed model was compared to Lagrangian models without remeshing and Arbitrary Lagrangian-Eulerian (ALE) formulation. The model was also experimentally validated demonstrating improvements over other approaches and formulations, and laying the foundation for further development, such as applying it to the machining process.
AbstractList High deformation manufacturing processes, such as forming and machining, are complex physical phenomena involving severe thermo-mechanical and chemical loads. Traditional industrial-scale empirical methods involve high tooling and preparation costs and long lead times before manufacturing, which is undesirable in modern industry. The use of predictive models helps to reduce these weaknesses. Finite Element Method (FEM) models are a useful, reliable and cost-effective tool for studying manufacturing processes. Several approaches have been used to model these processes with the FEM. The Lagrangian formulation with implicit time integration scheme is the most widely used because of its reliability. However, element distortion due to severe plastic deformation and chip separation, in the case of machining, has always been a major concern of this approach. This paper therefore presents the development of a customizable and optimized FEM model with Lagrangian formulation and remeshing technique that solve the mesh distortion problem. The model was developed using the general-purpose software Abaqus/Standard commanded by Python scripting. The remeshing criterion is based on the relative plastic deformation at each load increment controlled by two subroutines working together UVARM+URDFIL. A forming problem was selected to optimize the mesh size and number of remeshings with the goal of reducing the simulation time. Then, the proposed model was compared to Lagrangian models without remeshing and Arbitrary Lagrangian-Eulerian (ALE) formulation. The model was also experimentally validated demonstrating improvements over other approaches and formulations, and laying the foundation for further development, such as applying it to the machining process.
Author Ducobu, François
Germain, Guénaël
Valdivia-Maldonado, Ignacio-Manuel
Ortiz-de-Zarate, Gorka
Oruna, Ainara
Arrazola, Pedro J.
Author_xml – sequence: 1
  givenname: Ignacio-Manuel
  surname: Valdivia-Maldonado
  fullname: Valdivia-Maldonado, Ignacio-Manuel
  email: imvaldivia@mondragon.edu
  organization: Mondragon Unibertsitatea, Faculty of Engineering, Loramendi 4, 20500, Arrasate-Mondragón, Spain
– sequence: 2
  givenname: Ainara
  surname: Oruna
  fullname: Oruna, Ainara
  organization: Mondragon Unibertsitatea, Faculty of Engineering, Loramendi 4, 20500, Arrasate-Mondragón, Spain
– sequence: 3
  givenname: Gorka
  surname: Ortiz-de-Zarate
  fullname: Ortiz-de-Zarate, Gorka
  organization: Mondragon Unibertsitatea, Faculty of Engineering, Loramendi 4, 20500, Arrasate-Mondragón, Spain
– sequence: 4
  givenname: François
  surname: Ducobu
  fullname: Ducobu, François
  organization: UMONS Research Institute for Materials Science and Engineering, University of Mons, Place du Parc 20, Mons, 7000, Belgium
– sequence: 5
  givenname: Guénaël
  surname: Germain
  fullname: Germain, Guénaël
  organization: LAMPA, Arts et Métiers Institute of Technology, 2 boulevard du Ronceray BP 93525, 49035 Angers, France
– sequence: 6
  givenname: Pedro J.
  surname: Arrazola
  fullname: Arrazola, Pedro J.
  organization: Mondragon Unibertsitatea, Faculty of Engineering, Loramendi 4, 20500, Arrasate-Mondragón, Spain
BookMark eNp9kE1OwzAQhS0EEqX0Bix8gQZ7kjTtBgmVX6kSG1hbjj1OXCV2ZadFcBmuStIgxIrZzOhp3qeZd0FOnXdIyBVnCWd8cb1NdsErGxJgkCcMElasTsgEgMN8CQU__TOfk1mMW9ZXkbGUw4R83eEBG79r0XVUOk39rrOt_ZSd9Y56QyU11tkOKTZ4XGq9xoa-266moVdibV11dG5kFaSrrHTU-NDum5HRz7SrkUb7K_XY2lY11Tgsjlor3d5I1e3DwBtewhgxXpIzI5uIs58-JW8P96_rp_nm5fF5fbuZK8hhNc-NYgrKgpkiLVW60hwLZMCXJpe4gpSzQss8VwtYLHXG8xJAacXS0ugcM8bSKclGrgo-xoBG7IJtZfgQnIkhZ7EVY85iyFkwEH3Ove1mtGF_28FiEFFZdAq1Dag6ob39H_ANtAePKw
Cites_doi 10.1007/s11831-022-09794-9
10.4028/www.scientific.net/MSF.575-578.1139
10.1016/j.ijheatmasstransfer.2022.123747
10.1007/s00170-018-1759-6
10.1016/j.procir.2018.05.033
10.1016/j.procir.2021.09.002
10.1016/j.procir.2019.04.059
10.1016/j.cirp.2021.03.002
10.1007/s11831-018-09313-9
10.1007/s00170-021-08446-9
10.1016/j.cirpj.2016.10.004
10.1016/j.procir.2015.03.022
10.1002/nme.1620382108
10.1016/j.simpat.2015.03.011
10.1016/j.cirp.2013.05.006
10.1016/j.msea.2019.03.011
10.4028/www.scientific.net/AMR.223.535
10.1016/j.procir.2017.03.203
10.1016/j.jmbbm.2022.105185
10.1016/j.procir.2017.03.195
10.1016/j.procir.2017.03.188
10.1016/j.procir.2019.04.067
10.1016/j.procir.2020.02.105
10.3390/met11081154
10.1016/S0924-0136(00)00480-5
10.1016/j.cirp.2015.04.060
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procir.2025.02.079
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2212-8271
EndPage 465
ExternalDocumentID 10_1016_j_procir_2025_02_079
S2212827125001672
GroupedDBID 0R~
4.4
457
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c2529-5fc0c2b70f73bc39d1e7e0218f5ae923107da55c6268d415b22cdc03bfd5e4003
ISSN 2212-8271
IngestDate Thu Nov 13 04:14:00 EST 2025
Sat Oct 11 16:52:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Abaqus
Remeshing
Finite Element Method (FEM)
Manufacturing
Python scripting
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2529-5fc0c2b70f73bc39d1e7e0218f5ae923107da55c6268d415b22cdc03bfd5e4003
OpenAccessLink https://dx.doi.org/10.1016/j.procir.2025.02.079
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_procir_2025_02_079
elsevier_sciencedirect_doi_10_1016_j_procir_2025_02_079
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle Procedia CIRP
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Saez-de Buruaga, Gainza, Aristimuno, Soler, Ortiz-de Zarate, Aizpuru, Mielgo, Arrazola (bib1644) 2019; 82
Ortiz-de Zarate, Madariaga, Garay, Azpitarte, Sacristan, Cuesta, Arrazola (bib1648) 2018; 71
A. Sela, G. Ortiz-De-Zarate, D. Soler, G. Germain, L. Gallegos, P. J. Arrazola, “Adiabatic self-heating determination for ti6al4v at different temperatures,” International Journal of Heat and Mass Transfer, vol. 204, p. 123747, 2023.
Arrazola, Ozel, Umbrello, Davies, Jawahir (bib1625) 2013; 62
J. M. Rodrıguez, J. M. Carbonell, P. Jons´en, “Numerical methods for the modelling of chip formation,” Archives of Computational Methods in Engineering, vol. 27, pp. 387–412, 4 2020.
W. Cheng, J. C. Outeiro, “Modelling orthogonal cutting of Ti-6Al-4V titanium alloy using a constitutive model considering the state of stress,” The International Journal of Advanced Manufacturing Technology,vol. 119, no. 7-8, pp. 4329–4347, 2022.
E. Segebade, M. Gerstenmeyer, F. Zanger, V. Schulze, “Cutting simulations using a commercially available 2d/3d fem software for forming,”Procedia CIRP, vol. 58, pp. 73–78, 2017. 16th CIRP Conference on Modelling of Machining Operations (16th CIRP CMMO).
Ortiz-de Zarate, Soriano, Madariaga, Garay, Rodriguez, Arrazola (bib1645) 2021; 102
F. Zanger, N. Boev, V. Schulze, “Novel approach for 3d simulation of a cutting process with adaptive remeshing technique,” Procedia CIRP, vol. 31, pp. 88–93, 2015. 15th CIRP Conference on Modelling of Machining Operations (15th CMMO).
G. Ortiz-de Zarate, A. Madariaga, P. J. Arrazola, T. H. Childs, “A novel methodology to characterize tool-chip contact in metal cutting using partially restricted contact length tools,” CIRP Annals, vol. 70, no. 1, pp. 61– 64, 2021.
C. C. Wang, “Finite element simulation for forging process using euler’s fixed meshing method,” in Materials Science Forum, vol. 575, pp. 1139–1144, Trans Tech Publ, 2008.
M. Movahhedy, M. Gadala, Y. Altintas, “Simulation of the orthogonal metal cutting process using an arbitrary lagrangian–eulerian finiteelement method,” Journal of materials processing technology, vol. 103, no. 2, pp. 267–275, 2000.
Wang, Liu (bib1634) 2015; 55
M. Sadeghifar, R. Sedaghati, W. Jomaa, V. Songmene, “A comprehensive review of finite element modeling of orthogonal machining process: chip formation and surface integrity predictions,” International Journal of Advanced Manufacturing Technology, vol. 96, pp. 3747–3791, 6 2018.
A. Sela, D. Soler, G. Ortiz-de Zarate, G. Germain, F. Ducobu, P. J. Arrazola, “Inverse identification of the ductile failure law for ti6al4v based on orthogonal cutting experimental outcomes,” Metals, vol. 11, no. 8, p. 1154, 2021.
M. E. Korkmaz, M. K. Gupta, “A state of the art on simulation and modelling methods in machining: future prospects and challenges,” Archives of Computational Methods in Engineering, vol. 30, no. 1, pp. 161–189, 2023.
V. Schulze, F. Zanger, “Development of a simulation model to investigate tool wear in Ti-6Al-4V alloy machining,” in Advanced materials research, vol. 223, pp. 535–544, Trans Tech Publ, 2011.
S. N. Melkote, R. Liu, P. Fernandez-Zelaia, T. Marusich, “A physically based constitutive model for simulation of segmented chip formation in orthogonal cutting of commercially pure titanium,” CIRP Annals, vol. 64, no. 1, pp. 65–68, 2015.
T. Marusich, M. Ortiz, “Modelling and simulation of high-speed machining,” International Journal for numerical methods in engineering, vol. 38, no. 21, pp. 3675–3694, 1995.
Umbrello, Bordin, Imbrogno, Bruschi (bib1643) 2017; 18
A. Mir, X. Luo, I. Llavori, A. Roy, D. L. Zlatanovic, S. N. Joshi, S. Goel, “Challenges and issues in continuum modelling of tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 130, 6 2022.
Ortiz-de Zarate, Sela, Ducobu, Saez-de Buruaga, Soler, Childs, Arrazola (bib1647) 2019; 82
Ortiz-de Zarate, Sela, Madariaga, Childs, Arrazola (bib1641) 2020; 87
Ducobu, Arrazola, Rivière-Lorphèvre, De Zarate, Madariaga, Filippi (bib1633) 2017; 58
Xu, Zhang, Liu, He, Zhao (bib1637) 2019; 752
Zanger, Bollig, Schulze (bib1629) 2017; 58
Arrazola (10.1016/j.procir.2025.02.079_bib1625) 2013; 62
Ortiz-de Zarate (10.1016/j.procir.2025.02.079_bib1645) 2021; 102
Ducobu (10.1016/j.procir.2025.02.079_bib1633) 2017; 58
Umbrello (10.1016/j.procir.2025.02.079_bib1643) 2017; 18
Ortiz-de Zarate (10.1016/j.procir.2025.02.079_bib1647) 2019; 82
10.1016/j.procir.2025.02.079_bib1642
10.1016/j.procir.2025.02.079_bib1640
10.1016/j.procir.2025.02.079_bib1646
10.1016/j.procir.2025.02.079_bib1628
10.1016/j.procir.2025.02.079_bib1627
10.1016/j.procir.2025.02.079_bib1649
10.1016/j.procir.2025.02.079_bib1626
Zanger (10.1016/j.procir.2025.02.079_bib1629) 2017; 58
10.1016/j.procir.2025.02.079_bib1631
10.1016/j.procir.2025.02.079_bib1630
10.1016/j.procir.2025.02.079_bib1650
10.1016/j.procir.2025.02.079_bib1635
10.1016/j.procir.2025.02.079_bib1632
Wang (10.1016/j.procir.2025.02.079_bib1634) 2015; 55
Xu (10.1016/j.procir.2025.02.079_bib1637) 2019; 752
10.1016/j.procir.2025.02.079_bib1639
10.1016/j.procir.2025.02.079_bib1638
Ortiz-de Zarate (10.1016/j.procir.2025.02.079_bib1648) 2018; 71
10.1016/j.procir.2025.02.079_bib1636
Saez-de Buruaga (10.1016/j.procir.2025.02.079_bib1644) 2019; 82
Ortiz-de Zarate (10.1016/j.procir.2025.02.079_bib1641) 2020; 87
References_xml – reference: C. C. Wang, “Finite element simulation for forging process using euler’s fixed meshing method,” in Materials Science Forum, vol. 575, pp. 1139–1144, Trans Tech Publ, 2008.
– reference: S. N. Melkote, R. Liu, P. Fernandez-Zelaia, T. Marusich, “A physically based constitutive model for simulation of segmented chip formation in orthogonal cutting of commercially pure titanium,” CIRP Annals, vol. 64, no. 1, pp. 65–68, 2015.
– reference: J. M. Rodrıguez, J. M. Carbonell, P. Jons´en, “Numerical methods for the modelling of chip formation,” Archives of Computational Methods in Engineering, vol. 27, pp. 387–412, 4 2020.
– volume: 18
  start-page: 92
  year: 2017
  end-page: 100
  ident: bib1643
  article-title: “3d finite element modelling of surface modification in dry and cryogenic machining of ebm Ti6Al4V alloy,”
  publication-title: CIRP Journal of Manufacturing Science and Technology
– reference: T. Marusich, M. Ortiz, “Modelling and simulation of high-speed machining,” International Journal for numerical methods in engineering, vol. 38, no. 21, pp. 3675–3694, 1995.
– reference: M. E. Korkmaz, M. K. Gupta, “A state of the art on simulation and modelling methods in machining: future prospects and challenges,” Archives of Computational Methods in Engineering, vol. 30, no. 1, pp. 161–189, 2023.
– reference: M. Sadeghifar, R. Sedaghati, W. Jomaa, V. Songmene, “A comprehensive review of finite element modeling of orthogonal machining process: chip formation and surface integrity predictions,” International Journal of Advanced Manufacturing Technology, vol. 96, pp. 3747–3791, 6 2018.
– volume: 58
  start-page: 140
  year: 2017
  end-page: 145
  ident: bib1629
  article-title: “Simulative investigations on different friction coefficient models,”
  publication-title: Procedia CIRP
– volume: 87
  start-page: 533
  year: 2020
  end-page: 538
  ident: bib1641
  article-title: “Sensitivity analysis of the input parameters of a physical based ductile failure model of Ti-6Al-4V for the prediction of surface integrity,”
  publication-title: Procedia CIRP
– volume: 62
  start-page: 695
  year: 2013
  end-page: 718
  ident: bib1625
  article-title: “Recent advances in modelling of metal machining processes,”
  publication-title: CIRP Annals - Manufacturing Technology
– volume: 82
  start-page: 77
  year: 2019
  end-page: 82
  ident: bib1644
  article-title: “Fem modeling of hard turning 42crmos4 steel,”
  publication-title: Procedia CIRP
– reference: G. Ortiz-de Zarate, A. Madariaga, P. J. Arrazola, T. H. Childs, “A novel methodology to characterize tool-chip contact in metal cutting using partially restricted contact length tools,” CIRP Annals, vol. 70, no. 1, pp. 61– 64, 2021.
– volume: 752
  start-page: 167
  year: 2019
  end-page: 179
  ident: bib1637
  article-title: “Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining ti6al4v,”
  publication-title: Materials Science and Engineering: A
– volume: 82
  start-page: 65
  year: 2019
  end-page: 70
  ident: bib1647
  article-title: “Evaluation of different flow stress laws coupled with a physical based ductile failure criterion for the modelling of the chip formation process of ti-6al-4v under broaching conditions,”
  publication-title: Procedia CIRP
– reference: W. Cheng, J. C. Outeiro, “Modelling orthogonal cutting of Ti-6Al-4V titanium alloy using a constitutive model considering the state of stress,” The International Journal of Advanced Manufacturing Technology,vol. 119, no. 7-8, pp. 4329–4347, 2022.
– reference: E. Segebade, M. Gerstenmeyer, F. Zanger, V. Schulze, “Cutting simulations using a commercially available 2d/3d fem software for forming,”Procedia CIRP, vol. 58, pp. 73–78, 2017. 16th CIRP Conference on Modelling of Machining Operations (16th CIRP CMMO).
– volume: 71
  start-page: 466
  year: 2018
  end-page: 471
  ident: bib1648
  article-title: “Experimental and fem analysis of surface integrity when broaching ti64,”
  publication-title: Procedia Cirp
– reference: A. Sela, D. Soler, G. Ortiz-de Zarate, G. Germain, F. Ducobu, P. J. Arrazola, “Inverse identification of the ductile failure law for ti6al4v based on orthogonal cutting experimental outcomes,” Metals, vol. 11, no. 8, p. 1154, 2021.
– reference: F. Zanger, N. Boev, V. Schulze, “Novel approach for 3d simulation of a cutting process with adaptive remeshing technique,” Procedia CIRP, vol. 31, pp. 88–93, 2015. 15th CIRP Conference on Modelling of Machining Operations (15th CMMO).
– reference: M. Movahhedy, M. Gadala, Y. Altintas, “Simulation of the orthogonal metal cutting process using an arbitrary lagrangian–eulerian finiteelement method,” Journal of materials processing technology, vol. 103, no. 2, pp. 267–275, 2000.
– volume: 55
  start-page: 63
  year: 2015
  end-page: 76
  ident: bib1634
  article-title: “Shear localization sensitivity analysis for johnson– cook constitutive parameters on serrated chips in high speed machining of ti6al4v,”
  publication-title: Simulation Modelling Practice and Theory
– reference: A. Mir, X. Luo, I. Llavori, A. Roy, D. L. Zlatanovic, S. N. Joshi, S. Goel, “Challenges and issues in continuum modelling of tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 130, 6 2022.
– reference: V. Schulze, F. Zanger, “Development of a simulation model to investigate tool wear in Ti-6Al-4V alloy machining,” in Advanced materials research, vol. 223, pp. 535–544, Trans Tech Publ, 2011.
– volume: 102
  start-page: 7
  year: 2021
  end-page: 12
  ident: bib1645
  article-title: “Experimental and fem analysis of dry and cryogenic turning of hardened steel 100cr6 using cbn wiper tools,”
  publication-title: Procedia CIRP
– volume: 58
  start-page: 245
  year: 2017
  end-page: 250
  ident: bib1633
  article-title: “The cel method as an alternative to the current modelling approaches for Ti6Al4V orthogonal cutting simulation,”
  publication-title: Procedia CIRP
– reference: A. Sela, G. Ortiz-De-Zarate, D. Soler, G. Germain, L. Gallegos, P. J. Arrazola, “Adiabatic self-heating determination for ti6al4v at different temperatures,” International Journal of Heat and Mass Transfer, vol. 204, p. 123747, 2023.
– ident: 10.1016/j.procir.2025.02.079_bib1628
  doi: 10.1007/s11831-022-09794-9
– ident: 10.1016/j.procir.2025.02.079_bib1631
  doi: 10.4028/www.scientific.net/MSF.575-578.1139
– ident: 10.1016/j.procir.2025.02.079_bib1649
  doi: 10.1016/j.ijheatmasstransfer.2022.123747
– ident: 10.1016/j.procir.2025.02.079_bib1626
  doi: 10.1007/s00170-018-1759-6
– volume: 71
  start-page: 466
  year: 2018
  ident: 10.1016/j.procir.2025.02.079_bib1648
  article-title: “Experimental and fem analysis of surface integrity when broaching ti64,”
  publication-title: Procedia Cirp
  doi: 10.1016/j.procir.2018.05.033
– volume: 102
  start-page: 7
  year: 2021
  ident: 10.1016/j.procir.2025.02.079_bib1645
  article-title: “Experimental and fem analysis of dry and cryogenic turning of hardened steel 100cr6 using cbn wiper tools,”
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.09.002
– volume: 82
  start-page: 77
  year: 2019
  ident: 10.1016/j.procir.2025.02.079_bib1644
  article-title: “Fem modeling of hard turning 42crmos4 steel,”
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.04.059
– ident: 10.1016/j.procir.2025.02.079_bib1650
  doi: 10.1016/j.cirp.2021.03.002
– ident: 10.1016/j.procir.2025.02.079_bib1627
  doi: 10.1007/s11831-018-09313-9
– ident: 10.1016/j.procir.2025.02.079_bib1630
  doi: 10.1007/s00170-021-08446-9
– volume: 18
  start-page: 92
  year: 2017
  ident: 10.1016/j.procir.2025.02.079_bib1643
  article-title: “3d finite element modelling of surface modification in dry and cryogenic machining of ebm Ti6Al4V alloy,”
  publication-title: CIRP Journal of Manufacturing Science and Technology
  doi: 10.1016/j.cirpj.2016.10.004
– ident: 10.1016/j.procir.2025.02.079_bib1639
  doi: 10.1016/j.procir.2015.03.022
– ident: 10.1016/j.procir.2025.02.079_bib1635
  doi: 10.1002/nme.1620382108
– volume: 55
  start-page: 63
  year: 2015
  ident: 10.1016/j.procir.2025.02.079_bib1634
  article-title: “Shear localization sensitivity analysis for johnson– cook constitutive parameters on serrated chips in high speed machining of ti6al4v,”
  publication-title: Simulation Modelling Practice and Theory
  doi: 10.1016/j.simpat.2015.03.011
– volume: 62
  start-page: 695
  year: 2013
  ident: 10.1016/j.procir.2025.02.079_bib1625
  article-title: “Recent advances in modelling of metal machining processes,”
  publication-title: CIRP Annals - Manufacturing Technology
  doi: 10.1016/j.cirp.2013.05.006
– volume: 752
  start-page: 167
  year: 2019
  ident: 10.1016/j.procir.2025.02.079_bib1637
  article-title: “Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining ti6al4v,”
  publication-title: Materials Science and Engineering: A
  doi: 10.1016/j.msea.2019.03.011
– ident: 10.1016/j.procir.2025.02.079_bib1636
  doi: 10.4028/www.scientific.net/AMR.223.535
– volume: 58
  start-page: 140
  year: 2017
  ident: 10.1016/j.procir.2025.02.079_bib1629
  article-title: “Simulative investigations on different friction coefficient models,”
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.03.203
– ident: 10.1016/j.procir.2025.02.079_bib1638
  doi: 10.1016/j.jmbbm.2022.105185
– ident: 10.1016/j.procir.2025.02.079_bib1646
  doi: 10.1016/j.procir.2017.03.195
– volume: 58
  start-page: 245
  year: 2017
  ident: 10.1016/j.procir.2025.02.079_bib1633
  article-title: “The cel method as an alternative to the current modelling approaches for Ti6Al4V orthogonal cutting simulation,”
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.03.188
– volume: 82
  start-page: 65
  year: 2019
  ident: 10.1016/j.procir.2025.02.079_bib1647
  article-title: “Evaluation of different flow stress laws coupled with a physical based ductile failure criterion for the modelling of the chip formation process of ti-6al-4v under broaching conditions,”
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.04.067
– volume: 87
  start-page: 533
  year: 2020
  ident: 10.1016/j.procir.2025.02.079_bib1641
  article-title: “Sensitivity analysis of the input parameters of a physical based ductile failure model of Ti-6Al-4V for the prediction of surface integrity,”
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2020.02.105
– ident: 10.1016/j.procir.2025.02.079_bib1642
  doi: 10.3390/met11081154
– ident: 10.1016/j.procir.2025.02.079_bib1632
  doi: 10.1016/S0924-0136(00)00480-5
– ident: 10.1016/j.procir.2025.02.079_bib1640
  doi: 10.1016/j.cirp.2015.04.060
SSID ssj0000740312
Score 2.2787702
Snippet High deformation manufacturing processes, such as forming and machining, are complex physical phenomena involving severe thermo-mechanical and chemical loads....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 460
SubjectTerms Abaqus
Finite Element Method (FEM)
Manufacturing
Python scripting
Remeshing
Title Development and optimization of a finite element model with remeshing and Lagrangian formulation for the simulation of high deformation manufacturing processes
URI https://dx.doi.org/10.1016/j.procir.2025.02.079
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2212-8271
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000740312
  issn: 2212-8271
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWhQMcEE9RXvKB28oocZI6OVblVakUBKWquESO7axSSrLabqqKA3-Ff8fvYMaTZFO2QoDEJfJ65TjKfPJ8nsznYewp-MAyLFwhbBoFIo6dFBqFuoUBeGylW1Hhy_kc7qn9_fToKHs3mfzotTBnJ6qu0_PzbP5fTQ19YGyUzv6FuYebQge0wehwBbPD9Y8MP0oD8l8GGlgUvnRqS1JDlhUSzamjzHEqhkMBWQwWUkwKR-7pGXiymY-DALXtCn0NiYmn1dCFjBN2-VPrBjEk5sW2KJsgHeScBAldxmLHhr1KAQA63dl9P-jMDvUJasS0eAMN2CdYH8zdndXaVA101q0bskLeLlrStG2jrFivupfVV2Gd-IQHm_uQ7atm8Xn4_3lrmqLtebvPFVBNdSECQjppCsitiXJw3ZTgjUUqqbLLM3dJX7_wR9Fo6Y6prkHHAmKqYLHmYCjWcYzuzVR4nqxM_JmvVBHnl6O7P-C0OCvwTJR7AFW4IhVs4TDF9NsqFgg0DtZW_OA1PGev8vSpiOuTXc6iRszo4Ca70W1p-DZB8RabuPo2uz466PIO-z4CJQdo8TEoeVNyzQmUvAMl96DkCEo-gNKPXIGSj0CJbQ6g5CtQ4m0RlHwESn4BlHwA5V328eWLg53XoisNIoxMZCaS0gRGFiooVVSYKLOhUw7paplo5_csyuokMbBdTy1w1EJKY00QFaVNHLit6B7bqJva3Wc8UWEIt4AXH9pYlUZL8ERpWdowSDMZpJtM9K86n9MJMHmfGnmck2lyNE0eyBxMs8lUb4-8Y7HETnPA0G9HPvjnkQ_ZNfxFocFHbGO5aN1jdtWcLavTxRMPtp-_Ysys
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+optimization+of+a+finite+element+model+with+remeshing+and+Lagrangian+formulation+for+the+simulation+of+high+deformation+manufacturing+processes&rft.jtitle=Procedia+CIRP&rft.au=Valdivia-Maldonado%2C+Ignacio-Manuel&rft.au=Oruna%2C+Ainara&rft.au=Ortiz-de-Zarate%2C+Gorka&rft.au=Ducobu%2C+Fran%C3%A7ois&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=2212-8271&rft.eissn=2212-8271&rft.volume=133&rft.spage=460&rft.epage=465&rft_id=info:doi/10.1016%2Fj.procir.2025.02.079&rft.externalDocID=S2212827125001672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8271&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8271&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8271&client=summon