Theoretical approximation ratios for Warm-Started QAOA on 3-regular max-cut instances at depth p=1

We generalize Farhi et al.’s 0.6924-approximation result technique of the Max-Cut Quantum Approximate Optimization Algorithm (QAOA) on 3-regular graphs to obtain provable lower bounds on the approximation ratio for warm-started QAOA. Given a tilt angle θ, we consider warm-starts where the initial st...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 1059; s. 115571
Hlavní autoři: Tate, Reuben, Eidenbenz, Stephan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 04.01.2026
Témata:
ISSN:0304-3975
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We generalize Farhi et al.’s 0.6924-approximation result technique of the Max-Cut Quantum Approximate Optimization Algorithm (QAOA) on 3-regular graphs to obtain provable lower bounds on the approximation ratio for warm-started QAOA. Given a tilt angle θ, we consider warm-starts where the initial state is a product state where each qubit position is angle θ away from either the north or south pole of the Bloch sphere; of the two possible qubit positions the position of each qubit is decided by some classically obtained cut encoded as a bitstring b. We illustrate through plots how the properties of b and the tilt angle θ influence the bound on the approximation ratios of warm-started QAOA. We consider various classical algorithms (and the cuts they produce which we use to generate the warm-start). Our results strongly suggest that there does not exist any choice of tilt angle that yields a (worst-case) approximation ratio that simultaneously beats standard QAOA and the classical algorithm used to create the warm-start. Additionally, we show that at θ=60∘, warm-started QAOA is able to (effectively) recover the cut used to generate the warm-start, thus suggesting that in practice, this value could be a promising starting angle to explore alternate solutions in a heuristic fashion.
AbstractList We generalize Farhi et al.’s 0.6924-approximation result technique of the Max-Cut Quantum Approximate Optimization Algorithm (QAOA) on 3-regular graphs to obtain provable lower bounds on the approximation ratio for warm-started QAOA. Given a tilt angle θ, we consider warm-starts where the initial state is a product state where each qubit position is angle θ away from either the north or south pole of the Bloch sphere; of the two possible qubit positions the position of each qubit is decided by some classically obtained cut encoded as a bitstring b. We illustrate through plots how the properties of b and the tilt angle θ influence the bound on the approximation ratios of warm-started QAOA. We consider various classical algorithms (and the cuts they produce which we use to generate the warm-start). Our results strongly suggest that there does not exist any choice of tilt angle that yields a (worst-case) approximation ratio that simultaneously beats standard QAOA and the classical algorithm used to create the warm-start. Additionally, we show that at θ=60∘, warm-started QAOA is able to (effectively) recover the cut used to generate the warm-start, thus suggesting that in practice, this value could be a promising starting angle to explore alternate solutions in a heuristic fashion.
ArticleNumber 115571
Author Eidenbenz, Stephan
Tate, Reuben
Author_xml – sequence: 1
  givenname: Reuben
  orcidid: 0000-0002-9170-8906
  surname: Tate
  fullname: Tate, Reuben
  email: rtate@lanl.gov
– sequence: 2
  givenname: Stephan
  surname: Eidenbenz
  fullname: Eidenbenz, Stephan
  email: eidenben@lanl.gov
BookMark eNp9kMtqwzAQRbVIoUnaD-hOPyBXsi3ZpnQRQl8QCKUpXYqpNG4UEttISkn_vgruurO5i-EMc8-MTLq-Q0JuBM8EF-p2l0UTspznMhNCykpMyJQXvGRFU8lLMgthx9PISk3J52aLvcfoDOwpDIPvT-4A0fUd9ecItO09_QB_YG8RfERLXxfrBU37gnn8Ou7B0wOcmDlG6roQoTMYKERqcYhbOtyLK3LRwj7g9V_Oyfvjw2b5zFbrp5flYsVMLkVkbV23KIzkWNkGVJEXUFvVCkRhpbWysaWtbcOhLhVCW5cGUjmrcoWV5KUt5kSMd43vQ_DY6sGnLv5HC67PYvROJzH6LEaPYhJzNzKYHvt26HUwDlMF6zyaqG3v_qF_AfYJcD0
Cites_doi 10.22331/q-2022-03-30-678
10.1103/PhysRevLett.125.260505
10.1103/PhysRevA.95.062317
10.22331/q-2021-04-20-437
10.1016/j.jalgor.2004.06.001
10.3390/a12020034
10.1103/PhysRevA.103.042612
10.22331/q-2021-06-17-479
10.1145/502090.502098
10.1007/978-3-031-82697-9_23
10.1103/PhysRevResearch.4.033029
10.1103/PhysRevA.107.062404
10.1109/QCNC64685.2025.00077
10.1145/227683.227684
10.22331/q-2023-09-26-1121
10.1016/S0196-6774(02)00005-6
10.1002/nav.3800090303
10.1137/S0097539705447372
10.22331/q-2021-07-01-491
10.1145/3549554
10.1038/s41534-023-00787-5
10.1038/s41592-019-0686-2
10.1103/PhysRevA.101.012320
10.1145/3584706
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.tcs.2025.115571
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
ExternalDocumentID 10_1016_j_tcs_2025_115571
S0304397525005092
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
~HD
29Q
9DU
AAEDT
AAQXK
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
ADVLN
AEXQZ
AGHFR
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FGOYB
G-2
HZ~
LG9
M26
M41
R2-
SSZ
TAE
WUQ
ZY4
ID FETCH-LOGICAL-c251t-f88fe1c50e7d9a6323a8d6f1ee1d5dd59d4d8d90a846eaf84ca155d626e7504d3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610500300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Sat Nov 29 06:59:52 EST 2025
Sat Nov 29 17:02:47 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Quantum computing
Quantum approximate optimization algorithm
Combinatorial optimization
Max-Cut
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-f88fe1c50e7d9a6323a8d6f1ee1d5dd59d4d8d90a846eaf84ca155d626e7504d3
ORCID 0000-0002-9170-8906
ParticipantIDs crossref_primary_10_1016_j_tcs_2025_115571
elsevier_sciencedirect_doi_10_1016_j_tcs_2025_115571
PublicationCentury 2000
PublicationDate 2026-01-04
PublicationDateYYYYMMDD 2026-01-04
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-04
  day: 04
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wurtz, Love (bib0017) 2021; 103
Charnes, Cooper (bib0032) 1962; 9
Zhou, Wang, Choi, Pichler, Lukin (bib0013) 2020; 10
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt, SciPy 1.0 Contributors (bib0031) 2020; 17
Galda, Liu, Lykov, Alexeev, Safro (bib0009) 2021
Wang, Rubin, Dominy, Rieffel (bib0004) 2020; 101
M. Cain, E. Farhi, S. Gutmann, D. Ranard, E. Tang, The QAOA gets stuck starting from a good classical string, (2022).
Håstad (bib0028) 2001; 48
Feige, Karpinski, Langberg (bib0026) 2002; 43
Khot, Kindler, Mossel, O’Donnell (bib0024) 2007; 37
Wang, Rubin, Dominy, Rieffel (bib0036) 2020; 101
Karp (bib0022) 2010
Jiang, Rieffel, Wang (bib0008) 2017; 95
Zhu, Tang, Barron, Calderon-Vargas, Mayhall, Barnes, Economou (bib0005) 2022; 4
Bravyi, Kliesch, Koenig, Tang (bib0006) 2020; 125
E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm, (2014).
Tate, Moondra, Gard, Mohler, Gupta (bib0018) 2023; 7
Bärtschi, Eidenbenz (bib0007) 2020
Hadfield, Wang, O’Gorman, Rieffel, Venturelli, Biswas (bib0003) 2019; 12
Egger, Mareček, Woerner (bib0020) 2021; 5
I. Glendinning, Rotations on the Bloch Sphere, 2010.
Golden, Bärtschi, O’Malley, Eidenbenz (bib0037) 2021
Sack, Serbyn (bib0010) 2021; 5
R. Tate, S. Eidenbenz, Warm-Started QAOA with Aligned Mixers Converges Slowly Near the Poles of the Bloch Sphere, (2024).
Goemans, Williamson (bib0035) 1995; 42
Bravyi, Kliesch, Koenig, Tang (bib0015) 2022; 6
.
He, Shaydulin, Chakrabarti, Herman, Li, Sun, Pistoia (bib0030) 2023; 9
Halperin, Livnat, Zwick (bib0025) 2004; 53
Shaydulin, Lotshaw, Larson, Ostrowski, Humble (bib0012) 2023; 4
Tate, Farhadi, Herold, Mohler, Gupta (bib0019) 2023; 4
Khot (bib0023) 2002
E. Farhi, D. Gamarnik, S. Gutmann, The quantum approximate optimization algorithm needs to see the whole graph: A typical case, arXiv preprint (2020).
Sack, Medina, Kueng, Serbyn (bib0011) 2023; 107
E. Farhi, J. Goldstone, S. Gutmann, Quantum algorithms for fixed qubit architectures, (2017).
Berman, Karpinski (bib0027) 1999
S. Feeney, R. Tate, S. Eidenbenz, The Better Solution Probability Metric: Optimizing QAOA to Outperform its Warm-Start Solution, (2024).
Marwaha (bib0016) 2021; 5
Wang (10.1016/j.tcs.2025.115571_bib0004) 2020; 101
Tate (10.1016/j.tcs.2025.115571_bib0019) 2023; 4
Berman (10.1016/j.tcs.2025.115571_bib0027) 1999
Jiang (10.1016/j.tcs.2025.115571_bib0008) 2017; 95
Hadfield (10.1016/j.tcs.2025.115571_bib0003) 2019; 12
Zhu (10.1016/j.tcs.2025.115571_bib0005) 2022; 4
Feige (10.1016/j.tcs.2025.115571_bib0026) 2002; 43
10.1016/j.tcs.2025.115571_bib0029
Bärtschi (10.1016/j.tcs.2025.115571_bib0007) 2020
Bravyi (10.1016/j.tcs.2025.115571_bib0006) 2020; 125
Egger (10.1016/j.tcs.2025.115571_bib0020) 2021; 5
10.1016/j.tcs.2025.115571_bib0034
He (10.1016/j.tcs.2025.115571_bib0030) 2023; 9
Tate (10.1016/j.tcs.2025.115571_bib0018) 2023; 7
10.1016/j.tcs.2025.115571_bib0033
10.1016/j.tcs.2025.115571_bib0014
Virtanen (10.1016/j.tcs.2025.115571_bib0031) 2020; 17
Sack (10.1016/j.tcs.2025.115571_bib0011) 2023; 107
Khot (10.1016/j.tcs.2025.115571_bib0023) 2002
Bravyi (10.1016/j.tcs.2025.115571_bib0015) 2022; 6
Karp (10.1016/j.tcs.2025.115571_bib0022) 2010
Goemans (10.1016/j.tcs.2025.115571_bib0035) 1995; 42
Charnes (10.1016/j.tcs.2025.115571_bib0032) 1962; 9
Sack (10.1016/j.tcs.2025.115571_bib0010) 2021; 5
Wurtz (10.1016/j.tcs.2025.115571_bib0017) 2021; 103
10.1016/j.tcs.2025.115571_bib0001
Golden (10.1016/j.tcs.2025.115571_bib0037) 2021
10.1016/j.tcs.2025.115571_bib0002
10.1016/j.tcs.2025.115571_bib0021
Håstad (10.1016/j.tcs.2025.115571_bib0028) 2001; 48
Zhou (10.1016/j.tcs.2025.115571_bib0013) 2020; 10
Halperin (10.1016/j.tcs.2025.115571_bib0025) 2004; 53
Shaydulin (10.1016/j.tcs.2025.115571_bib0012) 2023; 4
Wang (10.1016/j.tcs.2025.115571_bib0036) 2020; 101
Marwaha (10.1016/j.tcs.2025.115571_bib0016) 2021; 5
Khot (10.1016/j.tcs.2025.115571_bib0024) 2007; 37
Galda (10.1016/j.tcs.2025.115571_bib0009) 2021
References_xml – volume: 9
  start-page: 121
  year: 2023
  ident: bib0030
  article-title: Alignment between initial state and mixer improves QAOA performance for constrained optimization
  publication-title: npj Quant. Inf.
– volume: 4
  start-page: 1
  year: 2023
  end-page: 39
  ident: bib0019
  article-title: Bridging classical and quantum with SDP initialized warm-starts for QAOA
  publication-title: ACM Transact. Quant. Comput.
– volume: 43
  start-page: 201
  year: 2002
  end-page: 219
  ident: bib0026
  article-title: Improved approximation of Max-Cut on graphs of bounded degree
  publication-title: J. Algorith.
– volume: 6
  start-page: 678
  year: 2022
  ident: bib0015
  article-title: Hybrid quantum-classical algorithms for approximate graph coloring
  publication-title: Quantum
– volume: 4
  start-page: 1
  year: 2023
  end-page: 15
  ident: bib0012
  article-title: Parameter transfer for quantum approximate optimization of weighted maxcut
  publication-title: ACM Transact. Quant. Comput.
– start-page: 137
  year: 2021
  end-page: 147
  ident: bib0037
  article-title: Threshold-based quantum optimization
  publication-title: 2021 IEEE International Conference on Quantum Computing and Engineering (QCE)
– volume: 53
  start-page: 169
  year: 2004
  end-page: 185
  ident: bib0025
  article-title: MAX CUT In cubic graphs
  publication-title: J. Algorith.
– volume: 7
  start-page: 1121
  year: 2023
  ident: bib0018
  article-title: Warm-Started QAOA with custom mixers provably converges and computationally beats goemans-Williamson’s Max-Cut at low circuit depths
  publication-title: Quantum
– volume: 4
  year: 2022
  ident: bib0005
  article-title: Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer
  publication-title: Phys. Rev. Res.
– volume: 125
  year: 2020
  ident: bib0006
  article-title: Obstacles to variational quantum optimization from symmetry protection
  publication-title: Phys. Rev. Lett.
– volume: 48
  start-page: 798
  year: 2001
  end-page: 859
  ident: bib0028
  article-title: Some optimal inapproximability results
  publication-title: J. ACM (JACM)
– volume: 5
  start-page: 491
  year: 2021
  ident: bib0010
  article-title: Quantum annealing initialization of the quantum approximate optimization algorithm
  publication-title: Quantum
– volume: 101
  year: 2020
  ident: bib0036
  article-title: X y mixers: analytical and numerical results for the quantum alternating operator ansatz
  publication-title: Phys. Rev. A
– reference: S. Feeney, R. Tate, S. Eidenbenz, The Better Solution Probability Metric: Optimizing QAOA to Outperform its Warm-Start Solution, (2024).
– reference: E. Farhi, J. Goldstone, S. Gutmann, Quantum algorithms for fixed qubit architectures, (2017).
– volume: 12
  year: 2019
  ident: bib0003
  article-title: From the quantum approximate optimization algorithm to a quantum alternating operator Ansatz
  publication-title: Algorithms
– reference: M. Cain, E. Farhi, S. Gutmann, D. Ranard, E. Tang, The QAOA gets stuck starting from a good classical string, (2022).
– start-page: 200
  year: 1999
  end-page: 209
  ident: bib0027
  article-title: On some tighter inapproximability results (extended abstract)
  publication-title: Automata, Languages and Programming
– volume: 5
  start-page: 479
  year: 2021
  ident: bib0020
  article-title: Warm-starting quantum optimization
  publication-title: Quantum
– year: 2010
  ident: bib0022
  article-title: Reducibility Among Combinatorial Problems
– start-page: 767
  year: 2002
  end-page: 775
  ident: bib0023
  article-title: On the power of unique 2-prover 1-round games
  publication-title: Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing
– volume: 95
  year: 2017
  ident: bib0008
  article-title: Near-optimal quantum circuit for Grover’s unstructured search using a transverse field
  publication-title: Phys. Rev. A
– volume: 37
  start-page: 319
  year: 2007
  end-page: 357
  ident: bib0024
  article-title: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?
  publication-title: SIAM J. Comput.
– reference: I. Glendinning, Rotations on the Bloch Sphere, 2010.
– volume: 42
  start-page: 1115
  year: 1995
  end-page: 1145
  ident: bib0035
  article-title: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
  publication-title: J. ACM (JACM)
– reference: .
– reference: E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm, (2014).
– volume: 5
  start-page: 437
  year: 2021
  ident: bib0016
  article-title: Local classical MAX-CUT algorithm outperforms
  publication-title: Quantum
– volume: 9
  start-page: 181
  year: 1962
  end-page: 186
  ident: bib0032
  article-title: Programming with linear fractional functionals
  publication-title: Naval Res. Logist. Q.
– start-page: 171
  year: 2021
  end-page: 180
  ident: bib0009
  article-title: Transferability of optimal QAOA parameters between random graphs
  publication-title: 2021 IEEE International Conference on Quantum Computing and Engineering (QCE)
– reference: R. Tate, S. Eidenbenz, Warm-Started QAOA with Aligned Mixers Converges Slowly Near the Poles of the Bloch Sphere, (2024).
– volume: 101
  year: 2020
  ident: bib0004
  article-title: Mixers: analytical and numerical results for the quantum alternating operator ansatz
  publication-title: Phys. Rev. A
– volume: 103
  year: 2021
  ident: bib0017
  article-title: MaxCut quantum approximate optimization algorithm performance guarantees for
  publication-title: Phys. Rev. A
– volume: 107
  year: 2023
  ident: bib0011
  article-title: Recursive greedy initialization of the quantum approximate optimization algorithm with guaranteed improvement
  publication-title: Phys. Rev. A
– reference: E. Farhi, D. Gamarnik, S. Gutmann, The quantum approximate optimization algorithm needs to see the whole graph: A typical case, arXiv preprint (2020).
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: bib0031
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in python
  publication-title: Nat. Method.
– start-page: 72
  year: 2020
  end-page: 82
  ident: bib0007
  article-title: Grover mixers for QAOA: shifting complexity from mixer design to state preparation
  publication-title: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE)
– volume: 10
  year: 2020
  ident: bib0013
  article-title: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices
  publication-title: Phys. Rev. X
– volume: 6
  start-page: 678
  year: 2022
  ident: 10.1016/j.tcs.2025.115571_bib0015
  article-title: Hybrid quantum-classical algorithms for approximate graph coloring
  publication-title: Quantum
  doi: 10.22331/q-2022-03-30-678
– ident: 10.1016/j.tcs.2025.115571_bib0002
– ident: 10.1016/j.tcs.2025.115571_bib0021
– volume: 125
  year: 2020
  ident: 10.1016/j.tcs.2025.115571_bib0006
  article-title: Obstacles to variational quantum optimization from symmetry protection
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.260505
– start-page: 767
  year: 2002
  ident: 10.1016/j.tcs.2025.115571_bib0023
  article-title: On the power of unique 2-prover 1-round games
– ident: 10.1016/j.tcs.2025.115571_bib0029
– volume: 10
  issue: 2
  year: 2020
  ident: 10.1016/j.tcs.2025.115571_bib0013
  article-title: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices
  publication-title: Phys. Rev. X
– volume: 95
  issue: 6
  year: 2017
  ident: 10.1016/j.tcs.2025.115571_bib0008
  article-title: Near-optimal quantum circuit for Grover’s unstructured search using a transverse field
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.062317
– volume: 5
  start-page: 437
  year: 2021
  ident: 10.1016/j.tcs.2025.115571_bib0016
  article-title: Local classical MAX-CUT algorithm outperforms p=2 QAOA on high-girth regular graphs
  publication-title: Quantum
  doi: 10.22331/q-2021-04-20-437
– volume: 53
  start-page: 169
  issue: 2
  year: 2004
  ident: 10.1016/j.tcs.2025.115571_bib0025
  article-title: MAX CUT In cubic graphs
  publication-title: J. Algorith.
  doi: 10.1016/j.jalgor.2004.06.001
– volume: 12
  issue: 2
  year: 2019
  ident: 10.1016/j.tcs.2025.115571_bib0003
  article-title: From the quantum approximate optimization algorithm to a quantum alternating operator Ansatz
  publication-title: Algorithms
  doi: 10.3390/a12020034
– volume: 103
  issue: 4
  year: 2021
  ident: 10.1016/j.tcs.2025.115571_bib0017
  article-title: MaxCut quantum approximate optimization algorithm performance guarantees for p>1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.103.042612
– start-page: 171
  year: 2021
  ident: 10.1016/j.tcs.2025.115571_bib0009
  article-title: Transferability of optimal QAOA parameters between random graphs
– volume: 5
  start-page: 479
  year: 2021
  ident: 10.1016/j.tcs.2025.115571_bib0020
  article-title: Warm-starting quantum optimization
  publication-title: Quantum
  doi: 10.22331/q-2021-06-17-479
– volume: 48
  start-page: 798
  issue: 4
  year: 2001
  ident: 10.1016/j.tcs.2025.115571_bib0028
  article-title: Some optimal inapproximability results
  publication-title: J. ACM (JACM)
  doi: 10.1145/502090.502098
– ident: 10.1016/j.tcs.2025.115571_bib0033
  doi: 10.1007/978-3-031-82697-9_23
– ident: 10.1016/j.tcs.2025.115571_bib0001
– volume: 4
  year: 2022
  ident: 10.1016/j.tcs.2025.115571_bib0005
  article-title: Adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.033029
– year: 2010
  ident: 10.1016/j.tcs.2025.115571_bib0022
– volume: 107
  issue: 6
  year: 2023
  ident: 10.1016/j.tcs.2025.115571_bib0011
  article-title: Recursive greedy initialization of the quantum approximate optimization algorithm with guaranteed improvement
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.107.062404
– ident: 10.1016/j.tcs.2025.115571_bib0034
  doi: 10.1109/QCNC64685.2025.00077
– volume: 42
  start-page: 1115
  issue: 6
  year: 1995
  ident: 10.1016/j.tcs.2025.115571_bib0035
  article-title: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
  publication-title: J. ACM (JACM)
  doi: 10.1145/227683.227684
– volume: 7
  start-page: 1121
  year: 2023
  ident: 10.1016/j.tcs.2025.115571_bib0018
  article-title: Warm-Started QAOA with custom mixers provably converges and computationally beats goemans-Williamson’s Max-Cut at low circuit depths
  publication-title: Quantum
  doi: 10.22331/q-2023-09-26-1121
– volume: 43
  start-page: 201
  issue: 2
  year: 2002
  ident: 10.1016/j.tcs.2025.115571_bib0026
  article-title: Improved approximation of Max-Cut on graphs of bounded degree
  publication-title: J. Algorith.
  doi: 10.1016/S0196-6774(02)00005-6
– volume: 9
  start-page: 181
  issue: 3–4
  year: 1962
  ident: 10.1016/j.tcs.2025.115571_bib0032
  article-title: Programming with linear fractional functionals
  publication-title: Naval Res. Logist. Q.
  doi: 10.1002/nav.3800090303
– volume: 37
  start-page: 319
  issue: 1
  year: 2007
  ident: 10.1016/j.tcs.2025.115571_bib0024
  article-title: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539705447372
– volume: 101
  year: 2020
  ident: 10.1016/j.tcs.2025.115571_bib0004
  article-title: XY Mixers: analytical and numerical results for the quantum alternating operator ansatz
  publication-title: Phys. Rev. A
– ident: 10.1016/j.tcs.2025.115571_bib0014
– volume: 5
  start-page: 491
  year: 2021
  ident: 10.1016/j.tcs.2025.115571_bib0010
  article-title: Quantum annealing initialization of the quantum approximate optimization algorithm
  publication-title: Quantum
  doi: 10.22331/q-2021-07-01-491
– volume: 4
  start-page: 1
  issue: 2
  year: 2023
  ident: 10.1016/j.tcs.2025.115571_bib0019
  article-title: Bridging classical and quantum with SDP initialized warm-starts for QAOA
  publication-title: ACM Transact. Quant. Comput.
  doi: 10.1145/3549554
– volume: 9
  start-page: 121
  issue: 1
  year: 2023
  ident: 10.1016/j.tcs.2025.115571_bib0030
  article-title: Alignment between initial state and mixer improves QAOA performance for constrained optimization
  publication-title: npj Quant. Inf.
  doi: 10.1038/s41534-023-00787-5
– volume: 17
  start-page: 261
  year: 2020
  ident: 10.1016/j.tcs.2025.115571_bib0031
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in python
  publication-title: Nat. Method.
  doi: 10.1038/s41592-019-0686-2
– start-page: 200
  year: 1999
  ident: 10.1016/j.tcs.2025.115571_bib0027
  article-title: On some tighter inapproximability results (extended abstract)
– start-page: 72
  year: 2020
  ident: 10.1016/j.tcs.2025.115571_bib0007
  article-title: Grover mixers for QAOA: shifting complexity from mixer design to state preparation
– start-page: 137
  year: 2021
  ident: 10.1016/j.tcs.2025.115571_bib0037
  article-title: Threshold-based quantum optimization
– volume: 101
  issue: 1
  year: 2020
  ident: 10.1016/j.tcs.2025.115571_bib0036
  article-title: X y mixers: analytical and numerical results for the quantum alternating operator ansatz
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.012320
– volume: 4
  start-page: 1
  issue: 3
  year: 2023
  ident: 10.1016/j.tcs.2025.115571_bib0012
  article-title: Parameter transfer for quantum approximate optimization of weighted maxcut
  publication-title: ACM Transact. Quant. Comput.
  doi: 10.1145/3584706
SSID ssj0000576
Score 2.4614658
Snippet We generalize Farhi et al.’s 0.6924-approximation result technique of the Max-Cut Quantum Approximate Optimization Algorithm (QAOA) on 3-regular graphs to...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 115571
SubjectTerms Combinatorial optimization
Max-Cut
Quantum approximate optimization algorithm
Quantum computing
Title Theoretical approximation ratios for Warm-Started QAOA on 3-regular max-cut instances at depth p=1
URI https://dx.doi.org/10.1016/j.tcs.2025.115571
Volume 1059
WOSCitedRecordID wos001610500300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000576
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9UwFA-XbQ_6MLepbOokD-7FErlNmzZ5ULhsV1Tc5sfE-1bSJGUbrl663nHxr_ekST_cFFQYXMptS9NyfoeTX07OB0LPGM8pl1oSWE8nJNa0INJIQ3Qi4AcEgoZNovD79OiIz2biw2j0qs2FufqWliVfLsX8VqGGawC2TZ39B7i7QeEC_AfQ4Qiww_Fvge9SE5uK4cszl54YNGA39ReCr7K6IEA0K0s4P06OJ3bTICJV05m-Ci7kkqiF7R5gyaMN2pK1DZqtT4P5XnQQDint8H3K94gI_MTa-wVcF75PZpH3uWdT29AUzn904WZeVb0XgjovRO-FvJke41Ky7LaLcK1ROnM7diXAb9hu50Y4f1ErW0adMrDmjLn-LNdKYn-2A9txgb_Z-jUwBa_SlAmwaquTt9PZu34uZqnbrfYf0u5rNxF-1170e2YyYBsnG2jdLxPwxMG7iUam3EL32hYc2FvkLXT3sCu7e3kf5QMs8C_YY4c9BuzxEHtsscdwv8Mee-xxhz2WNW6wx_OX4QP05fX0ZP8N8U00iALqWpOC88KEio1NqoVMIhpJrpMiNCbUTGsmdKy5FmMJRNTIgsdKgjQ0rHONrfyvo4dopfxemm2E80InTOQpTAQmVormSkY6BIKXq5gCD95Bz1sBZnNXKyVrgwjPM5B2ZqWdOWnvoLgVceZ10pG4DPThz489-r_HHqM7vdY-QSt1tTC7aE1d1WeX1VOvNT8BDMR5nw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+approximation+ratios+for+Warm-Started+QAOA+on+3-regular+max-cut+instances+at+depth+p%3D1&rft.jtitle=Theoretical+computer+science&rft.au=Tate%2C+Reuben&rft.au=Eidenbenz%2C+Stephan&rft.date=2026-01-04&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.volume=1059&rft_id=info:doi/10.1016%2Fj.tcs.2025.115571&rft.externalDocID=S0304397525005092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon