Multi-dimensional neural network grey model with delay for intelligent ship trajectory forecasting
•Integrates deep learning with grey models for intelligent ship trajectory forecasting.•The Novel model addresses the interactions and time-delay characteristics.•The two-stage method optimizes time-delay estimation and neural networks.•Comprehensive experiments validate superiority across navigatio...
Saved in:
| Published in: | Applied mathematical modelling Vol. 150; p. 116497 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.02.2026
|
| Subjects: | |
| ISSN: | 0307-904X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Integrates deep learning with grey models for intelligent ship trajectory forecasting.•The Novel model addresses the interactions and time-delay characteristics.•The two-stage method optimizes time-delay estimation and neural networks.•Comprehensive experiments validate superiority across navigation scenarios.
Ship trajectory prediction is a key technology for intelligent shipping, playing a crucial role in effective vessel monitoring and future autonomous navigation. Current studies struggle to accurately describe the impact of historical trajectory, heading, and speed on ship movement. To address this issue, this paper proposes a multi-dimensional neural network grey model with delay system structure for forecasting intelligent ship trajectory. This model represents the trajectory prediction system as a set of equations, capturing the interactions between future trajectories and multiple key factors. Specifically, a dynamic time-delay term is introduced in the grey modeling process to reflect the delayed influence of historical trajectories on future movements. For the first time, a neural network is embedded into the traditional system grey prediction model to describe the complex nonlinear relationships between ship motion, heading, and speed. This enhances the model’s nonlinear mapping and generalization capabilities. Additionally, to improve prediction accuracy, an innovative new information recursive least squares algorithm is proposed to estimate time-delay parameters, while neural network parameters are optimized using gradient descent. Finally, the effectiveness of the proposed model is validated through comparisons with three machine learning models, one statistical model, and two grey models. Results demonstrate that novel model exhibits strong robustness and high prediction accuracy, particularly in edge navigation scenarios involving complex nonlinear trajectory data. |
|---|---|
| AbstractList | •Integrates deep learning with grey models for intelligent ship trajectory forecasting.•The Novel model addresses the interactions and time-delay characteristics.•The two-stage method optimizes time-delay estimation and neural networks.•Comprehensive experiments validate superiority across navigation scenarios.
Ship trajectory prediction is a key technology for intelligent shipping, playing a crucial role in effective vessel monitoring and future autonomous navigation. Current studies struggle to accurately describe the impact of historical trajectory, heading, and speed on ship movement. To address this issue, this paper proposes a multi-dimensional neural network grey model with delay system structure for forecasting intelligent ship trajectory. This model represents the trajectory prediction system as a set of equations, capturing the interactions between future trajectories and multiple key factors. Specifically, a dynamic time-delay term is introduced in the grey modeling process to reflect the delayed influence of historical trajectories on future movements. For the first time, a neural network is embedded into the traditional system grey prediction model to describe the complex nonlinear relationships between ship motion, heading, and speed. This enhances the model’s nonlinear mapping and generalization capabilities. Additionally, to improve prediction accuracy, an innovative new information recursive least squares algorithm is proposed to estimate time-delay parameters, while neural network parameters are optimized using gradient descent. Finally, the effectiveness of the proposed model is validated through comparisons with three machine learning models, one statistical model, and two grey models. Results demonstrate that novel model exhibits strong robustness and high prediction accuracy, particularly in edge navigation scenarios involving complex nonlinear trajectory data. |
| ArticleNumber | 116497 |
| Author | Fangxue, Zhang Xinping, Xiao Mingyun, Gao |
| Author_xml | – sequence: 1 givenname: Xiao surname: Xinping fullname: Xinping, Xiao organization: School of Mathematics and Statistics, Wuhan University of Technology, 430070, Wuhan, China – sequence: 2 givenname: Zhang surname: Fangxue fullname: Fangxue, Zhang email: fangxuezhang0@163.com organization: School of Mathematics and Statistics, Wuhan University of Technology, 430070, Wuhan, China – sequence: 3 givenname: Gao surname: Mingyun fullname: Mingyun, Gao organization: School of Information Management, Central China Normal University, 430079, Wuhan, China |
| BookMark | eNp9kM1OwzAQhH0oEi3wANz8Agm20zi1OKGKP6mIC0jcLMdZtw6JXdkuVd8et-XMaWY1mtXom6GJ8w4QuqWkpITyu75U27FkhNUlpXwumgmakoo0hSDzr0s0i7EnhNT5mqL2bTckW3R2BBetd2rADnbhJGnvwzdeBzjg0Xcw4L1NG5yNOmDjA7YuwTDYNbiE48ZucQqqB518OOWgVUzWra_RhVFDhJs_vUKfT48fy5di9f78unxYFZrVNBWGgmhFaww3LWOqUnWnaS0abrhgjDMAMIZVHROLRUuI1nPFaJPDii46zmh1hej5rw4-xgBGboMdVThISuQRjOxlBiOPYOQZTO7cnzuQh_1YCDJqC05DZ_P-JDtv_2n_Avdachk |
| Cites_doi | 10.1016/j.oceaneng.2024.117019 10.1016/j.apm.2019.09.027 10.1016/j.engappai.2015.03.014 10.1109/TITS.2017.2724551 10.1016/j.apm.2023.04.028 10.1016/j.isatra.2024.02.023 10.1016/j.oceaneng.2023.115989 10.1016/j.neucom.2021.05.048 10.1016/j.techfore.2022.122203 10.3390/s20185133 10.1016/j.oceaneng.2023.114183 10.1016/j.eswa.2021.114923 10.1016/j.oceaneng.2023.115255 10.1016/j.oceaneng.2019.04.024 10.1016/j.oceaneng.2024.117431 10.1016/j.measurement.2024.115033 10.1016/j.oceaneng.2023.114905 10.1016/j.apm.2024.06.015 10.1016/j.energy.2021.122441 10.1016/j.oceaneng.2024.117186 10.1016/j.oceaneng.2021.108956 10.1016/j.eswa.2024.123629 10.1016/j.jclepro.2023.136099 10.1016/j.oceaneng.2023.115908 10.3390/s19204365 10.1016/j.oceaneng.2023.116159 10.1109/TITS.2012.2187282 10.1016/j.asoc.2020.106086 10.1016/j.isatra.2021.03.024 10.1109/ACCESS.2020.2992458 10.1016/j.oceaneng.2024.117428 10.1016/j.apor.2023.103592 10.1016/j.oceaneng.2022.111527 10.1016/j.asoc.2020.106398 10.1016/j.oceaneng.2023.114807 10.1016/j.neucom.2024.127343 10.1016/j.oceaneng.2024.116766 10.1016/j.scitotenv.2022.155531 10.3390/info14040212 10.1016/j.apm.2021.09.008 10.1016/j.apm.2022.11.025 10.1016/j.scs.2023.105169 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Inc. |
| Copyright_xml | – notice: 2025 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apm.2025.116497 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_apm_2025_116497 S0307904X25005712 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABAOU ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AEUPX AEXQZ AFFNX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XPP ZMT ~02 ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c251t-f1e9b9bff6fb22a3a5dc15976f692262eeeff23d2988b00cc4a217f69318d6213 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001598515100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0307-904X |
| IngestDate | Sat Nov 29 06:49:47 EST 2025 Sat Nov 29 17:02:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Intelligent shipping Grey prediction model Trajectory prediction New information recursive least squares algorithm Edge navigation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-f1e9b9bff6fb22a3a5dc15976f692262eeeff23d2988b00cc4a217f69318d6213 |
| ParticipantIDs | crossref_primary_10_1016_j_apm_2025_116497 elsevier_sciencedirect_doi_10_1016_j_apm_2025_116497 |
| PublicationCentury | 2000 |
| PublicationDate | February 2026 2026-02-00 |
| PublicationDateYYYYMMDD | 2026-02-01 |
| PublicationDate_xml | – month: 02 year: 2026 text: February 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied mathematical modelling |
| PublicationYear | 2026 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Liu, Guo, Feng (bib0019) 2019; 19 Xiong, Huang, Peng (bib0032) 2020; 77 Guo, Liu, Wu (bib0036) 2015; 42 Xiaopeng, Xu, Lingzhi (bib0028) 2015 Zhang, Xiao, Gao (bib0042) 2024; 576 Wang, Xiao (bib0051) 2023; 14 Shen, Yao, Hu (bib0018) 2023; 287 Liu, Hu, Liang (bib0024) 2023; 136 Xie, Wu, Xu (bib0041) 2023; 121 Duan, Pang (bib0033) 2023; 390 Suo, Chen, Claramunt (bib0014) 2020; 20 Abebe, Noh, Kang (bib0017) 2022; 256 Perera, Oliveira, Soares (bib0020) 2012; 13 Chen, Yang, Li (bib0013) 2023; 276 Wang, Wu, Zhang (bib0008) 2023; 288 Liu, Chu, Xu (bib0006) 2016 Wei (bib0043) 2023; 116 Xue, Wang, Xia (bib0026) 2024; 300 Wu, Xiong, Hu (bib0045) 2022; 835 Xu, Hu, Su (bib0037) 2020; 89 Fossen (bib0047) 2011 Dong, Wang, Song (bib0009) 2023; 285 Hu (bib0038) 2020; 93 Ma, Xie, Suykens (bib0040) 2021; 456 Xiao, Mao (bib0050) 2018 Rong, Teixeira, Soares (bib0016) 2019; 182 Perera, Soares (bib0048) 2010 Zheng (bib0003) 2020 Zou (bib0011) 2022; 22 Chen, Xiao, Gao (bib0030) 2024; 147 Lee, Park (bib0023) 2024; 294 Liu, Liu, Yang (bib0046) 2024; 249 Zhang, Guo, Sun (bib0034) 2022; 239 Chen, Wang, Huo (bib0012) 2022; 44 Chen, Yang, Mou (bib0001) 2024; 299 Liu, An, Wang (bib0007) 2024; 236 Tu, Zhang, Rachmawati (bib0049) 2018; 19 Li, Wu, Zhao (bib0031) 2023; 187 Gao, Zhu, Zhang (bib0021) 2021; 228 Zhang, Kujala, Musharraf (bib0010) 2023; 283 Teitgen, Monsuez, Kukla (bib0027) 2023; 281 Qiang, Jin, Feng (bib0015) 2020; 8 He, Ma, Zhang (bib0035) 2024 Lin, Zhen, Tong (bib0025) 2024; 296 Lei, Wu, Zhang (bib0039) 2021; 177 Wang, Zhao (bib0052) 2018; 2018 Wei, Xie (bib0044) 2022; 101 Zhao, Yan, Zhou (bib0002) 2023; 289 Wang, Liu, Sang (bib0004) 2018; 39 Chu, Liu, Ma (bib0005) 2014; 14 Yoon, Kim, Lee (bib0053) 2024; 101 Duan, Luo (bib0029) 2022; 120 Zhang, Feng, Wang (bib0022) 2024; 299 Chen (10.1016/j.apm.2025.116497_bib0012) 2022; 44 Zhang (10.1016/j.apm.2025.116497_bib0010) 2023; 283 Teitgen (10.1016/j.apm.2025.116497_bib0027) 2023; 281 Wei (10.1016/j.apm.2025.116497_bib0043) 2023; 116 Chen (10.1016/j.apm.2025.116497_bib0013) 2023; 276 Zhao (10.1016/j.apm.2025.116497_bib0002) 2023; 289 Lin (10.1016/j.apm.2025.116497_bib0025) 2024; 296 Xue (10.1016/j.apm.2025.116497_bib0026) 2024; 300 Guo (10.1016/j.apm.2025.116497_bib0036) 2015; 42 Yoon (10.1016/j.apm.2025.116497_bib0053) 2024; 101 Rong (10.1016/j.apm.2025.116497_bib0016) 2019; 182 Liu (10.1016/j.apm.2025.116497_bib0024) 2023; 136 Li (10.1016/j.apm.2025.116497_bib0031) 2023; 187 Wang (10.1016/j.apm.2025.116497_bib0051) 2023; 14 Lee (10.1016/j.apm.2025.116497_bib0023) 2024; 294 Xie (10.1016/j.apm.2025.116497_bib0041) 2023; 121 Zhang (10.1016/j.apm.2025.116497_bib0042) 2024; 576 He (10.1016/j.apm.2025.116497_bib0035) 2024 Liu (10.1016/j.apm.2025.116497_bib0019) 2019; 19 Wei (10.1016/j.apm.2025.116497_bib0044) 2022; 101 Zou (10.1016/j.apm.2025.116497_bib0011) 2022; 22 Wu (10.1016/j.apm.2025.116497_bib0045) 2022; 835 Xiao (10.1016/j.apm.2025.116497_bib0050) 2018 Liu (10.1016/j.apm.2025.116497_bib0046) 2024; 249 Duan (10.1016/j.apm.2025.116497_bib0029) 2022; 120 Gao (10.1016/j.apm.2025.116497_bib0021) 2021; 228 Xiong (10.1016/j.apm.2025.116497_bib0032) 2020; 77 Zhang (10.1016/j.apm.2025.116497_bib0022) 2024; 299 Perera (10.1016/j.apm.2025.116497_bib0048) 2010 Hu (10.1016/j.apm.2025.116497_bib0038) 2020; 93 Liu (10.1016/j.apm.2025.116497_bib0006) 2016 Chen (10.1016/j.apm.2025.116497_bib0030) 2024; 147 Suo (10.1016/j.apm.2025.116497_bib0014) 2020; 20 Chu (10.1016/j.apm.2025.116497_bib0005) 2014; 14 Wang (10.1016/j.apm.2025.116497_bib0008) 2023; 288 Dong (10.1016/j.apm.2025.116497_bib0009) 2023; 285 Duan (10.1016/j.apm.2025.116497_bib0033) 2023; 390 Chen (10.1016/j.apm.2025.116497_bib0001) 2024; 299 Lei (10.1016/j.apm.2025.116497_bib0039) 2021; 177 Xu (10.1016/j.apm.2025.116497_bib0037) 2020; 89 Ma (10.1016/j.apm.2025.116497_bib0040) 2021; 456 Zheng (10.1016/j.apm.2025.116497_bib0003) 2020 Tu (10.1016/j.apm.2025.116497_bib0049) 2018; 19 Liu (10.1016/j.apm.2025.116497_bib0007) 2024; 236 Shen (10.1016/j.apm.2025.116497_bib0018) 2023; 287 Xiaopeng (10.1016/j.apm.2025.116497_bib0028) 2015 Qiang (10.1016/j.apm.2025.116497_bib0015) 2020; 8 Perera (10.1016/j.apm.2025.116497_bib0020) 2012; 13 Abebe (10.1016/j.apm.2025.116497_bib0017) 2022; 256 Zhang (10.1016/j.apm.2025.116497_bib0034) 2022; 239 Wang (10.1016/j.apm.2025.116497_bib0004) 2018; 39 Fossen (10.1016/j.apm.2025.116497_bib0047) 2011 Wang (10.1016/j.apm.2025.116497_bib0052) 2018; 2018 |
| References_xml | – volume: 256 year: 2022 ident: bib0017 article-title: Ship trajectory planning for collision avoidance using hybrid ARIMA-LSTM models publication-title: Ocean Eng. – volume: 101 start-page: 432 year: 2022 end-page: 452 ident: bib0044 article-title: On unified framework for continuous-time grey models: an integral matching perspective publication-title: Appl. Math. Model. – volume: 77 start-page: 1531 year: 2020 end-page: 1544 ident: bib0032 article-title: Examination and prediction of fog and haze pollution using a multi-variable Grey Model based on interval number sequences publication-title: Appl. Math. Model. – volume: 44 start-page: 1 year: 2022 end-page: 5 ident: bib0012 article-title: Identification of ship dynamics model based on gaussian process regression publication-title: Ship Sci. Technol. – volume: 147 start-page: 304 year: 2024 end-page: 327 ident: bib0030 article-title: A novel mixed frequency sampling discrete grey model for forecasting hard disk drive failure publication-title: ISA Trans – volume: 456 start-page: 61 year: 2021 end-page: 75 ident: bib0040 article-title: A novel neural grey system model with bayesian regularization and its applications publication-title: Neurocomputing – start-page: 706 year: 2015 end-page: 714 ident: bib0028 article-title: Vessel trajectory prediction in curving channel of inland river publication-title: 2015 International Conference on Transportation Information and Safety (ICTIS) – volume: 249 year: 2024 ident: bib0046 article-title: A recursive polynomial grey prediction model with adaptive structure and its application publication-title: Expert Syst. Appl. – volume: 39 start-page: 82 year: 2018 end-page: 89 ident: bib0004 article-title: AIS data repair method based on least square support vector machine publication-title: J. of Shanghai Marit. Univ. – volume: 187 year: 2023 ident: bib0031 article-title: Research and application of multi-variable grey optimization model with interactive effects in marine emerging industries prediction publication-title: Technol. Forecast. Soc. Change – volume: 228 year: 2021 ident: bib0021 article-title: A novel MP-LSTM method for ship trajectory prediction based on AIS data publication-title: Ocean Eng. – volume: 101 year: 2024 ident: bib0053 article-title: UAV-based automated 3D modeling framework using deep learning for building energy modeling publication-title: Sustain. Cities Soc. – volume: 116 start-page: 32 year: 2023 end-page: 44 ident: bib0043 article-title: Parameter estimation strategies for separable grey system models with comparisons and applications publication-title: Appl. Math. Model. – volume: 13 start-page: 1188 year: 2012 end-page: 1200 ident: bib0020 article-title: Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 14 start-page: 117 year: 2014 end-page: 126 ident: bib0005 article-title: Distribution characteristic of AIS signal field intensity along mountainous waterway publication-title: J. Traffic Transp. Eng. – volume: 177 year: 2021 ident: bib0039 article-title: Neural ordinary differential grey model and its applications publication-title: Expert Syst. Appl. – volume: 14 start-page: 212 year: 2023 ident: bib0051 article-title: A deep learning model for ship trajectory prediction using automatic identification system (AIS) data publication-title: Information – volume: 390 year: 2023 ident: bib0033 article-title: A novel grey prediction model with system structure based on energy background: A case study of Chinese electricity publication-title: J. Clean. Prod. – volume: 288 year: 2023 ident: bib0008 article-title: Self-organizing data-driven prediction model of ship maneuvering fast-dynamics publication-title: Ocean Eng. – volume: 300 year: 2024 ident: bib0026 article-title: G-trans: A hierarchical approach to vessel trajectory prediction with GRU-based transformer publication-title: Ocean Eng. – volume: 299 year: 2024 ident: bib0022 article-title: A hybrid ship-motion prediction model based on CNN-MRNN and IADPSO publication-title: Ocean Eng. – year: 2024 ident: bib0035 article-title: The nonlinear multi-variable grey Bernoulli model and its applications publication-title: Appl. Math. Model. – year: 2011 ident: bib0047 article-title: Handbook of marine craft hydrodynamics and motion control – volume: 22 start-page: 106 year: 2022 end-page: 109 ident: bib0011 article-title: Hybrid control method for ship power system against random disturbance publication-title: Ship Sci. Technol. – volume: 236 year: 2024 ident: bib0007 article-title: Maneuverability prediction of ship nonlinear motion models based on parameter identification and optimization publication-title: Measurement – volume: 2018 start-page: 1 year: 2018 end-page: 8 ident: bib0052 article-title: A nonhomogeneous multivariable grey prediction NMGM modeling mechanism and its application publication-title: Math. Probl. Eng. – volume: 576 year: 2024 ident: bib0042 article-title: An extended neural ordinary differential equation network with grey system and its applications publication-title: Neurocomputing – volume: 289 year: 2023 ident: bib0002 article-title: A ship trajectory prediction method based on GAT and LSTM publication-title: Ocean Eng. – volume: 283 year: 2023 ident: bib0010 article-title: A machine learning method for the prediction of ship motion trajectories in real operational conditions publication-title: Ocean Eng. – volume: 8 start-page: 181880 year: 2020 end-page: 181892 ident: bib0015 article-title: Model predictive control of a shipborne hydraulic parallel stabilized platform based on ship motion prediction publication-title: IEEE Access – volume: 285 year: 2023 ident: bib0009 article-title: Math-data integrated prediction model for ship maneuvering motion publication-title: Ocean Eng. – volume: 239 year: 2022 ident: bib0034 article-title: A novel flexible grey multivariable model and its application in forecasting energy consumption in China publication-title: Energy – volume: 19 start-page: 1559 year: 2018 end-page: 1582 ident: bib0049 article-title: Exploiting AIS Data for intelligent maritime navigation: a comprehensive survey from data to methodology publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 276 year: 2023 ident: bib0013 article-title: Online modeling and prediction of maritime autonomous surface ship maneuvering motion under ocean waves publication-title: Ocean Eng. – volume: 19 start-page: 4365 year: 2019 ident: bib0019 article-title: L-VTP: long-term vessel trajectory prediction based on multi-source data analysis publication-title: Sensors – volume: 294 year: 2024 ident: bib0023 article-title: Collision evasive action timing for MASS using CNN-LSTM-based ship trajectory prediction in restricted area publication-title: Ocean Eng. – volume: 120 start-page: 110 year: 2022 end-page: 127 ident: bib0029 article-title: A novel multivariable grey prediction model and its application in forecasting coal consumption publication-title: ISA Trans – volume: 835 year: 2022 ident: bib0045 article-title: Forecasting carbon emissions using MGM(1,m|λ,γ) model with the similar meteorological condition publication-title: Sci. Total Environ. – volume: 299 year: 2024 ident: bib0001 article-title: Regional ship behavior and trajectory prediction for maritime traffic management: A social generative adversarial network approach publication-title: Ocean Eng. – volume: 121 start-page: 43 year: 2023 end-page: 58 ident: bib0041 article-title: The fractional neural grey system model and its application publication-title: Appl. Math. Model. – start-page: 14 year: 2010 end-page: 20 ident: bib0048 article-title: Ocean vessel trajectory estimation and prediction based on extended Kalman filter, 2nd int publication-title: Conf. Adaptive Self-Adaptive Syst. Appl. – year: 2018 ident: bib0050 article-title: Grey Forecasting and Decision Methods – volume: 93 year: 2020 ident: bib0038 article-title: Constructing grey prediction models using grey relational analysis and neural networks for magnesium material demand forecasting publication-title: Appl. Soft Comput. – volume: 182 start-page: 499 year: 2019 end-page: 511 ident: bib0016 article-title: Ship trajectory uncertainty prediction based on a Gaussian process model publication-title: Ocean Eng. – volume: 136 year: 2023 ident: bib0024 article-title: QSD-LSTM: vessel trajectory prediction using long short-term memory with quaternion ship domain publication-title: Appl. Ocean Res. – start-page: 1 year: 2016 end-page: 4 ident: bib0006 article-title: A model for predicting the attenuation of AIS signal at mountainous waterway publication-title: 2016 25th Wirel. Opt. Commun. Conf. WOCC – start-page: 109 year: 2020 end-page: 110 ident: bib0003 article-title: Thoughts on AIS signal loss and safety management of ship publication-title: Pearl River Transp. – volume: 20 start-page: 5133 year: 2020 ident: bib0014 article-title: A ship trajectory prediction framework based on a recurrent neural network publication-title: Sensors – volume: 281 year: 2023 ident: bib0027 article-title: Dynamic trajectory planning for ships in dense environment using collision grid with deep reinforcement learning publication-title: Ocean Eng. – volume: 296 year: 2024 ident: bib0025 article-title: Regional ship collision risk prediction: an approach based on encoder-decoder LSTM neural network model publication-title: Ocean Eng. – volume: 42 start-page: 82 year: 2015 end-page: 93 ident: bib0036 article-title: A multi-variable grey model with a self-memory component and its application on engineering prediction publication-title: Eng. Appl. Artif. Intell. – volume: 287 year: 2023 ident: bib0018 article-title: Ship dynamics model identification based on semblance least square support vector machine publication-title: Ocean Eng. – volume: 89 year: 2020 ident: bib0037 article-title: Multivariable grey prediction evolution algorithm: A new metaheuristic publication-title: Appl. Soft Comput. – volume: 296 year: 2024 ident: 10.1016/j.apm.2025.116497_bib0025 article-title: Regional ship collision risk prediction: an approach based on encoder-decoder LSTM neural network model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.117019 – volume: 77 start-page: 1531 year: 2020 ident: 10.1016/j.apm.2025.116497_bib0032 article-title: Examination and prediction of fog and haze pollution using a multi-variable Grey Model based on interval number sequences publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.09.027 – volume: 42 start-page: 82 year: 2015 ident: 10.1016/j.apm.2025.116497_bib0036 article-title: A multi-variable grey model with a self-memory component and its application on engineering prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2015.03.014 – volume: 19 start-page: 1559 year: 2018 ident: 10.1016/j.apm.2025.116497_bib0049 article-title: Exploiting AIS Data for intelligent maritime navigation: a comprehensive survey from data to methodology publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2724551 – volume: 121 start-page: 43 year: 2023 ident: 10.1016/j.apm.2025.116497_bib0041 article-title: The fractional neural grey system model and its application publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2023.04.028 – volume: 147 start-page: 304 year: 2024 ident: 10.1016/j.apm.2025.116497_bib0030 article-title: A novel mixed frequency sampling discrete grey model for forecasting hard disk drive failure publication-title: ISA Trans doi: 10.1016/j.isatra.2024.02.023 – volume: 288 year: 2023 ident: 10.1016/j.apm.2025.116497_bib0008 article-title: Self-organizing data-driven prediction model of ship maneuvering fast-dynamics publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115989 – start-page: 706 year: 2015 ident: 10.1016/j.apm.2025.116497_bib0028 article-title: Vessel trajectory prediction in curving channel of inland river – volume: 456 start-page: 61 year: 2021 ident: 10.1016/j.apm.2025.116497_bib0040 article-title: A novel neural grey system model with bayesian regularization and its applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.05.048 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.apm.2025.116497_bib0052 article-title: A nonhomogeneous multivariable grey prediction NMGM modeling mechanism and its application publication-title: Math. Probl. Eng. – volume: 187 year: 2023 ident: 10.1016/j.apm.2025.116497_bib0031 article-title: Research and application of multi-variable grey optimization model with interactive effects in marine emerging industries prediction publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2022.122203 – volume: 39 start-page: 82 year: 2018 ident: 10.1016/j.apm.2025.116497_bib0004 article-title: AIS data repair method based on least square support vector machine publication-title: J. of Shanghai Marit. Univ. – volume: 20 start-page: 5133 year: 2020 ident: 10.1016/j.apm.2025.116497_bib0014 article-title: A ship trajectory prediction framework based on a recurrent neural network publication-title: Sensors doi: 10.3390/s20185133 – start-page: 109 year: 2020 ident: 10.1016/j.apm.2025.116497_bib0003 article-title: Thoughts on AIS signal loss and safety management of ship publication-title: Pearl River Transp. – volume: 276 year: 2023 ident: 10.1016/j.apm.2025.116497_bib0013 article-title: Online modeling and prediction of maritime autonomous surface ship maneuvering motion under ocean waves publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114183 – year: 2011 ident: 10.1016/j.apm.2025.116497_bib0047 – volume: 44 start-page: 1 year: 2022 ident: 10.1016/j.apm.2025.116497_bib0012 article-title: Identification of ship dynamics model based on gaussian process regression publication-title: Ship Sci. Technol. – volume: 177 year: 2021 ident: 10.1016/j.apm.2025.116497_bib0039 article-title: Neural ordinary differential grey model and its applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114923 – volume: 285 year: 2023 ident: 10.1016/j.apm.2025.116497_bib0009 article-title: Math-data integrated prediction model for ship maneuvering motion publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115255 – volume: 22 start-page: 106 year: 2022 ident: 10.1016/j.apm.2025.116497_bib0011 article-title: Hybrid control method for ship power system against random disturbance publication-title: Ship Sci. Technol. – volume: 182 start-page: 499 year: 2019 ident: 10.1016/j.apm.2025.116497_bib0016 article-title: Ship trajectory uncertainty prediction based on a Gaussian process model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.04.024 – volume: 300 year: 2024 ident: 10.1016/j.apm.2025.116497_bib0026 article-title: G-trans: A hierarchical approach to vessel trajectory prediction with GRU-based transformer publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.117431 – volume: 236 year: 2024 ident: 10.1016/j.apm.2025.116497_bib0007 article-title: Maneuverability prediction of ship nonlinear motion models based on parameter identification and optimization publication-title: Measurement doi: 10.1016/j.measurement.2024.115033 – volume: 283 year: 2023 ident: 10.1016/j.apm.2025.116497_bib0010 article-title: A machine learning method for the prediction of ship motion trajectories in real operational conditions publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114905 – year: 2024 ident: 10.1016/j.apm.2025.116497_bib0035 article-title: The nonlinear multi-variable grey Bernoulli model and its applications publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2024.06.015 – volume: 239 year: 2022 ident: 10.1016/j.apm.2025.116497_bib0034 article-title: A novel flexible grey multivariable model and its application in forecasting energy consumption in China publication-title: Energy doi: 10.1016/j.energy.2021.122441 – volume: 299 year: 2024 ident: 10.1016/j.apm.2025.116497_bib0001 article-title: Regional ship behavior and trajectory prediction for maritime traffic management: A social generative adversarial network approach publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.117186 – volume: 228 year: 2021 ident: 10.1016/j.apm.2025.116497_bib0021 article-title: A novel MP-LSTM method for ship trajectory prediction based on AIS data publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108956 – volume: 249 year: 2024 ident: 10.1016/j.apm.2025.116497_bib0046 article-title: A recursive polynomial grey prediction model with adaptive structure and its application publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.123629 – volume: 14 start-page: 117 year: 2014 ident: 10.1016/j.apm.2025.116497_bib0005 article-title: Distribution characteristic of AIS signal field intensity along mountainous waterway publication-title: J. Traffic Transp. Eng. – volume: 390 year: 2023 ident: 10.1016/j.apm.2025.116497_bib0033 article-title: A novel grey prediction model with system structure based on energy background: A case study of Chinese electricity publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.136099 – volume: 287 year: 2023 ident: 10.1016/j.apm.2025.116497_bib0018 article-title: Ship dynamics model identification based on semblance least square support vector machine publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115908 – volume: 19 start-page: 4365 year: 2019 ident: 10.1016/j.apm.2025.116497_bib0019 article-title: L-VTP: long-term vessel trajectory prediction based on multi-source data analysis publication-title: Sensors doi: 10.3390/s19204365 – volume: 289 year: 2023 ident: 10.1016/j.apm.2025.116497_bib0002 article-title: A ship trajectory prediction method based on GAT and LSTM publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.116159 – volume: 13 start-page: 1188 year: 2012 ident: 10.1016/j.apm.2025.116497_bib0020 article-title: Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2012.2187282 – volume: 89 year: 2020 ident: 10.1016/j.apm.2025.116497_bib0037 article-title: Multivariable grey prediction evolution algorithm: A new metaheuristic publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106086 – volume: 120 start-page: 110 year: 2022 ident: 10.1016/j.apm.2025.116497_bib0029 article-title: A novel multivariable grey prediction model and its application in forecasting coal consumption publication-title: ISA Trans doi: 10.1016/j.isatra.2021.03.024 – volume: 8 start-page: 181880 year: 2020 ident: 10.1016/j.apm.2025.116497_bib0015 article-title: Model predictive control of a shipborne hydraulic parallel stabilized platform based on ship motion prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992458 – volume: 299 year: 2024 ident: 10.1016/j.apm.2025.116497_bib0022 article-title: A hybrid ship-motion prediction model based on CNN-MRNN and IADPSO publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.117428 – volume: 136 year: 2023 ident: 10.1016/j.apm.2025.116497_bib0024 article-title: QSD-LSTM: vessel trajectory prediction using long short-term memory with quaternion ship domain publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2023.103592 – start-page: 14 year: 2010 ident: 10.1016/j.apm.2025.116497_bib0048 article-title: Ocean vessel trajectory estimation and prediction based on extended Kalman filter, 2nd int publication-title: Conf. Adaptive Self-Adaptive Syst. Appl. – year: 2018 ident: 10.1016/j.apm.2025.116497_bib0050 – volume: 256 year: 2022 ident: 10.1016/j.apm.2025.116497_bib0017 article-title: Ship trajectory planning for collision avoidance using hybrid ARIMA-LSTM models publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111527 – volume: 93 year: 2020 ident: 10.1016/j.apm.2025.116497_bib0038 article-title: Constructing grey prediction models using grey relational analysis and neural networks for magnesium material demand forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106398 – volume: 281 year: 2023 ident: 10.1016/j.apm.2025.116497_bib0027 article-title: Dynamic trajectory planning for ships in dense environment using collision grid with deep reinforcement learning publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114807 – volume: 576 year: 2024 ident: 10.1016/j.apm.2025.116497_bib0042 article-title: An extended neural ordinary differential equation network with grey system and its applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.127343 – volume: 294 year: 2024 ident: 10.1016/j.apm.2025.116497_bib0023 article-title: Collision evasive action timing for MASS using CNN-LSTM-based ship trajectory prediction in restricted area publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.116766 – volume: 835 year: 2022 ident: 10.1016/j.apm.2025.116497_bib0045 article-title: Forecasting carbon emissions using MGM(1,m|λ,γ) model with the similar meteorological condition publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.155531 – volume: 14 start-page: 212 year: 2023 ident: 10.1016/j.apm.2025.116497_bib0051 article-title: A deep learning model for ship trajectory prediction using automatic identification system (AIS) data publication-title: Information doi: 10.3390/info14040212 – start-page: 1 year: 2016 ident: 10.1016/j.apm.2025.116497_bib0006 article-title: A model for predicting the attenuation of AIS signal at mountainous waterway – volume: 101 start-page: 432 year: 2022 ident: 10.1016/j.apm.2025.116497_bib0044 article-title: On unified framework for continuous-time grey models: an integral matching perspective publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.09.008 – volume: 116 start-page: 32 year: 2023 ident: 10.1016/j.apm.2025.116497_bib0043 article-title: Parameter estimation strategies for separable grey system models with comparisons and applications publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2022.11.025 – volume: 101 year: 2024 ident: 10.1016/j.apm.2025.116497_bib0053 article-title: UAV-based automated 3D modeling framework using deep learning for building energy modeling publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2023.105169 |
| SSID | ssj0005904 |
| Score | 2.4486082 |
| Snippet | •Integrates deep learning with grey models for intelligent ship trajectory forecasting.•The Novel model addresses the interactions and time-delay... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 116497 |
| SubjectTerms | Edge navigation Grey prediction model Intelligent shipping New information recursive least squares algorithm Trajectory prediction |
| Title | Multi-dimensional neural network grey model with delay for intelligent ship trajectory forecasting |
| URI | https://dx.doi.org/10.1016/j.apm.2025.116497 |
| Volume | 150 |
| WOSCitedRecordID | wos001598515100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0307-904X databaseCode: AIEXJ dateStart: 20211207 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005904 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwGLWAMsCAOEW55IGJKlXjpGk8IsQpQAwgZYscx0atIK3aFLX_ns9H3HJJMLCkUeK6Ud7r52f78zNCxzzMWSDiwFO9AQ8UMcRBCWcBF1kIzV8QMW3ietu5v4-ThD7YGfyR3k6gUxTxZEIH_wo1XAOw1dLZP8DtKoULcA6gwxFgh-OvgNdLar1cufYbx42G8qzUHzrjuwE97KnZAceMwiqfSJO22XX-nGVDZ3GVQ9bTw_r6vuBsVFZNXeVca1Xsq7N_VctRVOUvVUmAM-kWA7t5StJlfUcaVjxPxmaCRA1cO_Sh7HSs4-GlLW0HJojLZXbxS_lP0pZJwHTB1tjM2nDpQ2fNpOd-ieRmUKHXZAPlF0DazVnZj67Zn1ozl2NYpa_1UqgiVVWkpopFVCOdNoUQWDu9Pk9uZhlBtBVWvpnquatJcJ0O-Ok5vpcxc9LkcR2t2T4FPjVc2EALothEq3cOkdEWyr6wAhtWYMsKrFiBNXBYsQJrVmBAHc-xAitW4Bkr8BwrttHTxfnj2ZVnt9fwOIja0pO-oBnNpIxkRggLWDvnIG47kYwoiHIihJCSBDmhcQzBmfOQQf8VbkIzkEfED3bQUtEvxC7COcTxnHPpt7kfZtSHv3sMKgjEOs9p2Arq6KR6W-nAuKikP-JTR2H1PlMrA428S4EbP39t7y-_sY9WZpQ9QEvlcCwO0TJ_K7uj4ZElxjt33YGc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-dimensional+neural+network+grey+model+with+delay+for+intelligent+ship+trajectory+forecasting&rft.jtitle=Applied+mathematical+modelling&rft.au=Xinping%2C+Xiao&rft.au=Fangxue%2C+Zhang&rft.au=Mingyun%2C+Gao&rft.date=2026-02-01&rft.issn=0307-904X&rft.volume=150&rft.spage=116497&rft_id=info:doi/10.1016%2Fj.apm.2025.116497&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2025_116497 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |