Multi-dimensional neural network grey model with delay for intelligent ship trajectory forecasting

•Integrates deep learning with grey models for intelligent ship trajectory forecasting.•The Novel model addresses the interactions and time-delay characteristics.•The two-stage method optimizes time-delay estimation and neural networks.•Comprehensive experiments validate superiority across navigatio...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematical modelling Vol. 150; p. 116497
Main Authors: Xinping, Xiao, Fangxue, Zhang, Mingyun, Gao
Format: Journal Article
Language:English
Published: Elsevier Inc 01.02.2026
Subjects:
ISSN:0307-904X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Integrates deep learning with grey models for intelligent ship trajectory forecasting.•The Novel model addresses the interactions and time-delay characteristics.•The two-stage method optimizes time-delay estimation and neural networks.•Comprehensive experiments validate superiority across navigation scenarios. Ship trajectory prediction is a key technology for intelligent shipping, playing a crucial role in effective vessel monitoring and future autonomous navigation. Current studies struggle to accurately describe the impact of historical trajectory, heading, and speed on ship movement. To address this issue, this paper proposes a multi-dimensional neural network grey model with delay system structure for forecasting intelligent ship trajectory. This model represents the trajectory prediction system as a set of equations, capturing the interactions between future trajectories and multiple key factors. Specifically, a dynamic time-delay term is introduced in the grey modeling process to reflect the delayed influence of historical trajectories on future movements. For the first time, a neural network is embedded into the traditional system grey prediction model to describe the complex nonlinear relationships between ship motion, heading, and speed. This enhances the model’s nonlinear mapping and generalization capabilities. Additionally, to improve prediction accuracy, an innovative new information recursive least squares algorithm is proposed to estimate time-delay parameters, while neural network parameters are optimized using gradient descent. Finally, the effectiveness of the proposed model is validated through comparisons with three machine learning models, one statistical model, and two grey models. Results demonstrate that novel model exhibits strong robustness and high prediction accuracy, particularly in edge navigation scenarios involving complex nonlinear trajectory data.
AbstractList •Integrates deep learning with grey models for intelligent ship trajectory forecasting.•The Novel model addresses the interactions and time-delay characteristics.•The two-stage method optimizes time-delay estimation and neural networks.•Comprehensive experiments validate superiority across navigation scenarios. Ship trajectory prediction is a key technology for intelligent shipping, playing a crucial role in effective vessel monitoring and future autonomous navigation. Current studies struggle to accurately describe the impact of historical trajectory, heading, and speed on ship movement. To address this issue, this paper proposes a multi-dimensional neural network grey model with delay system structure for forecasting intelligent ship trajectory. This model represents the trajectory prediction system as a set of equations, capturing the interactions between future trajectories and multiple key factors. Specifically, a dynamic time-delay term is introduced in the grey modeling process to reflect the delayed influence of historical trajectories on future movements. For the first time, a neural network is embedded into the traditional system grey prediction model to describe the complex nonlinear relationships between ship motion, heading, and speed. This enhances the model’s nonlinear mapping and generalization capabilities. Additionally, to improve prediction accuracy, an innovative new information recursive least squares algorithm is proposed to estimate time-delay parameters, while neural network parameters are optimized using gradient descent. Finally, the effectiveness of the proposed model is validated through comparisons with three machine learning models, one statistical model, and two grey models. Results demonstrate that novel model exhibits strong robustness and high prediction accuracy, particularly in edge navigation scenarios involving complex nonlinear trajectory data.
ArticleNumber 116497
Author Fangxue, Zhang
Xinping, Xiao
Mingyun, Gao
Author_xml – sequence: 1
  givenname: Xiao
  surname: Xinping
  fullname: Xinping, Xiao
  organization: School of Mathematics and Statistics, Wuhan University of Technology, 430070, Wuhan, China
– sequence: 2
  givenname: Zhang
  surname: Fangxue
  fullname: Fangxue, Zhang
  email: fangxuezhang0@163.com
  organization: School of Mathematics and Statistics, Wuhan University of Technology, 430070, Wuhan, China
– sequence: 3
  givenname: Gao
  surname: Mingyun
  fullname: Mingyun, Gao
  organization: School of Information Management, Central China Normal University, 430079, Wuhan, China
BookMark eNp9kM1OwzAQhH0oEi3wANz8Agm20zi1OKGKP6mIC0jcLMdZtw6JXdkuVd8et-XMaWY1mtXom6GJ8w4QuqWkpITyu75U27FkhNUlpXwumgmakoo0hSDzr0s0i7EnhNT5mqL2bTckW3R2BBetd2rADnbhJGnvwzdeBzjg0Xcw4L1NG5yNOmDjA7YuwTDYNbiE48ZucQqqB518OOWgVUzWra_RhVFDhJs_vUKfT48fy5di9f78unxYFZrVNBWGgmhFaww3LWOqUnWnaS0abrhgjDMAMIZVHROLRUuI1nPFaJPDii46zmh1hej5rw4-xgBGboMdVThISuQRjOxlBiOPYOQZTO7cnzuQh_1YCDJqC05DZ_P-JDtv_2n_Avdachk
Cites_doi 10.1016/j.oceaneng.2024.117019
10.1016/j.apm.2019.09.027
10.1016/j.engappai.2015.03.014
10.1109/TITS.2017.2724551
10.1016/j.apm.2023.04.028
10.1016/j.isatra.2024.02.023
10.1016/j.oceaneng.2023.115989
10.1016/j.neucom.2021.05.048
10.1016/j.techfore.2022.122203
10.3390/s20185133
10.1016/j.oceaneng.2023.114183
10.1016/j.eswa.2021.114923
10.1016/j.oceaneng.2023.115255
10.1016/j.oceaneng.2019.04.024
10.1016/j.oceaneng.2024.117431
10.1016/j.measurement.2024.115033
10.1016/j.oceaneng.2023.114905
10.1016/j.apm.2024.06.015
10.1016/j.energy.2021.122441
10.1016/j.oceaneng.2024.117186
10.1016/j.oceaneng.2021.108956
10.1016/j.eswa.2024.123629
10.1016/j.jclepro.2023.136099
10.1016/j.oceaneng.2023.115908
10.3390/s19204365
10.1016/j.oceaneng.2023.116159
10.1109/TITS.2012.2187282
10.1016/j.asoc.2020.106086
10.1016/j.isatra.2021.03.024
10.1109/ACCESS.2020.2992458
10.1016/j.oceaneng.2024.117428
10.1016/j.apor.2023.103592
10.1016/j.oceaneng.2022.111527
10.1016/j.asoc.2020.106398
10.1016/j.oceaneng.2023.114807
10.1016/j.neucom.2024.127343
10.1016/j.oceaneng.2024.116766
10.1016/j.scitotenv.2022.155531
10.3390/info14040212
10.1016/j.apm.2021.09.008
10.1016/j.apm.2022.11.025
10.1016/j.scs.2023.105169
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.apm.2025.116497
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_apm_2025_116497
S0307904X25005712
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEXQZ
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XPP
ZMT
~02
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c251t-f1e9b9bff6fb22a3a5dc15976f692262eeeff23d2988b00cc4a217f69318d6213
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001598515100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0307-904X
IngestDate Sat Nov 29 06:49:47 EST 2025
Sat Nov 29 17:02:52 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Intelligent shipping
Grey prediction model
Trajectory prediction
New information recursive least squares algorithm
Edge navigation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-f1e9b9bff6fb22a3a5dc15976f692262eeeff23d2988b00cc4a217f69318d6213
ParticipantIDs crossref_primary_10_1016_j_apm_2025_116497
elsevier_sciencedirect_doi_10_1016_j_apm_2025_116497
PublicationCentury 2000
PublicationDate February 2026
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: February 2026
PublicationDecade 2020
PublicationTitle Applied mathematical modelling
PublicationYear 2026
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Guo, Feng (bib0019) 2019; 19
Xiong, Huang, Peng (bib0032) 2020; 77
Guo, Liu, Wu (bib0036) 2015; 42
Xiaopeng, Xu, Lingzhi (bib0028) 2015
Zhang, Xiao, Gao (bib0042) 2024; 576
Wang, Xiao (bib0051) 2023; 14
Shen, Yao, Hu (bib0018) 2023; 287
Liu, Hu, Liang (bib0024) 2023; 136
Xie, Wu, Xu (bib0041) 2023; 121
Duan, Pang (bib0033) 2023; 390
Suo, Chen, Claramunt (bib0014) 2020; 20
Abebe, Noh, Kang (bib0017) 2022; 256
Perera, Oliveira, Soares (bib0020) 2012; 13
Chen, Yang, Li (bib0013) 2023; 276
Wang, Wu, Zhang (bib0008) 2023; 288
Liu, Chu, Xu (bib0006) 2016
Wei (bib0043) 2023; 116
Xue, Wang, Xia (bib0026) 2024; 300
Wu, Xiong, Hu (bib0045) 2022; 835
Xu, Hu, Su (bib0037) 2020; 89
Fossen (bib0047) 2011
Dong, Wang, Song (bib0009) 2023; 285
Hu (bib0038) 2020; 93
Ma, Xie, Suykens (bib0040) 2021; 456
Xiao, Mao (bib0050) 2018
Rong, Teixeira, Soares (bib0016) 2019; 182
Perera, Soares (bib0048) 2010
Zheng (bib0003) 2020
Zou (bib0011) 2022; 22
Chen, Xiao, Gao (bib0030) 2024; 147
Lee, Park (bib0023) 2024; 294
Liu, Liu, Yang (bib0046) 2024; 249
Zhang, Guo, Sun (bib0034) 2022; 239
Chen, Wang, Huo (bib0012) 2022; 44
Chen, Yang, Mou (bib0001) 2024; 299
Liu, An, Wang (bib0007) 2024; 236
Tu, Zhang, Rachmawati (bib0049) 2018; 19
Li, Wu, Zhao (bib0031) 2023; 187
Gao, Zhu, Zhang (bib0021) 2021; 228
Zhang, Kujala, Musharraf (bib0010) 2023; 283
Teitgen, Monsuez, Kukla (bib0027) 2023; 281
Qiang, Jin, Feng (bib0015) 2020; 8
He, Ma, Zhang (bib0035) 2024
Lin, Zhen, Tong (bib0025) 2024; 296
Lei, Wu, Zhang (bib0039) 2021; 177
Wang, Zhao (bib0052) 2018; 2018
Wei, Xie (bib0044) 2022; 101
Zhao, Yan, Zhou (bib0002) 2023; 289
Wang, Liu, Sang (bib0004) 2018; 39
Chu, Liu, Ma (bib0005) 2014; 14
Yoon, Kim, Lee (bib0053) 2024; 101
Duan, Luo (bib0029) 2022; 120
Zhang, Feng, Wang (bib0022) 2024; 299
Chen (10.1016/j.apm.2025.116497_bib0012) 2022; 44
Zhang (10.1016/j.apm.2025.116497_bib0010) 2023; 283
Teitgen (10.1016/j.apm.2025.116497_bib0027) 2023; 281
Wei (10.1016/j.apm.2025.116497_bib0043) 2023; 116
Chen (10.1016/j.apm.2025.116497_bib0013) 2023; 276
Zhao (10.1016/j.apm.2025.116497_bib0002) 2023; 289
Lin (10.1016/j.apm.2025.116497_bib0025) 2024; 296
Xue (10.1016/j.apm.2025.116497_bib0026) 2024; 300
Guo (10.1016/j.apm.2025.116497_bib0036) 2015; 42
Yoon (10.1016/j.apm.2025.116497_bib0053) 2024; 101
Rong (10.1016/j.apm.2025.116497_bib0016) 2019; 182
Liu (10.1016/j.apm.2025.116497_bib0024) 2023; 136
Li (10.1016/j.apm.2025.116497_bib0031) 2023; 187
Wang (10.1016/j.apm.2025.116497_bib0051) 2023; 14
Lee (10.1016/j.apm.2025.116497_bib0023) 2024; 294
Xie (10.1016/j.apm.2025.116497_bib0041) 2023; 121
Zhang (10.1016/j.apm.2025.116497_bib0042) 2024; 576
He (10.1016/j.apm.2025.116497_bib0035) 2024
Liu (10.1016/j.apm.2025.116497_bib0019) 2019; 19
Wei (10.1016/j.apm.2025.116497_bib0044) 2022; 101
Zou (10.1016/j.apm.2025.116497_bib0011) 2022; 22
Wu (10.1016/j.apm.2025.116497_bib0045) 2022; 835
Xiao (10.1016/j.apm.2025.116497_bib0050) 2018
Liu (10.1016/j.apm.2025.116497_bib0046) 2024; 249
Duan (10.1016/j.apm.2025.116497_bib0029) 2022; 120
Gao (10.1016/j.apm.2025.116497_bib0021) 2021; 228
Xiong (10.1016/j.apm.2025.116497_bib0032) 2020; 77
Zhang (10.1016/j.apm.2025.116497_bib0022) 2024; 299
Perera (10.1016/j.apm.2025.116497_bib0048) 2010
Hu (10.1016/j.apm.2025.116497_bib0038) 2020; 93
Liu (10.1016/j.apm.2025.116497_bib0006) 2016
Chen (10.1016/j.apm.2025.116497_bib0030) 2024; 147
Suo (10.1016/j.apm.2025.116497_bib0014) 2020; 20
Chu (10.1016/j.apm.2025.116497_bib0005) 2014; 14
Wang (10.1016/j.apm.2025.116497_bib0008) 2023; 288
Dong (10.1016/j.apm.2025.116497_bib0009) 2023; 285
Duan (10.1016/j.apm.2025.116497_bib0033) 2023; 390
Chen (10.1016/j.apm.2025.116497_bib0001) 2024; 299
Lei (10.1016/j.apm.2025.116497_bib0039) 2021; 177
Xu (10.1016/j.apm.2025.116497_bib0037) 2020; 89
Ma (10.1016/j.apm.2025.116497_bib0040) 2021; 456
Zheng (10.1016/j.apm.2025.116497_bib0003) 2020
Tu (10.1016/j.apm.2025.116497_bib0049) 2018; 19
Liu (10.1016/j.apm.2025.116497_bib0007) 2024; 236
Shen (10.1016/j.apm.2025.116497_bib0018) 2023; 287
Xiaopeng (10.1016/j.apm.2025.116497_bib0028) 2015
Qiang (10.1016/j.apm.2025.116497_bib0015) 2020; 8
Perera (10.1016/j.apm.2025.116497_bib0020) 2012; 13
Abebe (10.1016/j.apm.2025.116497_bib0017) 2022; 256
Zhang (10.1016/j.apm.2025.116497_bib0034) 2022; 239
Wang (10.1016/j.apm.2025.116497_bib0004) 2018; 39
Fossen (10.1016/j.apm.2025.116497_bib0047) 2011
Wang (10.1016/j.apm.2025.116497_bib0052) 2018; 2018
References_xml – volume: 256
  year: 2022
  ident: bib0017
  article-title: Ship trajectory planning for collision avoidance using hybrid ARIMA-LSTM models
  publication-title: Ocean Eng.
– volume: 101
  start-page: 432
  year: 2022
  end-page: 452
  ident: bib0044
  article-title: On unified framework for continuous-time grey models: an integral matching perspective
  publication-title: Appl. Math. Model.
– volume: 77
  start-page: 1531
  year: 2020
  end-page: 1544
  ident: bib0032
  article-title: Examination and prediction of fog and haze pollution using a multi-variable Grey Model based on interval number sequences
  publication-title: Appl. Math. Model.
– volume: 44
  start-page: 1
  year: 2022
  end-page: 5
  ident: bib0012
  article-title: Identification of ship dynamics model based on gaussian process regression
  publication-title: Ship Sci. Technol.
– volume: 147
  start-page: 304
  year: 2024
  end-page: 327
  ident: bib0030
  article-title: A novel mixed frequency sampling discrete grey model for forecasting hard disk drive failure
  publication-title: ISA Trans
– volume: 456
  start-page: 61
  year: 2021
  end-page: 75
  ident: bib0040
  article-title: A novel neural grey system model with bayesian regularization and its applications
  publication-title: Neurocomputing
– start-page: 706
  year: 2015
  end-page: 714
  ident: bib0028
  article-title: Vessel trajectory prediction in curving channel of inland river
  publication-title: 2015 International Conference on Transportation Information and Safety (ICTIS)
– volume: 249
  year: 2024
  ident: bib0046
  article-title: A recursive polynomial grey prediction model with adaptive structure and its application
  publication-title: Expert Syst. Appl.
– volume: 39
  start-page: 82
  year: 2018
  end-page: 89
  ident: bib0004
  article-title: AIS data repair method based on least square support vector machine
  publication-title: J. of Shanghai Marit. Univ.
– volume: 187
  year: 2023
  ident: bib0031
  article-title: Research and application of multi-variable grey optimization model with interactive effects in marine emerging industries prediction
  publication-title: Technol. Forecast. Soc. Change
– volume: 228
  year: 2021
  ident: bib0021
  article-title: A novel MP-LSTM method for ship trajectory prediction based on AIS data
  publication-title: Ocean Eng.
– volume: 101
  year: 2024
  ident: bib0053
  article-title: UAV-based automated 3D modeling framework using deep learning for building energy modeling
  publication-title: Sustain. Cities Soc.
– volume: 116
  start-page: 32
  year: 2023
  end-page: 44
  ident: bib0043
  article-title: Parameter estimation strategies for separable grey system models with comparisons and applications
  publication-title: Appl. Math. Model.
– volume: 13
  start-page: 1188
  year: 2012
  end-page: 1200
  ident: bib0020
  article-title: Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 14
  start-page: 117
  year: 2014
  end-page: 126
  ident: bib0005
  article-title: Distribution characteristic of AIS signal field intensity along mountainous waterway
  publication-title: J. Traffic Transp. Eng.
– volume: 177
  year: 2021
  ident: bib0039
  article-title: Neural ordinary differential grey model and its applications
  publication-title: Expert Syst. Appl.
– volume: 14
  start-page: 212
  year: 2023
  ident: bib0051
  article-title: A deep learning model for ship trajectory prediction using automatic identification system (AIS) data
  publication-title: Information
– volume: 390
  year: 2023
  ident: bib0033
  article-title: A novel grey prediction model with system structure based on energy background: A case study of Chinese electricity
  publication-title: J. Clean. Prod.
– volume: 288
  year: 2023
  ident: bib0008
  article-title: Self-organizing data-driven prediction model of ship maneuvering fast-dynamics
  publication-title: Ocean Eng.
– volume: 300
  year: 2024
  ident: bib0026
  article-title: G-trans: A hierarchical approach to vessel trajectory prediction with GRU-based transformer
  publication-title: Ocean Eng.
– volume: 299
  year: 2024
  ident: bib0022
  article-title: A hybrid ship-motion prediction model based on CNN-MRNN and IADPSO
  publication-title: Ocean Eng.
– year: 2024
  ident: bib0035
  article-title: The nonlinear multi-variable grey Bernoulli model and its applications
  publication-title: Appl. Math. Model.
– year: 2011
  ident: bib0047
  article-title: Handbook of marine craft hydrodynamics and motion control
– volume: 22
  start-page: 106
  year: 2022
  end-page: 109
  ident: bib0011
  article-title: Hybrid control method for ship power system against random disturbance
  publication-title: Ship Sci. Technol.
– volume: 236
  year: 2024
  ident: bib0007
  article-title: Maneuverability prediction of ship nonlinear motion models based on parameter identification and optimization
  publication-title: Measurement
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib0052
  article-title: A nonhomogeneous multivariable grey prediction NMGM modeling mechanism and its application
  publication-title: Math. Probl. Eng.
– volume: 576
  year: 2024
  ident: bib0042
  article-title: An extended neural ordinary differential equation network with grey system and its applications
  publication-title: Neurocomputing
– volume: 289
  year: 2023
  ident: bib0002
  article-title: A ship trajectory prediction method based on GAT and LSTM
  publication-title: Ocean Eng.
– volume: 283
  year: 2023
  ident: bib0010
  article-title: A machine learning method for the prediction of ship motion trajectories in real operational conditions
  publication-title: Ocean Eng.
– volume: 8
  start-page: 181880
  year: 2020
  end-page: 181892
  ident: bib0015
  article-title: Model predictive control of a shipborne hydraulic parallel stabilized platform based on ship motion prediction
  publication-title: IEEE Access
– volume: 285
  year: 2023
  ident: bib0009
  article-title: Math-data integrated prediction model for ship maneuvering motion
  publication-title: Ocean Eng.
– volume: 239
  year: 2022
  ident: bib0034
  article-title: A novel flexible grey multivariable model and its application in forecasting energy consumption in China
  publication-title: Energy
– volume: 19
  start-page: 1559
  year: 2018
  end-page: 1582
  ident: bib0049
  article-title: Exploiting AIS Data for intelligent maritime navigation: a comprehensive survey from data to methodology
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 276
  year: 2023
  ident: bib0013
  article-title: Online modeling and prediction of maritime autonomous surface ship maneuvering motion under ocean waves
  publication-title: Ocean Eng.
– volume: 19
  start-page: 4365
  year: 2019
  ident: bib0019
  article-title: L-VTP: long-term vessel trajectory prediction based on multi-source data analysis
  publication-title: Sensors
– volume: 294
  year: 2024
  ident: bib0023
  article-title: Collision evasive action timing for MASS using CNN-LSTM-based ship trajectory prediction in restricted area
  publication-title: Ocean Eng.
– volume: 120
  start-page: 110
  year: 2022
  end-page: 127
  ident: bib0029
  article-title: A novel multivariable grey prediction model and its application in forecasting coal consumption
  publication-title: ISA Trans
– volume: 835
  year: 2022
  ident: bib0045
  article-title: Forecasting carbon emissions using MGM(1,m|λ,γ) model with the similar meteorological condition
  publication-title: Sci. Total Environ.
– volume: 299
  year: 2024
  ident: bib0001
  article-title: Regional ship behavior and trajectory prediction for maritime traffic management: A social generative adversarial network approach
  publication-title: Ocean Eng.
– volume: 121
  start-page: 43
  year: 2023
  end-page: 58
  ident: bib0041
  article-title: The fractional neural grey system model and its application
  publication-title: Appl. Math. Model.
– start-page: 14
  year: 2010
  end-page: 20
  ident: bib0048
  article-title: Ocean vessel trajectory estimation and prediction based on extended Kalman filter, 2nd int
  publication-title: Conf. Adaptive Self-Adaptive Syst. Appl.
– year: 2018
  ident: bib0050
  article-title: Grey Forecasting and Decision Methods
– volume: 93
  year: 2020
  ident: bib0038
  article-title: Constructing grey prediction models using grey relational analysis and neural networks for magnesium material demand forecasting
  publication-title: Appl. Soft Comput.
– volume: 182
  start-page: 499
  year: 2019
  end-page: 511
  ident: bib0016
  article-title: Ship trajectory uncertainty prediction based on a Gaussian process model
  publication-title: Ocean Eng.
– volume: 136
  year: 2023
  ident: bib0024
  article-title: QSD-LSTM: vessel trajectory prediction using long short-term memory with quaternion ship domain
  publication-title: Appl. Ocean Res.
– start-page: 1
  year: 2016
  end-page: 4
  ident: bib0006
  article-title: A model for predicting the attenuation of AIS signal at mountainous waterway
  publication-title: 2016 25th Wirel. Opt. Commun. Conf. WOCC
– start-page: 109
  year: 2020
  end-page: 110
  ident: bib0003
  article-title: Thoughts on AIS signal loss and safety management of ship
  publication-title: Pearl River Transp.
– volume: 20
  start-page: 5133
  year: 2020
  ident: bib0014
  article-title: A ship trajectory prediction framework based on a recurrent neural network
  publication-title: Sensors
– volume: 281
  year: 2023
  ident: bib0027
  article-title: Dynamic trajectory planning for ships in dense environment using collision grid with deep reinforcement learning
  publication-title: Ocean Eng.
– volume: 296
  year: 2024
  ident: bib0025
  article-title: Regional ship collision risk prediction: an approach based on encoder-decoder LSTM neural network model
  publication-title: Ocean Eng.
– volume: 42
  start-page: 82
  year: 2015
  end-page: 93
  ident: bib0036
  article-title: A multi-variable grey model with a self-memory component and its application on engineering prediction
  publication-title: Eng. Appl. Artif. Intell.
– volume: 287
  year: 2023
  ident: bib0018
  article-title: Ship dynamics model identification based on semblance least square support vector machine
  publication-title: Ocean Eng.
– volume: 89
  year: 2020
  ident: bib0037
  article-title: Multivariable grey prediction evolution algorithm: A new metaheuristic
  publication-title: Appl. Soft Comput.
– volume: 296
  year: 2024
  ident: 10.1016/j.apm.2025.116497_bib0025
  article-title: Regional ship collision risk prediction: an approach based on encoder-decoder LSTM neural network model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117019
– volume: 77
  start-page: 1531
  year: 2020
  ident: 10.1016/j.apm.2025.116497_bib0032
  article-title: Examination and prediction of fog and haze pollution using a multi-variable Grey Model based on interval number sequences
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.09.027
– volume: 42
  start-page: 82
  year: 2015
  ident: 10.1016/j.apm.2025.116497_bib0036
  article-title: A multi-variable grey model with a self-memory component and its application on engineering prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2015.03.014
– volume: 19
  start-page: 1559
  year: 2018
  ident: 10.1016/j.apm.2025.116497_bib0049
  article-title: Exploiting AIS Data for intelligent maritime navigation: a comprehensive survey from data to methodology
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2724551
– volume: 121
  start-page: 43
  year: 2023
  ident: 10.1016/j.apm.2025.116497_bib0041
  article-title: The fractional neural grey system model and its application
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2023.04.028
– volume: 147
  start-page: 304
  year: 2024
  ident: 10.1016/j.apm.2025.116497_bib0030
  article-title: A novel mixed frequency sampling discrete grey model for forecasting hard disk drive failure
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2024.02.023
– volume: 288
  year: 2023
  ident: 10.1016/j.apm.2025.116497_bib0008
  article-title: Self-organizing data-driven prediction model of ship maneuvering fast-dynamics
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115989
– start-page: 706
  year: 2015
  ident: 10.1016/j.apm.2025.116497_bib0028
  article-title: Vessel trajectory prediction in curving channel of inland river
– volume: 456
  start-page: 61
  year: 2021
  ident: 10.1016/j.apm.2025.116497_bib0040
  article-title: A novel neural grey system model with bayesian regularization and its applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.05.048
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.apm.2025.116497_bib0052
  article-title: A nonhomogeneous multivariable grey prediction NMGM modeling mechanism and its application
  publication-title: Math. Probl. Eng.
– volume: 187
  year: 2023
  ident: 10.1016/j.apm.2025.116497_bib0031
  article-title: Research and application of multi-variable grey optimization model with interactive effects in marine emerging industries prediction
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2022.122203
– volume: 39
  start-page: 82
  year: 2018
  ident: 10.1016/j.apm.2025.116497_bib0004
  article-title: AIS data repair method based on least square support vector machine
  publication-title: J. of Shanghai Marit. Univ.
– volume: 20
  start-page: 5133
  year: 2020
  ident: 10.1016/j.apm.2025.116497_bib0014
  article-title: A ship trajectory prediction framework based on a recurrent neural network
  publication-title: Sensors
  doi: 10.3390/s20185133
– start-page: 109
  year: 2020
  ident: 10.1016/j.apm.2025.116497_bib0003
  article-title: Thoughts on AIS signal loss and safety management of ship
  publication-title: Pearl River Transp.
– volume: 276
  year: 2023
  ident: 10.1016/j.apm.2025.116497_bib0013
  article-title: Online modeling and prediction of maritime autonomous surface ship maneuvering motion under ocean waves
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.114183
– year: 2011
  ident: 10.1016/j.apm.2025.116497_bib0047
– volume: 44
  start-page: 1
  year: 2022
  ident: 10.1016/j.apm.2025.116497_bib0012
  article-title: Identification of ship dynamics model based on gaussian process regression
  publication-title: Ship Sci. Technol.
– volume: 177
  year: 2021
  ident: 10.1016/j.apm.2025.116497_bib0039
  article-title: Neural ordinary differential grey model and its applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114923
– volume: 285
  year: 2023
  ident: 10.1016/j.apm.2025.116497_bib0009
  article-title: Math-data integrated prediction model for ship maneuvering motion
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115255
– volume: 22
  start-page: 106
  year: 2022
  ident: 10.1016/j.apm.2025.116497_bib0011
  article-title: Hybrid control method for ship power system against random disturbance
  publication-title: Ship Sci. Technol.
– volume: 182
  start-page: 499
  year: 2019
  ident: 10.1016/j.apm.2025.116497_bib0016
  article-title: Ship trajectory uncertainty prediction based on a Gaussian process model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.04.024
– volume: 300
  year: 2024
  ident: 10.1016/j.apm.2025.116497_bib0026
  article-title: G-trans: A hierarchical approach to vessel trajectory prediction with GRU-based transformer
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117431
– volume: 236
  year: 2024
  ident: 10.1016/j.apm.2025.116497_bib0007
  article-title: Maneuverability prediction of ship nonlinear motion models based on parameter identification and optimization
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.115033
– volume: 283
  year: 2023
  ident: 10.1016/j.apm.2025.116497_bib0010
  article-title: A machine learning method for the prediction of ship motion trajectories in real operational conditions
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.114905
– year: 2024
  ident: 10.1016/j.apm.2025.116497_bib0035
  article-title: The nonlinear multi-variable grey Bernoulli model and its applications
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2024.06.015
– volume: 239
  year: 2022
  ident: 10.1016/j.apm.2025.116497_bib0034
  article-title: A novel flexible grey multivariable model and its application in forecasting energy consumption in China
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122441
– volume: 299
  year: 2024
  ident: 10.1016/j.apm.2025.116497_bib0001
  article-title: Regional ship behavior and trajectory prediction for maritime traffic management: A social generative adversarial network approach
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117186
– volume: 228
  year: 2021
  ident: 10.1016/j.apm.2025.116497_bib0021
  article-title: A novel MP-LSTM method for ship trajectory prediction based on AIS data
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108956
– volume: 249
  year: 2024
  ident: 10.1016/j.apm.2025.116497_bib0046
  article-title: A recursive polynomial grey prediction model with adaptive structure and its application
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123629
– volume: 14
  start-page: 117
  year: 2014
  ident: 10.1016/j.apm.2025.116497_bib0005
  article-title: Distribution characteristic of AIS signal field intensity along mountainous waterway
  publication-title: J. Traffic Transp. Eng.
– volume: 390
  year: 2023
  ident: 10.1016/j.apm.2025.116497_bib0033
  article-title: A novel grey prediction model with system structure based on energy background: A case study of Chinese electricity
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.136099
– volume: 287
  year: 2023
  ident: 10.1016/j.apm.2025.116497_bib0018
  article-title: Ship dynamics model identification based on semblance least square support vector machine
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115908
– volume: 19
  start-page: 4365
  year: 2019
  ident: 10.1016/j.apm.2025.116497_bib0019
  article-title: L-VTP: long-term vessel trajectory prediction based on multi-source data analysis
  publication-title: Sensors
  doi: 10.3390/s19204365
– volume: 289
  year: 2023
  ident: 10.1016/j.apm.2025.116497_bib0002
  article-title: A ship trajectory prediction method based on GAT and LSTM
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.116159
– volume: 13
  start-page: 1188
  year: 2012
  ident: 10.1016/j.apm.2025.116497_bib0020
  article-title: Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2187282
– volume: 89
  year: 2020
  ident: 10.1016/j.apm.2025.116497_bib0037
  article-title: Multivariable grey prediction evolution algorithm: A new metaheuristic
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106086
– volume: 120
  start-page: 110
  year: 2022
  ident: 10.1016/j.apm.2025.116497_bib0029
  article-title: A novel multivariable grey prediction model and its application in forecasting coal consumption
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2021.03.024
– volume: 8
  start-page: 181880
  year: 2020
  ident: 10.1016/j.apm.2025.116497_bib0015
  article-title: Model predictive control of a shipborne hydraulic parallel stabilized platform based on ship motion prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992458
– volume: 299
  year: 2024
  ident: 10.1016/j.apm.2025.116497_bib0022
  article-title: A hybrid ship-motion prediction model based on CNN-MRNN and IADPSO
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117428
– volume: 136
  year: 2023
  ident: 10.1016/j.apm.2025.116497_bib0024
  article-title: QSD-LSTM: vessel trajectory prediction using long short-term memory with quaternion ship domain
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2023.103592
– start-page: 14
  year: 2010
  ident: 10.1016/j.apm.2025.116497_bib0048
  article-title: Ocean vessel trajectory estimation and prediction based on extended Kalman filter, 2nd int
  publication-title: Conf. Adaptive Self-Adaptive Syst. Appl.
– year: 2018
  ident: 10.1016/j.apm.2025.116497_bib0050
– volume: 256
  year: 2022
  ident: 10.1016/j.apm.2025.116497_bib0017
  article-title: Ship trajectory planning for collision avoidance using hybrid ARIMA-LSTM models
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111527
– volume: 93
  year: 2020
  ident: 10.1016/j.apm.2025.116497_bib0038
  article-title: Constructing grey prediction models using grey relational analysis and neural networks for magnesium material demand forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106398
– volume: 281
  year: 2023
  ident: 10.1016/j.apm.2025.116497_bib0027
  article-title: Dynamic trajectory planning for ships in dense environment using collision grid with deep reinforcement learning
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.114807
– volume: 576
  year: 2024
  ident: 10.1016/j.apm.2025.116497_bib0042
  article-title: An extended neural ordinary differential equation network with grey system and its applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127343
– volume: 294
  year: 2024
  ident: 10.1016/j.apm.2025.116497_bib0023
  article-title: Collision evasive action timing for MASS using CNN-LSTM-based ship trajectory prediction in restricted area
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.116766
– volume: 835
  year: 2022
  ident: 10.1016/j.apm.2025.116497_bib0045
  article-title: Forecasting carbon emissions using MGM(1,m|λ,γ) model with the similar meteorological condition
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.155531
– volume: 14
  start-page: 212
  year: 2023
  ident: 10.1016/j.apm.2025.116497_bib0051
  article-title: A deep learning model for ship trajectory prediction using automatic identification system (AIS) data
  publication-title: Information
  doi: 10.3390/info14040212
– start-page: 1
  year: 2016
  ident: 10.1016/j.apm.2025.116497_bib0006
  article-title: A model for predicting the attenuation of AIS signal at mountainous waterway
– volume: 101
  start-page: 432
  year: 2022
  ident: 10.1016/j.apm.2025.116497_bib0044
  article-title: On unified framework for continuous-time grey models: an integral matching perspective
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.09.008
– volume: 116
  start-page: 32
  year: 2023
  ident: 10.1016/j.apm.2025.116497_bib0043
  article-title: Parameter estimation strategies for separable grey system models with comparisons and applications
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2022.11.025
– volume: 101
  year: 2024
  ident: 10.1016/j.apm.2025.116497_bib0053
  article-title: UAV-based automated 3D modeling framework using deep learning for building energy modeling
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2023.105169
SSID ssj0005904
Score 2.4486082
Snippet •Integrates deep learning with grey models for intelligent ship trajectory forecasting.•The Novel model addresses the interactions and time-delay...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 116497
SubjectTerms Edge navigation
Grey prediction model
Intelligent shipping
New information recursive least squares algorithm
Trajectory prediction
Title Multi-dimensional neural network grey model with delay for intelligent ship trajectory forecasting
URI https://dx.doi.org/10.1016/j.apm.2025.116497
Volume 150
WOSCitedRecordID wos001598515100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0307-904X
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005904
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwGLWAMsCAOEW55IGJKlXjpGk8IsQpQAwgZYscx0atIK3aFLX_ns9H3HJJMLCkUeK6Ud7r52f78zNCxzzMWSDiwFO9AQ8UMcRBCWcBF1kIzV8QMW3ietu5v4-ThD7YGfyR3k6gUxTxZEIH_wo1XAOw1dLZP8DtKoULcA6gwxFgh-OvgNdLar1cufYbx42G8qzUHzrjuwE97KnZAceMwiqfSJO22XX-nGVDZ3GVQ9bTw_r6vuBsVFZNXeVca1Xsq7N_VctRVOUvVUmAM-kWA7t5StJlfUcaVjxPxmaCRA1cO_Sh7HSs4-GlLW0HJojLZXbxS_lP0pZJwHTB1tjM2nDpQ2fNpOd-ieRmUKHXZAPlF0DazVnZj67Zn1ozl2NYpa_1UqgiVVWkpopFVCOdNoUQWDu9Pk9uZhlBtBVWvpnquatJcJ0O-Ok5vpcxc9LkcR2t2T4FPjVc2EALothEq3cOkdEWyr6wAhtWYMsKrFiBNXBYsQJrVmBAHc-xAitW4Bkr8BwrttHTxfnj2ZVnt9fwOIja0pO-oBnNpIxkRggLWDvnIG47kYwoiHIihJCSBDmhcQzBmfOQQf8VbkIzkEfED3bQUtEvxC7COcTxnHPpt7kfZtSHv3sMKgjEOs9p2Arq6KR6W-nAuKikP-JTR2H1PlMrA428S4EbP39t7y-_sY9WZpQ9QEvlcCwO0TJ_K7uj4ZElxjt33YGc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-dimensional+neural+network+grey+model+with+delay+for+intelligent+ship+trajectory+forecasting&rft.jtitle=Applied+mathematical+modelling&rft.au=Xinping%2C+Xiao&rft.au=Fangxue%2C+Zhang&rft.au=Mingyun%2C+Gao&rft.date=2026-02-01&rft.issn=0307-904X&rft.volume=150&rft.spage=116497&rft_id=info:doi/10.1016%2Fj.apm.2025.116497&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2025_116497
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon