A DOA estimation algorithm based on the low computational complexity log-sum sparse recovery

•Research highlight 1To further reduce the computational complexity of the KA-SURE-IR and SURE-IR, this paper proposes a low computational complexity log-sum sparse recovery algorithm to achieves DOA estimation. The realization of the low complexity is realized by designing a new descent direction,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital signal processing Jg. 168; S. 105623
Hauptverfasser: Lv, Jihui, Liu, Shuai, Jin, Ming, Yan, Feng-Gang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.01.2026
Schlagworte:
ISSN:1051-2004
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Research highlight 1To further reduce the computational complexity of the KA-SURE-IR and SURE-IR, this paper proposes a low computational complexity log-sum sparse recovery algorithm to achieves DOA estimation. The realization of the low complexity is realized by designing a new descent direction, and we derive the designed descent direction into a new mathematical expression. The specific process can refer to the third section of the paper.•Research highlight 2KA-SURE-IR and SURE-IR methods cannot determine the step size and selection range in the process of using gradient algorithm to solve the grid mismatch. However, our proposed algorithm can determine the selection range of step size (Remark 3), which is a relative advantage.•Research highlight 3To make the reader understand the proposed algorithm more clearly, it should be noted that in the process of iterative solving, the proposed algorithm belongs to the on-grid DOA estimation method, which does not use gradient descent to solve the grid mismatch but uses the designed descent direction to achieve sparse signal recovery and DOA estimation. The super-resolution iterative reweighted (SURE-IR) algorithm and the prior-knowledge aided super-resolution iterative reweighted (KA-SURE-IR) algorithm provide an important reference for the research of log-sum sparse recovery. However, even if the matrix inverse lemma is used, SURE-IR and KA-SURE-IR still have the problem of high computational complexity. Therefore, this paper designs a descent direction to achieve low complexity log-sum sparse recovery and direction of arrival (DOA) estimation. Firstly, the received signals are decomposed by singular value decomposition (SVD), and the corresponding log-sum sparse model is established. Then, the log-sum sparse model is relaxed to a convex model, the multiple signal classification (MUSIC) algorithm is used to provide prior information to promote sparse recovery, and the theoretical optimal value of the sparse signals in each iteration calculation is solved. Secondly, a descent direction is designed according to the current value and the theoretical optimal value of the sparse signals in each iteration calculation. Finally, the computational complexity of the proposed algorithm is reduced by selecting the regularization parameters as large as possible to reduce the influence of the residual value and by combining the matrix inverse lemma. The simulation results validated the effectiveness of the proposed algorithm in DOA estimation.
AbstractList •Research highlight 1To further reduce the computational complexity of the KA-SURE-IR and SURE-IR, this paper proposes a low computational complexity log-sum sparse recovery algorithm to achieves DOA estimation. The realization of the low complexity is realized by designing a new descent direction, and we derive the designed descent direction into a new mathematical expression. The specific process can refer to the third section of the paper.•Research highlight 2KA-SURE-IR and SURE-IR methods cannot determine the step size and selection range in the process of using gradient algorithm to solve the grid mismatch. However, our proposed algorithm can determine the selection range of step size (Remark 3), which is a relative advantage.•Research highlight 3To make the reader understand the proposed algorithm more clearly, it should be noted that in the process of iterative solving, the proposed algorithm belongs to the on-grid DOA estimation method, which does not use gradient descent to solve the grid mismatch but uses the designed descent direction to achieve sparse signal recovery and DOA estimation. The super-resolution iterative reweighted (SURE-IR) algorithm and the prior-knowledge aided super-resolution iterative reweighted (KA-SURE-IR) algorithm provide an important reference for the research of log-sum sparse recovery. However, even if the matrix inverse lemma is used, SURE-IR and KA-SURE-IR still have the problem of high computational complexity. Therefore, this paper designs a descent direction to achieve low complexity log-sum sparse recovery and direction of arrival (DOA) estimation. Firstly, the received signals are decomposed by singular value decomposition (SVD), and the corresponding log-sum sparse model is established. Then, the log-sum sparse model is relaxed to a convex model, the multiple signal classification (MUSIC) algorithm is used to provide prior information to promote sparse recovery, and the theoretical optimal value of the sparse signals in each iteration calculation is solved. Secondly, a descent direction is designed according to the current value and the theoretical optimal value of the sparse signals in each iteration calculation. Finally, the computational complexity of the proposed algorithm is reduced by selecting the regularization parameters as large as possible to reduce the influence of the residual value and by combining the matrix inverse lemma. The simulation results validated the effectiveness of the proposed algorithm in DOA estimation.
ArticleNumber 105623
Author Lv, Jihui
Yan, Feng-Gang
Liu, Shuai
Jin, Ming
Author_xml – sequence: 1
  givenname: Jihui
  surname: Lv
  fullname: Lv, Jihui
  organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
– sequence: 2
  givenname: Shuai
  orcidid: 0009-0009-1090-7208
  surname: Liu
  fullname: Liu, Shuai
  email: liu-shuai@hit.edu.cn
  organization: School of Information Science and Engineering, Harbin Institute of Technology(Weihai), Weihai, 264209, Shandong, China
– sequence: 3
  givenname: Ming
  surname: Jin
  fullname: Jin, Ming
  organization: School of Information Science and Engineering, Harbin Institute of Technology(Weihai), Weihai, 264209, Shandong, China
– sequence: 4
  givenname: Feng-Gang
  surname: Yan
  fullname: Yan, Feng-Gang
  organization: School of Information Science and Engineering, Harbin Institute of Technology(Weihai), Weihai, 264209, Shandong, China
BookMark eNp9kMtuwjAQRb2gUoH2A7rzDyS1HeeBukL0QSUkNu2ukuXYEzBK4sg2tPx9Dem6q3ne0Z0zQ5Pe9oDQAyUpJbR4PKTaDykjLI91XrBsgqYxoQkjhN-imfcHQkjJWTFFX0v8vF1i8MF0MhjbY9nurDNh3-FaetA4tsIecGu_sbLdcAzXNdleqxZ-TDjH4S7xxw77QToP2IGyJ3DnO3TTyNbD_V-co8_Xl4_VOtls395Xy02iWE5DAgsoc1pCttBNQ1SlCfC80jWvWaMzVfMqq2RBgfJCk4JUmnJeSq0qDrpmWmVzRMe7ylnvHTRicPEddxaUiAsScRARibggESOSqHkaNRCNnQw44ZWBXoE20X4Q2pp_1L-2R282
Cites_doi 10.1007/s00041-008-9045-x
10.1016/j.dsp.2019.06.013
10.1109/TAP.1986.1143830
10.1109/TSP.2010.2050477
10.1109/LSP.2021.3104503
10.1109/TSP.2008.2007606
10.1109/LCOMM.2022.3148260
10.1109/TSP.2016.2572041
10.1109/29.57542
10.1109/JSEN.2023.3288607
10.1109/LSP.2016.2636319
10.1016/j.sigpro.2023.109164
10.1109/LCOMM.2020.3020897
10.1109/TSP.2009.2040018
10.1016/j.sigpro.2022.108513
10.1016/j.sigpro.2023.109229
10.1109/TSP.2012.2222378
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.dsp.2025.105623
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_dsp_2025_105623
S1051200425006451
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADFGL
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c251t-e9e7517e39dff0c8d0e458db4b2fd3cb4838a61e146d0608d1447adc84edb2dc3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001593529300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-2004
IngestDate Sat Nov 29 06:54:13 EST 2025
Wed Dec 10 14:23:19 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Log-sum sparse recovery
A descent direction
Low computational complexity
DOA
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-e9e7517e39dff0c8d0e458db4b2fd3cb4838a61e146d0608d1447adc84edb2dc3
ORCID 0009-0009-1090-7208
ParticipantIDs crossref_primary_10_1016_j_dsp_2025_105623
elsevier_sciencedirect_doi_10_1016_j_dsp_2025_105623
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Digital signal processing
PublicationYear 2026
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hyder, Mahata (bib0016) 2009
Meng, Wang, Huang, Cao, Zhang (bib0005) 2019; 94
Zheng, Yang (bib0002) 2021; 25
Yin, Wang, Dai, Wang (bib0008) 2024; 214
Candés, Wakin, Boyd (bib0015) 2008; 14
Stoica, Sharman (bib0019) 1990; 38
Mohimani, Babaie-Zadeh, Jutten (bib0007) 2009; 57
Dai, Bao, Xu, Chang (bib0021) 2017; 24
Wu, Jakobsson, Liu (bib0001) 2023; 212
Schmidt (bib0004) 1986; 34
Ataee, Zayyani, Babaie-Zadeh, Jutten (bib0017) 2010
Huang, So, Zoubir (bib0022) 2022; 196
Fang, Wang, Shen, Li, Blum (bib0012) 2016; 64
Tian, Wang, Chen, Qin, Jin (bib0003) 2022; 26
Yang, Xie, Zhang (bib0011) 2013; 61
Hyder, Mahata (bib0018) 2010; 58
Liu, Yin, Lu, Tong (bib0006) 2024; 13
Tang, Chien, Qian (bib0010) 2023; 23
Wang, Yu, Li, Ji, Chen (bib0020) 2021; 28
Wang, Fang, Li (bib0013) 2017
Hyder, Mahata (bib0014) 2010; 58
Chao Zhu (bib0009) 2024; 60
Schmidt (10.1016/j.dsp.2025.105623_bib0004) 1986; 34
Wang (10.1016/j.dsp.2025.105623_bib0013) 2017
Zheng (10.1016/j.dsp.2025.105623_bib0002) 2021; 25
Meng (10.1016/j.dsp.2025.105623_bib0005) 2019; 94
Dai (10.1016/j.dsp.2025.105623_bib0021) 2017; 24
Stoica (10.1016/j.dsp.2025.105623_bib0019) 1990; 38
Wang (10.1016/j.dsp.2025.105623_bib0020) 2021; 28
Liu (10.1016/j.dsp.2025.105623_bib0006) 2024; 13
Hyder (10.1016/j.dsp.2025.105623_bib0014) 2010; 58
Fang (10.1016/j.dsp.2025.105623_bib0012) 2016; 64
Yin (10.1016/j.dsp.2025.105623_bib0008) 2024; 214
Hyder (10.1016/j.dsp.2025.105623_bib0016) 2009
Mohimani (10.1016/j.dsp.2025.105623_bib0007) 2009; 57
Hyder (10.1016/j.dsp.2025.105623_bib0018) 2010; 58
Chao Zhu (10.1016/j.dsp.2025.105623_bib0009) 2024; 60
Wu (10.1016/j.dsp.2025.105623_bib0001) 2023; 212
Huang (10.1016/j.dsp.2025.105623_bib0022) 2022; 196
Tian (10.1016/j.dsp.2025.105623_bib0003) 2022; 26
Yang (10.1016/j.dsp.2025.105623_bib0011) 2013; 61
Ataee (10.1016/j.dsp.2025.105623_bib0017) 2010
Tang (10.1016/j.dsp.2025.105623_bib0010) 2023; 23
Candés (10.1016/j.dsp.2025.105623_bib0015) 2008; 14
References_xml – volume: 60
  year: 2024
  ident: bib0009
  article-title: DOA Estimation based on sparse bayesian learning with moving synthetic virtual array
  publication-title: Electron Lett
– volume: 14
  start-page: 877
  year: 2008
  end-page: 905
  ident: bib0015
  article-title: Enhancing sparsity by reweighted l1 minimization
  publication-title: Journal of Fourier Analysis and Applications
– volume: 25
  start-page: 147
  year: 2021
  end-page: 151
  ident: bib0002
  article-title: Direction-of-Arrival estimation of coherent signals under direction-Dependent mutual coupling
  publication-title: IEEE Commun. Lett.
– start-page: 1
  year: 2009
  end-page: 4
  ident: bib0016
  article-title: A Scalable Distributed Video Coder Using Compressed Sensing
  publication-title: 2009 Annual IEEE India Conference
– volume: 24
  start-page: 46
  year: 2017
  end-page: 50
  ident: bib0021
  article-title: Root sparse bayesian learning for off-Grid DOA estimation
  publication-title: IEEE Signal Process Lett
– volume: 61
  start-page: 38
  year: 2013
  end-page: 43
  ident: bib0011
  article-title: Off-Grid direction of arrival estimation using sparse bayesian inference
  publication-title: IEEE Trans. Signal Process.
– start-page: 1978
  year: 2010
  end-page: 1981
  ident: bib0017
  article-title: Parametric Dictionary Learning Using Steepest Descent
  publication-title: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 13
  year: 2024
  ident: bib0006
  article-title: A novel weighted block sparse DOA estimation based on signal subspace under unknown mutual coupling
  publication-title: Electronics (Basel)
– start-page: 3296
  year: 2017
  end-page: 3300
  ident: bib0013
  article-title: Prior Knowledge Aided Super-resolution Line Spectral Estimation: An Iterative Reweighted Algorithm
  publication-title: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 23
  start-page: 17237
  year: 2023
  end-page: 17244
  ident: bib0010
  article-title: Low complexity error-Censoring RLS algorithm for DOA estimation
  publication-title: IEEE Sens J
– volume: 196
  year: 2022
  ident: bib0022
  article-title: Off-grid direction-of-arrival estimation using second-order taylor approximation
  publication-title: Signal Processing
– volume: 58
  start-page: 4646
  year: 2010
  end-page: 4655
  ident: bib0014
  article-title: Direction-of-Arrival estimation using a mixed
  publication-title: IEEE Trans. Signal Process.
– volume: 57
  start-page: 289
  year: 2009
  end-page: 301
  ident: bib0007
  article-title: A fast approach for overcomplete sparse decomposition based on smoothed
  publication-title: IEEE Trans. Signal Process.
– volume: 58
  start-page: 2194
  year: 2010
  end-page: 2205
  ident: bib0018
  article-title: An improved smoothed
  publication-title: IEEE Trans. Signal Process.
– volume: 28
  start-page: 1744
  year: 2021
  end-page: 1748
  ident: bib0020
  article-title: Sparse bayesian learning using generalized double pareto prior for DOA estimation
  publication-title: IEEE Signal Process Lett
– volume: 212
  year: 2023
  ident: bib0001
  article-title: Super-resolution direction of arrival estimation using a minimum mean-Square error framework
  publication-title: Signal Processing
– volume: 64
  start-page: 4649
  year: 2016
  end-page: 4662
  ident: bib0012
  article-title: Super-Resolution compressed sensing for line spectral estimation: an iterative reweighted approach
  publication-title: IEEE Trans. Signal Process.
– volume: 38
  start-page: 1132
  year: 1990
  end-page: 1143
  ident: bib0019
  article-title: Maximum likelihood methods for direction-of-arrival estimation
  publication-title: IEEE Trans Acoust
– volume: 34
  start-page: 276
  year: 1986
  end-page: 280
  ident: bib0004
  article-title: Multiple emitter location and signal parameter estimation
  publication-title: IEEE Trans Antennas Propag
– volume: 94
  start-page: 96
  year: 2019
  end-page: 104
  ident: bib0005
  article-title: Block rank sparsity-aware DOA estimation with large-scale arrays in the presence of unknown mutual coupling
  publication-title: Digit Signal Process
– volume: 26
  start-page: 912
  year: 2022
  end-page: 916
  ident: bib0003
  article-title: Real-Valued DOA estimation utilizing enhanced covariance matrix with unknown mutual coupling
  publication-title: IEEE Commun. Lett.
– volume: 214
  year: 2024
  ident: bib0008
  article-title: DOA Estimation based on smoothed sparse reconstruction with time-modulated linear arrays
  publication-title: Signal Processing
– volume: 14
  start-page: 877
  issue: 5
  year: 2008
  ident: 10.1016/j.dsp.2025.105623_bib0015
  article-title: Enhancing sparsity by reweighted l1 minimization
  publication-title: Journal of Fourier Analysis and Applications
  doi: 10.1007/s00041-008-9045-x
– volume: 94
  start-page: 96
  year: 2019
  ident: 10.1016/j.dsp.2025.105623_bib0005
  article-title: Block rank sparsity-aware DOA estimation with large-scale arrays in the presence of unknown mutual coupling
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2019.06.013
– volume: 34
  start-page: 276
  issue: 3
  year: 1986
  ident: 10.1016/j.dsp.2025.105623_bib0004
  article-title: Multiple emitter location and signal parameter estimation
  publication-title: IEEE Trans Antennas Propag
  doi: 10.1109/TAP.1986.1143830
– volume: 58
  start-page: 4646
  issue: 9
  year: 2010
  ident: 10.1016/j.dsp.2025.105623_bib0014
  article-title: Direction-of-Arrival estimation using a mixed ℓ2,0 norm approximation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2050477
– start-page: 1978
  year: 2010
  ident: 10.1016/j.dsp.2025.105623_bib0017
  article-title: Parametric Dictionary Learning Using Steepest Descent
– volume: 28
  start-page: 1744
  year: 2021
  ident: 10.1016/j.dsp.2025.105623_bib0020
  article-title: Sparse bayesian learning using generalized double pareto prior for DOA estimation
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2021.3104503
– volume: 57
  start-page: 289
  issue: 1
  year: 2009
  ident: 10.1016/j.dsp.2025.105623_bib0007
  article-title: A fast approach for overcomplete sparse decomposition based on smoothed ℓ0 norm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.2007606
– volume: 26
  start-page: 912
  issue: 4
  year: 2022
  ident: 10.1016/j.dsp.2025.105623_bib0003
  article-title: Real-Valued DOA estimation utilizing enhanced covariance matrix with unknown mutual coupling
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2022.3148260
– volume: 64
  start-page: 4649
  issue: 18
  year: 2016
  ident: 10.1016/j.dsp.2025.105623_bib0012
  article-title: Super-Resolution compressed sensing for line spectral estimation: an iterative reweighted approach
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2572041
– volume: 60
  issue: 6
  year: 2024
  ident: 10.1016/j.dsp.2025.105623_bib0009
  article-title: DOA Estimation based on sparse bayesian learning with moving synthetic virtual array
  publication-title: Electron Lett
– start-page: 1
  year: 2009
  ident: 10.1016/j.dsp.2025.105623_bib0016
  article-title: A Scalable Distributed Video Coder Using Compressed Sensing
– volume: 38
  start-page: 1132
  issue: 7
  year: 1990
  ident: 10.1016/j.dsp.2025.105623_bib0019
  article-title: Maximum likelihood methods for direction-of-arrival estimation
  publication-title: IEEE Trans Acoust
  doi: 10.1109/29.57542
– volume: 23
  start-page: 17237
  issue: 15
  year: 2023
  ident: 10.1016/j.dsp.2025.105623_bib0010
  article-title: Low complexity error-Censoring RLS algorithm for DOA estimation
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2023.3288607
– volume: 24
  start-page: 46
  issue: 1
  year: 2017
  ident: 10.1016/j.dsp.2025.105623_bib0021
  article-title: Root sparse bayesian learning for off-Grid DOA estimation
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2016.2636319
– volume: 212
  year: 2023
  ident: 10.1016/j.dsp.2025.105623_bib0001
  article-title: Super-resolution direction of arrival estimation using a minimum mean-Square error framework
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2023.109164
– volume: 25
  start-page: 147
  issue: 1
  year: 2021
  ident: 10.1016/j.dsp.2025.105623_bib0002
  article-title: Direction-of-Arrival estimation of coherent signals under direction-Dependent mutual coupling
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2020.3020897
– volume: 58
  start-page: 2194
  issue: 4
  year: 2010
  ident: 10.1016/j.dsp.2025.105623_bib0018
  article-title: An improved smoothed ℓ0 approximation algorithm for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2009.2040018
– volume: 196
  year: 2022
  ident: 10.1016/j.dsp.2025.105623_bib0022
  article-title: Off-grid direction-of-arrival estimation using second-order taylor approximation
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2022.108513
– volume: 214
  year: 2024
  ident: 10.1016/j.dsp.2025.105623_bib0008
  article-title: DOA Estimation based on smoothed sparse reconstruction with time-modulated linear arrays
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2023.109229
– volume: 61
  start-page: 38
  issue: 1
  year: 2013
  ident: 10.1016/j.dsp.2025.105623_bib0011
  article-title: Off-Grid direction of arrival estimation using sparse bayesian inference
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2222378
– volume: 13
  issue: 9
  year: 2024
  ident: 10.1016/j.dsp.2025.105623_bib0006
  article-title: A novel weighted block sparse DOA estimation based on signal subspace under unknown mutual coupling
  publication-title: Electronics (Basel)
– start-page: 3296
  year: 2017
  ident: 10.1016/j.dsp.2025.105623_bib0013
  article-title: Prior Knowledge Aided Super-resolution Line Spectral Estimation: An Iterative Reweighted Algorithm
SSID ssj0007426
Score 2.414902
Snippet •Research highlight 1To further reduce the computational complexity of the KA-SURE-IR and SURE-IR, this paper proposes a low computational complexity log-sum...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105623
SubjectTerms A descent direction
DOA
Log-sum sparse recovery
Low computational complexity
Title A DOA estimation algorithm based on the low computational complexity log-sum sparse recovery
URI https://dx.doi.org/10.1016/j.dsp.2025.105623
Volume 168
WOSCitedRecordID wos001593529300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1051-2004
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007426
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbapYf2gFraqkBb-dATUVAeTuwcV5Q-OKAeqLRISJFjO7tBkEW7CezPZ_xIsotAKodeotVo7VieL_PyeAahbzxOy0Tw0Jc0TnyiiJaDNPZVmbJUqrDIiDTNJujpKZtMsj_uKGZp2gnQumarVXbzX1kNNGC2vjr7DHb3kwIBfgPT4Qlsh-c_MX7sgb_n6eIZ9laix6-m80XVzK49rbKkOx7wruZ3JqG8bbp4oEkvVyvTTGI-9WHRHsibxVJ3VhE61XPjCPh7NdUNRzydAaKvc9kbB50m1Dk-twYi1aytelLVmnDrrOU97aRy-fvDyHMblYVtnfo_uaO70ES0Hpqw0hS-eMubdXFr2-g4gRkaA-xRWW7DCpeHcqnrikbJ4fDfzbrZD_RZn2XYJbBd5jBFrqfI7RQv0VZEk4yN0Nb49_HkpFfdlJj-fP26u2NwkxD4YB2PGzJrxsnZW7TtvAo8tmh4h16oege9Was1-R5djDHgAg-4wD0usMEFBhLgAgMu8AYu8IAL7HCBLS5wh4sP6O-P47OjX75rreELMGgbX2WKJiFVcSbLMhBMBookTBakiEoZi4KwmPE0VKBHZZAGTILfTbkUjChZRFLEH9GontfqE8IwkMpUhYEASy-h2iHIRMDBTSVRkHK5iw66fcpvbAWV_EnO7CLS7WTuTEBr2uWAiqeH7T3nHfvo9QDWz2jULFr1Bb0St021XHx1kLgHs3Z8qA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+DOA+estimation+algorithm+based+on+the+low+computational+complexity+log-sum+sparse+recovery&rft.jtitle=Digital+signal+processing&rft.au=Lv%2C+Jihui&rft.au=Liu%2C+Shuai&rft.au=Jin%2C+Ming&rft.au=Yan%2C+Feng-Gang&rft.date=2026-01-01&rft.issn=1051-2004&rft.volume=168&rft.spage=105623&rft_id=info:doi/10.1016%2Fj.dsp.2025.105623&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dsp_2025_105623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon