A DOA estimation algorithm based on the low computational complexity log-sum sparse recovery
•Research highlight 1To further reduce the computational complexity of the KA-SURE-IR and SURE-IR, this paper proposes a low computational complexity log-sum sparse recovery algorithm to achieves DOA estimation. The realization of the low complexity is realized by designing a new descent direction,...
Gespeichert in:
| Veröffentlicht in: | Digital signal processing Jg. 168; S. 105623 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.01.2026
|
| Schlagworte: | |
| ISSN: | 1051-2004 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Research highlight 1To further reduce the computational complexity of the KA-SURE-IR and SURE-IR, this paper proposes a low computational complexity log-sum sparse recovery algorithm to achieves DOA estimation. The realization of the low complexity is realized by designing a new descent direction, and we derive the designed descent direction into a new mathematical expression. The specific process can refer to the third section of the paper.•Research highlight 2KA-SURE-IR and SURE-IR methods cannot determine the step size and selection range in the process of using gradient algorithm to solve the grid mismatch. However, our proposed algorithm can determine the selection range of step size (Remark 3), which is a relative advantage.•Research highlight 3To make the reader understand the proposed algorithm more clearly, it should be noted that in the process of iterative solving, the proposed algorithm belongs to the on-grid DOA estimation method, which does not use gradient descent to solve the grid mismatch but uses the designed descent direction to achieve sparse signal recovery and DOA estimation.
The super-resolution iterative reweighted (SURE-IR) algorithm and the prior-knowledge aided super-resolution iterative reweighted (KA-SURE-IR) algorithm provide an important reference for the research of log-sum sparse recovery. However, even if the matrix inverse lemma is used, SURE-IR and KA-SURE-IR still have the problem of high computational complexity. Therefore, this paper designs a descent direction to achieve low complexity log-sum sparse recovery and direction of arrival (DOA) estimation. Firstly, the received signals are decomposed by singular value decomposition (SVD), and the corresponding log-sum sparse model is established. Then, the log-sum sparse model is relaxed to a convex model, the multiple signal classification (MUSIC) algorithm is used to provide prior information to promote sparse recovery, and the theoretical optimal value of the sparse signals in each iteration calculation is solved. Secondly, a descent direction is designed according to the current value and the theoretical optimal value of the sparse signals in each iteration calculation. Finally, the computational complexity of the proposed algorithm is reduced by selecting the regularization parameters as large as possible to reduce the influence of the residual value and by combining the matrix inverse lemma. The simulation results validated the effectiveness of the proposed algorithm in DOA estimation. |
|---|---|
| AbstractList | •Research highlight 1To further reduce the computational complexity of the KA-SURE-IR and SURE-IR, this paper proposes a low computational complexity log-sum sparse recovery algorithm to achieves DOA estimation. The realization of the low complexity is realized by designing a new descent direction, and we derive the designed descent direction into a new mathematical expression. The specific process can refer to the third section of the paper.•Research highlight 2KA-SURE-IR and SURE-IR methods cannot determine the step size and selection range in the process of using gradient algorithm to solve the grid mismatch. However, our proposed algorithm can determine the selection range of step size (Remark 3), which is a relative advantage.•Research highlight 3To make the reader understand the proposed algorithm more clearly, it should be noted that in the process of iterative solving, the proposed algorithm belongs to the on-grid DOA estimation method, which does not use gradient descent to solve the grid mismatch but uses the designed descent direction to achieve sparse signal recovery and DOA estimation.
The super-resolution iterative reweighted (SURE-IR) algorithm and the prior-knowledge aided super-resolution iterative reweighted (KA-SURE-IR) algorithm provide an important reference for the research of log-sum sparse recovery. However, even if the matrix inverse lemma is used, SURE-IR and KA-SURE-IR still have the problem of high computational complexity. Therefore, this paper designs a descent direction to achieve low complexity log-sum sparse recovery and direction of arrival (DOA) estimation. Firstly, the received signals are decomposed by singular value decomposition (SVD), and the corresponding log-sum sparse model is established. Then, the log-sum sparse model is relaxed to a convex model, the multiple signal classification (MUSIC) algorithm is used to provide prior information to promote sparse recovery, and the theoretical optimal value of the sparse signals in each iteration calculation is solved. Secondly, a descent direction is designed according to the current value and the theoretical optimal value of the sparse signals in each iteration calculation. Finally, the computational complexity of the proposed algorithm is reduced by selecting the regularization parameters as large as possible to reduce the influence of the residual value and by combining the matrix inverse lemma. The simulation results validated the effectiveness of the proposed algorithm in DOA estimation. |
| ArticleNumber | 105623 |
| Author | Lv, Jihui Yan, Feng-Gang Liu, Shuai Jin, Ming |
| Author_xml | – sequence: 1 givenname: Jihui surname: Lv fullname: Lv, Jihui organization: School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China – sequence: 2 givenname: Shuai orcidid: 0009-0009-1090-7208 surname: Liu fullname: Liu, Shuai email: liu-shuai@hit.edu.cn organization: School of Information Science and Engineering, Harbin Institute of Technology(Weihai), Weihai, 264209, Shandong, China – sequence: 3 givenname: Ming surname: Jin fullname: Jin, Ming organization: School of Information Science and Engineering, Harbin Institute of Technology(Weihai), Weihai, 264209, Shandong, China – sequence: 4 givenname: Feng-Gang surname: Yan fullname: Yan, Feng-Gang organization: School of Information Science and Engineering, Harbin Institute of Technology(Weihai), Weihai, 264209, Shandong, China |
| BookMark | eNp9kMtuwjAQRb2gUoH2A7rzDyS1HeeBukL0QSUkNu2ukuXYEzBK4sg2tPx9Dem6q3ne0Z0zQ5Pe9oDQAyUpJbR4PKTaDykjLI91XrBsgqYxoQkjhN-imfcHQkjJWTFFX0v8vF1i8MF0MhjbY9nurDNh3-FaetA4tsIecGu_sbLdcAzXNdleqxZ-TDjH4S7xxw77QToP2IGyJ3DnO3TTyNbD_V-co8_Xl4_VOtls395Xy02iWE5DAgsoc1pCttBNQ1SlCfC80jWvWaMzVfMqq2RBgfJCk4JUmnJeSq0qDrpmWmVzRMe7ylnvHTRicPEddxaUiAsScRARibggESOSqHkaNRCNnQw44ZWBXoE20X4Q2pp_1L-2R282 |
| Cites_doi | 10.1007/s00041-008-9045-x 10.1016/j.dsp.2019.06.013 10.1109/TAP.1986.1143830 10.1109/TSP.2010.2050477 10.1109/LSP.2021.3104503 10.1109/TSP.2008.2007606 10.1109/LCOMM.2022.3148260 10.1109/TSP.2016.2572041 10.1109/29.57542 10.1109/JSEN.2023.3288607 10.1109/LSP.2016.2636319 10.1016/j.sigpro.2023.109164 10.1109/LCOMM.2020.3020897 10.1109/TSP.2009.2040018 10.1016/j.sigpro.2022.108513 10.1016/j.sigpro.2023.109229 10.1109/TSP.2012.2222378 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.dsp.2025.105623 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_dsp_2025_105623 S1051200425006451 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADFGL ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c251t-e9e7517e39dff0c8d0e458db4b2fd3cb4838a61e146d0608d1447adc84edb2dc3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001593529300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-2004 |
| IngestDate | Sat Nov 29 06:54:13 EST 2025 Wed Dec 10 14:23:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Log-sum sparse recovery A descent direction Low computational complexity DOA |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-e9e7517e39dff0c8d0e458db4b2fd3cb4838a61e146d0608d1447adc84edb2dc3 |
| ORCID | 0009-0009-1090-7208 |
| ParticipantIDs | crossref_primary_10_1016_j_dsp_2025_105623 elsevier_sciencedirect_doi_10_1016_j_dsp_2025_105623 |
| PublicationCentury | 2000 |
| PublicationDate | January 2026 2026-01-00 |
| PublicationDateYYYYMMDD | 2026-01-01 |
| PublicationDate_xml | – month: 01 year: 2026 text: January 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Digital signal processing |
| PublicationYear | 2026 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Hyder, Mahata (bib0016) 2009 Meng, Wang, Huang, Cao, Zhang (bib0005) 2019; 94 Zheng, Yang (bib0002) 2021; 25 Yin, Wang, Dai, Wang (bib0008) 2024; 214 Candés, Wakin, Boyd (bib0015) 2008; 14 Stoica, Sharman (bib0019) 1990; 38 Mohimani, Babaie-Zadeh, Jutten (bib0007) 2009; 57 Dai, Bao, Xu, Chang (bib0021) 2017; 24 Wu, Jakobsson, Liu (bib0001) 2023; 212 Schmidt (bib0004) 1986; 34 Ataee, Zayyani, Babaie-Zadeh, Jutten (bib0017) 2010 Huang, So, Zoubir (bib0022) 2022; 196 Fang, Wang, Shen, Li, Blum (bib0012) 2016; 64 Tian, Wang, Chen, Qin, Jin (bib0003) 2022; 26 Yang, Xie, Zhang (bib0011) 2013; 61 Hyder, Mahata (bib0018) 2010; 58 Liu, Yin, Lu, Tong (bib0006) 2024; 13 Tang, Chien, Qian (bib0010) 2023; 23 Wang, Yu, Li, Ji, Chen (bib0020) 2021; 28 Wang, Fang, Li (bib0013) 2017 Hyder, Mahata (bib0014) 2010; 58 Chao Zhu (bib0009) 2024; 60 Schmidt (10.1016/j.dsp.2025.105623_bib0004) 1986; 34 Wang (10.1016/j.dsp.2025.105623_bib0013) 2017 Zheng (10.1016/j.dsp.2025.105623_bib0002) 2021; 25 Meng (10.1016/j.dsp.2025.105623_bib0005) 2019; 94 Dai (10.1016/j.dsp.2025.105623_bib0021) 2017; 24 Stoica (10.1016/j.dsp.2025.105623_bib0019) 1990; 38 Wang (10.1016/j.dsp.2025.105623_bib0020) 2021; 28 Liu (10.1016/j.dsp.2025.105623_bib0006) 2024; 13 Hyder (10.1016/j.dsp.2025.105623_bib0014) 2010; 58 Fang (10.1016/j.dsp.2025.105623_bib0012) 2016; 64 Yin (10.1016/j.dsp.2025.105623_bib0008) 2024; 214 Hyder (10.1016/j.dsp.2025.105623_bib0016) 2009 Mohimani (10.1016/j.dsp.2025.105623_bib0007) 2009; 57 Hyder (10.1016/j.dsp.2025.105623_bib0018) 2010; 58 Chao Zhu (10.1016/j.dsp.2025.105623_bib0009) 2024; 60 Wu (10.1016/j.dsp.2025.105623_bib0001) 2023; 212 Huang (10.1016/j.dsp.2025.105623_bib0022) 2022; 196 Tian (10.1016/j.dsp.2025.105623_bib0003) 2022; 26 Yang (10.1016/j.dsp.2025.105623_bib0011) 2013; 61 Ataee (10.1016/j.dsp.2025.105623_bib0017) 2010 Tang (10.1016/j.dsp.2025.105623_bib0010) 2023; 23 Candés (10.1016/j.dsp.2025.105623_bib0015) 2008; 14 |
| References_xml | – volume: 60 year: 2024 ident: bib0009 article-title: DOA Estimation based on sparse bayesian learning with moving synthetic virtual array publication-title: Electron Lett – volume: 14 start-page: 877 year: 2008 end-page: 905 ident: bib0015 article-title: Enhancing sparsity by reweighted l1 minimization publication-title: Journal of Fourier Analysis and Applications – volume: 25 start-page: 147 year: 2021 end-page: 151 ident: bib0002 article-title: Direction-of-Arrival estimation of coherent signals under direction-Dependent mutual coupling publication-title: IEEE Commun. Lett. – start-page: 1 year: 2009 end-page: 4 ident: bib0016 article-title: A Scalable Distributed Video Coder Using Compressed Sensing publication-title: 2009 Annual IEEE India Conference – volume: 24 start-page: 46 year: 2017 end-page: 50 ident: bib0021 article-title: Root sparse bayesian learning for off-Grid DOA estimation publication-title: IEEE Signal Process Lett – volume: 61 start-page: 38 year: 2013 end-page: 43 ident: bib0011 article-title: Off-Grid direction of arrival estimation using sparse bayesian inference publication-title: IEEE Trans. Signal Process. – start-page: 1978 year: 2010 end-page: 1981 ident: bib0017 article-title: Parametric Dictionary Learning Using Steepest Descent publication-title: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 13 year: 2024 ident: bib0006 article-title: A novel weighted block sparse DOA estimation based on signal subspace under unknown mutual coupling publication-title: Electronics (Basel) – start-page: 3296 year: 2017 end-page: 3300 ident: bib0013 article-title: Prior Knowledge Aided Super-resolution Line Spectral Estimation: An Iterative Reweighted Algorithm publication-title: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 23 start-page: 17237 year: 2023 end-page: 17244 ident: bib0010 article-title: Low complexity error-Censoring RLS algorithm for DOA estimation publication-title: IEEE Sens J – volume: 196 year: 2022 ident: bib0022 article-title: Off-grid direction-of-arrival estimation using second-order taylor approximation publication-title: Signal Processing – volume: 58 start-page: 4646 year: 2010 end-page: 4655 ident: bib0014 article-title: Direction-of-Arrival estimation using a mixed publication-title: IEEE Trans. Signal Process. – volume: 57 start-page: 289 year: 2009 end-page: 301 ident: bib0007 article-title: A fast approach for overcomplete sparse decomposition based on smoothed publication-title: IEEE Trans. Signal Process. – volume: 58 start-page: 2194 year: 2010 end-page: 2205 ident: bib0018 article-title: An improved smoothed publication-title: IEEE Trans. Signal Process. – volume: 28 start-page: 1744 year: 2021 end-page: 1748 ident: bib0020 article-title: Sparse bayesian learning using generalized double pareto prior for DOA estimation publication-title: IEEE Signal Process Lett – volume: 212 year: 2023 ident: bib0001 article-title: Super-resolution direction of arrival estimation using a minimum mean-Square error framework publication-title: Signal Processing – volume: 64 start-page: 4649 year: 2016 end-page: 4662 ident: bib0012 article-title: Super-Resolution compressed sensing for line spectral estimation: an iterative reweighted approach publication-title: IEEE Trans. Signal Process. – volume: 38 start-page: 1132 year: 1990 end-page: 1143 ident: bib0019 article-title: Maximum likelihood methods for direction-of-arrival estimation publication-title: IEEE Trans Acoust – volume: 34 start-page: 276 year: 1986 end-page: 280 ident: bib0004 article-title: Multiple emitter location and signal parameter estimation publication-title: IEEE Trans Antennas Propag – volume: 94 start-page: 96 year: 2019 end-page: 104 ident: bib0005 article-title: Block rank sparsity-aware DOA estimation with large-scale arrays in the presence of unknown mutual coupling publication-title: Digit Signal Process – volume: 26 start-page: 912 year: 2022 end-page: 916 ident: bib0003 article-title: Real-Valued DOA estimation utilizing enhanced covariance matrix with unknown mutual coupling publication-title: IEEE Commun. Lett. – volume: 214 year: 2024 ident: bib0008 article-title: DOA Estimation based on smoothed sparse reconstruction with time-modulated linear arrays publication-title: Signal Processing – volume: 14 start-page: 877 issue: 5 year: 2008 ident: 10.1016/j.dsp.2025.105623_bib0015 article-title: Enhancing sparsity by reweighted l1 minimization publication-title: Journal of Fourier Analysis and Applications doi: 10.1007/s00041-008-9045-x – volume: 94 start-page: 96 year: 2019 ident: 10.1016/j.dsp.2025.105623_bib0005 article-title: Block rank sparsity-aware DOA estimation with large-scale arrays in the presence of unknown mutual coupling publication-title: Digit Signal Process doi: 10.1016/j.dsp.2019.06.013 – volume: 34 start-page: 276 issue: 3 year: 1986 ident: 10.1016/j.dsp.2025.105623_bib0004 article-title: Multiple emitter location and signal parameter estimation publication-title: IEEE Trans Antennas Propag doi: 10.1109/TAP.1986.1143830 – volume: 58 start-page: 4646 issue: 9 year: 2010 ident: 10.1016/j.dsp.2025.105623_bib0014 article-title: Direction-of-Arrival estimation using a mixed ℓ2,0 norm approximation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2050477 – start-page: 1978 year: 2010 ident: 10.1016/j.dsp.2025.105623_bib0017 article-title: Parametric Dictionary Learning Using Steepest Descent – volume: 28 start-page: 1744 year: 2021 ident: 10.1016/j.dsp.2025.105623_bib0020 article-title: Sparse bayesian learning using generalized double pareto prior for DOA estimation publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2021.3104503 – volume: 57 start-page: 289 issue: 1 year: 2009 ident: 10.1016/j.dsp.2025.105623_bib0007 article-title: A fast approach for overcomplete sparse decomposition based on smoothed ℓ0 norm publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.2007606 – volume: 26 start-page: 912 issue: 4 year: 2022 ident: 10.1016/j.dsp.2025.105623_bib0003 article-title: Real-Valued DOA estimation utilizing enhanced covariance matrix with unknown mutual coupling publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2022.3148260 – volume: 64 start-page: 4649 issue: 18 year: 2016 ident: 10.1016/j.dsp.2025.105623_bib0012 article-title: Super-Resolution compressed sensing for line spectral estimation: an iterative reweighted approach publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2572041 – volume: 60 issue: 6 year: 2024 ident: 10.1016/j.dsp.2025.105623_bib0009 article-title: DOA Estimation based on sparse bayesian learning with moving synthetic virtual array publication-title: Electron Lett – start-page: 1 year: 2009 ident: 10.1016/j.dsp.2025.105623_bib0016 article-title: A Scalable Distributed Video Coder Using Compressed Sensing – volume: 38 start-page: 1132 issue: 7 year: 1990 ident: 10.1016/j.dsp.2025.105623_bib0019 article-title: Maximum likelihood methods for direction-of-arrival estimation publication-title: IEEE Trans Acoust doi: 10.1109/29.57542 – volume: 23 start-page: 17237 issue: 15 year: 2023 ident: 10.1016/j.dsp.2025.105623_bib0010 article-title: Low complexity error-Censoring RLS algorithm for DOA estimation publication-title: IEEE Sens J doi: 10.1109/JSEN.2023.3288607 – volume: 24 start-page: 46 issue: 1 year: 2017 ident: 10.1016/j.dsp.2025.105623_bib0021 article-title: Root sparse bayesian learning for off-Grid DOA estimation publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2016.2636319 – volume: 212 year: 2023 ident: 10.1016/j.dsp.2025.105623_bib0001 article-title: Super-resolution direction of arrival estimation using a minimum mean-Square error framework publication-title: Signal Processing doi: 10.1016/j.sigpro.2023.109164 – volume: 25 start-page: 147 issue: 1 year: 2021 ident: 10.1016/j.dsp.2025.105623_bib0002 article-title: Direction-of-Arrival estimation of coherent signals under direction-Dependent mutual coupling publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2020.3020897 – volume: 58 start-page: 2194 issue: 4 year: 2010 ident: 10.1016/j.dsp.2025.105623_bib0018 article-title: An improved smoothed ℓ0 approximation algorithm for sparse representation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2009.2040018 – volume: 196 year: 2022 ident: 10.1016/j.dsp.2025.105623_bib0022 article-title: Off-grid direction-of-arrival estimation using second-order taylor approximation publication-title: Signal Processing doi: 10.1016/j.sigpro.2022.108513 – volume: 214 year: 2024 ident: 10.1016/j.dsp.2025.105623_bib0008 article-title: DOA Estimation based on smoothed sparse reconstruction with time-modulated linear arrays publication-title: Signal Processing doi: 10.1016/j.sigpro.2023.109229 – volume: 61 start-page: 38 issue: 1 year: 2013 ident: 10.1016/j.dsp.2025.105623_bib0011 article-title: Off-Grid direction of arrival estimation using sparse bayesian inference publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2222378 – volume: 13 issue: 9 year: 2024 ident: 10.1016/j.dsp.2025.105623_bib0006 article-title: A novel weighted block sparse DOA estimation based on signal subspace under unknown mutual coupling publication-title: Electronics (Basel) – start-page: 3296 year: 2017 ident: 10.1016/j.dsp.2025.105623_bib0013 article-title: Prior Knowledge Aided Super-resolution Line Spectral Estimation: An Iterative Reweighted Algorithm |
| SSID | ssj0007426 |
| Score | 2.414902 |
| Snippet | •Research highlight 1To further reduce the computational complexity of the KA-SURE-IR and SURE-IR, this paper proposes a low computational complexity log-sum... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 105623 |
| SubjectTerms | A descent direction DOA Log-sum sparse recovery Low computational complexity |
| Title | A DOA estimation algorithm based on the low computational complexity log-sum sparse recovery |
| URI | https://dx.doi.org/10.1016/j.dsp.2025.105623 |
| Volume | 168 |
| WOSCitedRecordID | wos001593529300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1051-2004 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007426 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbapYf2gFraqkBb-dATUVAeTuwcV5Q-OKAeqLRISJFjO7tBkEW7CezPZ_xIsotAKodeotVo7VieL_PyeAahbzxOy0Tw0Jc0TnyiiJaDNPZVmbJUqrDIiDTNJujpKZtMsj_uKGZp2gnQumarVXbzX1kNNGC2vjr7DHb3kwIBfgPT4Qlsh-c_MX7sgb_n6eIZ9laix6-m80XVzK49rbKkOx7wruZ3JqG8bbp4oEkvVyvTTGI-9WHRHsibxVJ3VhE61XPjCPh7NdUNRzydAaKvc9kbB50m1Dk-twYi1aytelLVmnDrrOU97aRy-fvDyHMblYVtnfo_uaO70ES0Hpqw0hS-eMubdXFr2-g4gRkaA-xRWW7DCpeHcqnrikbJ4fDfzbrZD_RZn2XYJbBd5jBFrqfI7RQv0VZEk4yN0Nb49_HkpFfdlJj-fP26u2NwkxD4YB2PGzJrxsnZW7TtvAo8tmh4h16oege9Was1-R5djDHgAg-4wD0usMEFBhLgAgMu8AYu8IAL7HCBLS5wh4sP6O-P47OjX75rreELMGgbX2WKJiFVcSbLMhBMBookTBakiEoZi4KwmPE0VKBHZZAGTILfTbkUjChZRFLEH9GontfqE8IwkMpUhYEASy-h2iHIRMDBTSVRkHK5iw66fcpvbAWV_EnO7CLS7WTuTEBr2uWAiqeH7T3nHfvo9QDWz2jULFr1Bb0St021XHx1kLgHs3Z8qA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+DOA+estimation+algorithm+based+on+the+low+computational+complexity+log-sum+sparse+recovery&rft.jtitle=Digital+signal+processing&rft.au=Lv%2C+Jihui&rft.au=Liu%2C+Shuai&rft.au=Jin%2C+Ming&rft.au=Yan%2C+Feng-Gang&rft.date=2026-01-01&rft.issn=1051-2004&rft.volume=168&rft.spage=105623&rft_id=info:doi/10.1016%2Fj.dsp.2025.105623&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dsp_2025_105623 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon |