DOA estimation method for sparse arrays based on deep convolutional autoencoder and deep convolutional neural network

This paper proposes a Direction-of-Arrival (DOA) estimation method based on Deep Convolutional Autoencoder (DCAE). This method constructs a DCAE to map the covariance matrix of the received signals of a sparse array into a feature space and then reconstructs it into the covariance matrix of the rece...

Full description

Saved in:
Bibliographic Details
Published in:Digital signal processing Vol. 168; p. 105627
Main Authors: Guo, Shuhan, Zhang, Qin, Fu, Xiaolong, Zheng, Guimei, Zhou, Hao
Format: Journal Article
Language:English
Published: Elsevier Inc 01.01.2026
Subjects:
ISSN:1051-2004
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a Direction-of-Arrival (DOA) estimation method based on Deep Convolutional Autoencoder (DCAE). This method constructs a DCAE to map the covariance matrix of the received signals of a sparse array into a feature space and then reconstructs it into the covariance matrix of the received signals of a uniform linear array. Subsequently, the DOA estimation is performed in combination with the MUSIC algorithm, which effectively increases the degrees of freedom of the sparse array and better solves the DOA estimation problem under the underdetermined condition of the sparse array. To address the issues of low estimation accuracy and poor angular resolution in traditional algorithms for sparse arrays, a DOA estimation method based on Deep Convolutional Neural Network (DCNN) is proposed. This method extracts the mapping from the covariance matrix of the received signals of the physical elements of the sparse array to the angles of arrival, achieving higher accuracy and higher resolution DOA estimation.
AbstractList This paper proposes a Direction-of-Arrival (DOA) estimation method based on Deep Convolutional Autoencoder (DCAE). This method constructs a DCAE to map the covariance matrix of the received signals of a sparse array into a feature space and then reconstructs it into the covariance matrix of the received signals of a uniform linear array. Subsequently, the DOA estimation is performed in combination with the MUSIC algorithm, which effectively increases the degrees of freedom of the sparse array and better solves the DOA estimation problem under the underdetermined condition of the sparse array. To address the issues of low estimation accuracy and poor angular resolution in traditional algorithms for sparse arrays, a DOA estimation method based on Deep Convolutional Neural Network (DCNN) is proposed. This method extracts the mapping from the covariance matrix of the received signals of the physical elements of the sparse array to the angles of arrival, achieving higher accuracy and higher resolution DOA estimation.
ArticleNumber 105627
Author Zheng, Guimei
Zhou, Hao
Guo, Shuhan
Zhang, Qin
Fu, Xiaolong
Author_xml – sequence: 1
  givenname: Shuhan
  orcidid: 0009-0008-9232-2061
  surname: Guo
  fullname: Guo, Shuhan
  email: guoshuhan@163.com
  organization: Air and Missile Defense College Air Force Engineering University, Xi’an, 710051, Shanxi, China
– sequence: 2
  givenname: Qin
  orcidid: 0009-0005-8279-9788
  surname: Zhang
  fullname: Zhang, Qin
  email: zhangqin_7256@163.com
  organization: Air and Missile Defense College Air Force Engineering University, Xi’an, 710051, Shanxi, China
– sequence: 3
  givenname: Xiaolong
  surname: Fu
  fullname: Fu, Xiaolong
  email: fuxiaolong_12@163.com
  organization: Air and Missile Defense College Air Force Engineering University, Xi’an, 710051, Shanxi, China
– sequence: 4
  givenname: Guimei
  surname: Zheng
  fullname: Zheng, Guimei
  email: zheng-gm@163.com
  organization: Air and Missile Defense College Air Force Engineering University, Xi’an, 710051, Shanxi, China
– sequence: 5
  givenname: Hao
  surname: Zhou
  fullname: Zhou, Hao
  email: 17792611529@126.com
  organization: Air and Missile Defense College Air Force Engineering University, Xi’an, 710051, Shanxi, China
BookMark eNp9kM1OwzAQhH0oEi3wANz8AilrO38Vp6r8SpV6gbO1sdcipY0jOynq2-NSjojT7ErzrXZmxiad74ixWwFzAaK8285t7OcSZJH2opTVhE3TIDIJkF-yWYxbAKhyWU7Z-LBZcopDu8eh9R3f0_DhLXc-8NhjiMQxBDxG3mAky5PDEvXc-O7gd-MJwR3HcfDUGW8pcOzsX5aOxvAjw5cPn9fswuEu0s2vXrH3p8e31Uu23jy_rpbrzMhCDJmtSVEDuCgLMLUrsWpKFA2IonICsXZq4SphVC1MlSuFCh3UkkDlUFeNKNUVE-e7JvgYAzndh5Q0HLUAfepKb3XqSp-60ueuEnN_Zig9dmgp6GjalI5sG8gM2vr2H_ob6VZ4Jw
Cites_doi 10.3390/s16091549
10.1109/TAP.2018.2874430
10.1109/LSP.2015.2409153
10.1109/79.526899
10.1109/TSP.2021.3068353
10.1109/TSP.2010.2089682
10.1109/LSP.2022.3199149
10.1111/j.2517-6161.1996.tb02080.x
10.1109/LSP.2019.2945115
10.1109/TAP.1968.1139138
10.1109/TSP.2005.850882
10.1109/18.212309
10.1109/TSP.2010.2049264
10.1109/TSP.2024.3487256
10.3390/s19030707
10.1109/JSAC.2024.3414613
10.1109/TAES.2024.3499900
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.dsp.2025.105627
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_dsp_2025_105627
S1051200425006499
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADFGL
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c251t-d8e3eb0a9650c8f6a7b6a1b0157f1aa8f39f71c381c7433a3af082e034087b163
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001588368500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-2004
IngestDate Sat Nov 29 06:54:13 EST 2025
Wed Dec 10 14:23:18 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Sparse array
Direction-of-arrival estimation
Convolutional autoencoder
Convolutional neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-d8e3eb0a9650c8f6a7b6a1b0157f1aa8f39f71c381c7433a3af082e034087b163
ORCID 0009-0008-9232-2061
0009-0005-8279-9788
ParticipantIDs crossref_primary_10_1016_j_dsp_2025_105627
elsevier_sciencedirect_doi_10_1016_j_dsp_2025_105627
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Digital signal processing
PublicationYear 2026
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Vaidyanathan, Pal (bib0009) 2010
Wu, Liu, Huang (bib0024) 2019; 26
Liu, Zhang, Zhang (bib0006) 2024; 72
Johnson, Dudgeon (bib0001) 1993
Pal, Vaidyanathan (bib0013) 2011
Chakrabarty, Habets (bib0021) 2017
Zhang, Shi, Zheng (bib0003) 2025; 61
Zhang, Zhou, Zheng (bib0004) 2025
Tibshirani (bib0018) 1996; 58
Malioutov, Cetin, Willsky (bib0016) 2005; 53
Wagner, Park, Gerstoft (bib0019) 2021; 69
Zhou, Shi, Gu (bib0012) 2013
Meng, Zhou (bib0015) 2019; 19
Wu, Yuan, Ma (bib0026) 2021; 37
Ge, Hu, Dai, Plx (bib0025) 2019; 35
Hamid, Mats (bib0002) 1996; 13
Liu, Vaidyanathan (bib0014) 2015; 22
Linebarger, Sudborough, Tollis (bib0008) 1993; 39
Pal, Vaidyanathan (bib0011) 2010; 58
Liu, Zhang, Yu (bib0023) 2018; 66
Zhou, Ye, Qi (bib0020) 2022; 29
Moffet (bib0007) 1968; 16
Chakrabarty, Habets (bib0022) 2017
Salama, Ahmad, Swamy (bib0017) 2016; 16
Vaidyanathan, Pal (bib0010) 2011; 59
An, Yuen, Guan (bib0005) 2024; 42
Chakrabarty (10.1016/j.dsp.2025.105627_bib0021) 2017
Malioutov (10.1016/j.dsp.2025.105627_bib0016) 2005; 53
Liu (10.1016/j.dsp.2025.105627_bib0006) 2024; 72
Linebarger (10.1016/j.dsp.2025.105627_bib0008) 1993; 39
Tibshirani (10.1016/j.dsp.2025.105627_bib0018) 1996; 58
Wagner (10.1016/j.dsp.2025.105627_bib0019) 2021; 69
Ge (10.1016/j.dsp.2025.105627_bib0025) 2019; 35
Wu (10.1016/j.dsp.2025.105627_bib0026) 2021; 37
Johnson (10.1016/j.dsp.2025.105627_bib0001) 1993
Zhang (10.1016/j.dsp.2025.105627_bib0003) 2025; 61
Vaidyanathan (10.1016/j.dsp.2025.105627_bib0010) 2011; 59
Moffet (10.1016/j.dsp.2025.105627_bib0007) 1968; 16
Liu (10.1016/j.dsp.2025.105627_bib0014) 2015; 22
Vaidyanathan (10.1016/j.dsp.2025.105627_bib0009) 2010
Chakrabarty (10.1016/j.dsp.2025.105627_bib0022) 2017
Wu (10.1016/j.dsp.2025.105627_bib0024) 2019; 26
Zhou (10.1016/j.dsp.2025.105627_bib0012) 2013
Meng (10.1016/j.dsp.2025.105627_bib0015) 2019; 19
Zhou (10.1016/j.dsp.2025.105627_bib0020) 2022; 29
Pal (10.1016/j.dsp.2025.105627_bib0011) 2010; 58
Liu (10.1016/j.dsp.2025.105627_bib0023) 2018; 66
Pal (10.1016/j.dsp.2025.105627_bib0013) 2011
An (10.1016/j.dsp.2025.105627_bib0005) 2024; 42
Salama (10.1016/j.dsp.2025.105627_bib0017) 2016; 16
Hamid (10.1016/j.dsp.2025.105627_bib0002) 1996; 13
Zhang (10.1016/j.dsp.2025.105627_bib0004) 2025
References_xml – start-page: 136
  year: 2017
  end-page: 140
  ident: bib0021
  article-title: Broadband DOA estimation using convolutional neural networks trained with noise signals
  publication-title: 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
– volume: 26
  start-page: 1688
  year: 2019
  end-page: 1692
  ident: bib0024
  article-title: Deep convolution net work for direction of arrival estimation with sparse prior
  publication-title: IEEE Signal Process. Lett.
– volume: 59
  start-page: 573
  year: 2011
  end-page: 586
  ident: bib0010
  article-title: Sparse sensing with co-prime samplers and arrays
  publication-title: IEEE Trans. Signal Process.
– volume: 16
  start-page: 1549
  year: 2016
  end-page: 1577
  ident: bib0017
  article-title: Underdetermined DOA estimation using MVDR-weighted LASSO
  publication-title: Sensors
– volume: 16
  start-page: 172
  year: 1968
  end-page: 175
  ident: bib0007
  article-title: Minimum-redundancy linear arrays
  publication-title: IEEE Trans. Antennas Propag.
– volume: 35
  start-page: 1376
  year: 2019
  end-page: 1384
  ident: bib0025
  article-title: DOA estimation for coherent sources using deep learning method
  publication-title: Signal Process.
– volume: 13
  start-page: 67
  year: 1996
  end-page: 94
  ident: bib0002
  article-title: Two decades of array signal processing research: the parametric approach
  publication-title: IEEE Signal Process. Mag.
– start-page: 289
  year: 2011
  end-page: 294
  ident: bib0013
  article-title: Coprime sampling and the MUSIC algorithm
  publication-title: 2011 Digital Signal Processing and Signal Processing Education Meeting
– year: 2025
  ident: bib0004
  article-title: DOA estimation of coherent sources with sparse arrays via toeplitz matrix reconstruction
– volume: 39
  start-page: 716
  year: 1993
  end-page: 721
  ident: bib0008
  article-title: Difference bases and sparse sensor arrays
  publication-title: IEEE Trans. Inf. Theory
– volume: 58
  start-page: 4167
  year: 2010
  end-page: 4181
  ident: bib0011
  article-title: Nested arrays: a novel approach to array processing with enhanced degrees of freedom
  publication-title: IEEE Trans. Signal Process.
– start-page: 1405
  year: 2010
  end-page: 1409
  ident: bib0009
  article-title: Sparse sensing with coprime arrays
  publication-title: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers
– volume: 37
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib0026
  article-title: Deep convolution neural network label decomposition method for large scale DOA Estimation
  publication-title: Signal Process.
– volume: 72
  start-page: 5354
  year: 2024
  end-page: 5370
  ident: bib0006
  article-title: Joint spectrum sensing and DOA estimation based on a resource-efficient sub-nyquist array receiver
  publication-title: IEEE Trans. Signal Process.
– volume: 66
  start-page: 7315
  year: 2018
  end-page: 7327
  ident: bib0023
  article-title: Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections
  publication-title: IEEE Trans. Antennas Propag.
– volume: 53
  start-page: 3010
  year: 2005
  end-page: 3022
  ident: bib0016
  article-title: A sparse signal reconstruction perspective for source localization with sensor arrays
  publication-title: IEEE Trans. Signal Process.
– volume: 61
  start-page: 4313
  year: 2025
  end-page: 4328
  ident: bib0003
  article-title: Augmented coprime array design via hole analysis for direction of arrival estimation
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0018
  article-title: Regression shrinkage and selection via the LASSO
  publication-title: J. Royal Stat. Soc. Ser. B
– volume: 22
  start-page: 1438
  year: 2015
  end-page: 1442
  ident: bib0014
  article-title: Remarks on the spatial smoothing step in coarray MUSIC
  publication-title: IEEE Signal Process. Lett.
– volume: 42
  start-page: 2786
  year: 2024
  end-page: 2802
  ident: bib0005
  article-title: Two-dimensional direction-of-arrival estimation using stacked intelligent metasurfaces
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 19
  start-page: 707
  year: 2019
  end-page: 720
  ident: bib0015
  article-title: Direction-of-arrival estimation in coprime array using the ESPRIT-based method
  publication-title: Sensors
– year: 2017
  ident: bib0022
  article-title: Multi-speaker localization using convolutional neural network trained with noise
  publication-title: 2017 Conference on Neural Information Processing Systems
– year: 1993
  ident: bib0001
  article-title: Array Signal Processing-Concepts and Techniques
  publication-title: Englewood Cliffs
– volume: 29
  start-page: 1858
  year: 2022
  end-page: 1862
  ident: bib0020
  article-title: DOA estimation based on pseudo-noise subspace for relocating enhanced nested array
  publication-title: IEEE Signal Process. Lett.
– start-page: 1
  year: 2013
  end-page: 5
  ident: bib0012
  article-title: DECOM: DOA estimation with combined MUSIC for coprime array
  publication-title: 2013 International Conference on Wireless Communications and Signal Processing
– volume: 69
  start-page: 2144
  year: 2021
  end-page: 2157
  ident: bib0019
  article-title: Gridless DOA estimation and root-MUSIC for non-uniform linear arrays
  publication-title: IEEE Trans. Signal Process.
– start-page: 1405
  year: 2010
  ident: 10.1016/j.dsp.2025.105627_bib0009
  article-title: Sparse sensing with coprime arrays
– start-page: 1
  year: 2013
  ident: 10.1016/j.dsp.2025.105627_bib0012
  article-title: DECOM: DOA estimation with combined MUSIC for coprime array
– volume: 16
  start-page: 1549
  issue: 9
  year: 2016
  ident: 10.1016/j.dsp.2025.105627_bib0017
  article-title: Underdetermined DOA estimation using MVDR-weighted LASSO
  publication-title: Sensors
  doi: 10.3390/s16091549
– volume: 66
  start-page: 7315
  issue: 12
  year: 2018
  ident: 10.1016/j.dsp.2025.105627_bib0023
  article-title: Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2018.2874430
– volume: 22
  start-page: 1438
  issue: 9
  year: 2015
  ident: 10.1016/j.dsp.2025.105627_bib0014
  article-title: Remarks on the spatial smoothing step in coarray MUSIC
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2015.2409153
– volume: 13
  start-page: 67
  issue: 4
  year: 1996
  ident: 10.1016/j.dsp.2025.105627_bib0002
  article-title: Two decades of array signal processing research: the parametric approach
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.526899
– volume: 69
  start-page: 2144
  year: 2021
  ident: 10.1016/j.dsp.2025.105627_bib0019
  article-title: Gridless DOA estimation and root-MUSIC for non-uniform linear arrays
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2021.3068353
– volume: 59
  start-page: 573
  issue: 2
  year: 2011
  ident: 10.1016/j.dsp.2025.105627_bib0010
  article-title: Sparse sensing with co-prime samplers and arrays
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2089682
– volume: 29
  start-page: 1858
  year: 2022
  ident: 10.1016/j.dsp.2025.105627_bib0020
  article-title: DOA estimation based on pseudo-noise subspace for relocating enhanced nested array
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2022.3199149
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.dsp.2025.105627_bib0018
  article-title: Regression shrinkage and selection via the LASSO
  publication-title: J. Royal Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 26
  start-page: 1688
  issue: 11
  year: 2019
  ident: 10.1016/j.dsp.2025.105627_bib0024
  article-title: Deep convolution net work for direction of arrival estimation with sparse prior
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2945115
– volume: 16
  start-page: 172
  issue: 2
  year: 1968
  ident: 10.1016/j.dsp.2025.105627_bib0007
  article-title: Minimum-redundancy linear arrays
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.1968.1139138
– volume: 53
  start-page: 3010
  issue: 8
  year: 2005
  ident: 10.1016/j.dsp.2025.105627_bib0016
  article-title: A sparse signal reconstruction perspective for source localization with sensor arrays
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.850882
– start-page: 136
  year: 2017
  ident: 10.1016/j.dsp.2025.105627_bib0021
  article-title: Broadband DOA estimation using convolutional neural networks trained with noise signals
– volume: 35
  start-page: 1376
  issue: 08
  year: 2019
  ident: 10.1016/j.dsp.2025.105627_bib0025
  article-title: DOA estimation for coherent sources using deep learning method
  publication-title: Signal Process.
– volume: 39
  start-page: 716
  issue: 2
  year: 1993
  ident: 10.1016/j.dsp.2025.105627_bib0008
  article-title: Difference bases and sparse sensor arrays
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.212309
– year: 2017
  ident: 10.1016/j.dsp.2025.105627_bib0022
  article-title: Multi-speaker localization using convolutional neural network trained with noise
– volume: 37
  start-page: 1
  issue: 01
  year: 2021
  ident: 10.1016/j.dsp.2025.105627_bib0026
  article-title: Deep convolution neural network label decomposition method for large scale DOA Estimation
  publication-title: Signal Process.
– volume: 58
  start-page: 4167
  issue: 8
  year: 2010
  ident: 10.1016/j.dsp.2025.105627_bib0011
  article-title: Nested arrays: a novel approach to array processing with enhanced degrees of freedom
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2049264
– year: 2025
  ident: 10.1016/j.dsp.2025.105627_bib0004
– start-page: 289
  year: 2011
  ident: 10.1016/j.dsp.2025.105627_bib0013
  article-title: Coprime sampling and the MUSIC algorithm
– volume: 72
  start-page: 5354
  year: 2024
  ident: 10.1016/j.dsp.2025.105627_bib0006
  article-title: Joint spectrum sensing and DOA estimation based on a resource-efficient sub-nyquist array receiver
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2024.3487256
– year: 1993
  ident: 10.1016/j.dsp.2025.105627_bib0001
  article-title: Array Signal Processing-Concepts and Techniques
– volume: 19
  start-page: 707
  issue: 3
  year: 2019
  ident: 10.1016/j.dsp.2025.105627_bib0015
  article-title: Direction-of-arrival estimation in coprime array using the ESPRIT-based method
  publication-title: Sensors
  doi: 10.3390/s19030707
– volume: 42
  start-page: 2786
  issue: 10
  year: 2024
  ident: 10.1016/j.dsp.2025.105627_bib0005
  article-title: Two-dimensional direction-of-arrival estimation using stacked intelligent metasurfaces
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2024.3414613
– volume: 61
  start-page: 4313
  issue: 2
  year: 2025
  ident: 10.1016/j.dsp.2025.105627_bib0003
  article-title: Augmented coprime array design via hole analysis for direction of arrival estimation
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2024.3499900
SSID ssj0007426
Score 2.4147847
Snippet This paper proposes a Direction-of-Arrival (DOA) estimation method based on Deep Convolutional Autoencoder (DCAE). This method constructs a DCAE to map the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105627
SubjectTerms Convolutional autoencoder
Convolutional neural network
Direction-of-arrival estimation
Sparse array
Title DOA estimation method for sparse arrays based on deep convolutional autoencoder and deep convolutional neural network
URI https://dx.doi.org/10.1016/j.dsp.2025.105627
Volume 168
WOSCitedRecordID wos001588368500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1051-2004
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007426
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLag4wAHxAZo45d84LQqKHXS2D5OsAETmpg2pIpL5NjOmknLqqRB47_nPTtJs65IgMQlrSw7jfy-2p9f3vseIW9jw3I9lSaIEj2FA0rGgoxLFjAU_0J1GBO7ROEv_OREzGbyaxs6VLtyArwsxc2NXPxXU0MbGBtTZ__C3P1NoQG-g9HhCmaH6x8ZHk57Y5TO8DmJbYloF00Ii0dV27GqKvWzHuP-ZfBdgbF24aLP28dC9YBmeY0Klyg0gZ71DV1QCNN9uDDyIcf9UFxgJZIxhoZgnpdPRei2SIz1aZx_9mzezFfY7D3Xp0XfdtRgw6xQsEKvhn-fW9_zY1Nc2WLot2Drfos-oeZWvCewvYm35nCB9oV37iz23u9w-c7UKDzKplizOPFKA2sa2md4X-YWKORgUt4nW4xPpRiRrYPPh7PjfvPmsavQ1z9H9yLchQSu_dBmKjOgJ-dPyOP2XEEPPB62yT1b7pBHA7XJp6QBZNAVMqhHBgVkUI8M6pFBHTIo9ECz01tmpwNkUEDGpi4eGbRFxjPy7ejw_P2noK26EWj4gy4DI2xks1BJ4O5a5IniWaImGdBGnk-UEnkkcz7RwPQ0sM9IRSoHGmnDKA4Fz4DePyej8rq0u4QmoTRwYJBScxuzLBQW6HjGjRW5ELmO9sh-N4HpwourpF3U4WUKs53ibKd-tvdI3E1x2rJDz_pSwMPvh734t2EvycMVaF-R0bJq7GvyQP9YFnX1pkXNL2LmjXc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DOA+estimation+method+for+sparse+arrays+based+on+deep+convolutional+autoencoder+and+deep+convolutional+neural+network&rft.jtitle=Digital+signal+processing&rft.au=Guo%2C+Shuhan&rft.au=Zhang%2C+Qin&rft.au=Fu%2C+Xiaolong&rft.au=Zheng%2C+Guimei&rft.date=2026-01-01&rft.pub=Elsevier+Inc&rft.issn=1051-2004&rft.volume=168&rft_id=info:doi/10.1016%2Fj.dsp.2025.105627&rft.externalDocID=S1051200425006499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon