DOA estimation method for sparse arrays based on deep convolutional autoencoder and deep convolutional neural network
This paper proposes a Direction-of-Arrival (DOA) estimation method based on Deep Convolutional Autoencoder (DCAE). This method constructs a DCAE to map the covariance matrix of the received signals of a sparse array into a feature space and then reconstructs it into the covariance matrix of the rece...
Saved in:
| Published in: | Digital signal processing Vol. 168; p. 105627 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.01.2026
|
| Subjects: | |
| ISSN: | 1051-2004 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a Direction-of-Arrival (DOA) estimation method based on Deep Convolutional Autoencoder (DCAE). This method constructs a DCAE to map the covariance matrix of the received signals of a sparse array into a feature space and then reconstructs it into the covariance matrix of the received signals of a uniform linear array. Subsequently, the DOA estimation is performed in combination with the MUSIC algorithm, which effectively increases the degrees of freedom of the sparse array and better solves the DOA estimation problem under the underdetermined condition of the sparse array. To address the issues of low estimation accuracy and poor angular resolution in traditional algorithms for sparse arrays, a DOA estimation method based on Deep Convolutional Neural Network (DCNN) is proposed. This method extracts the mapping from the covariance matrix of the received signals of the physical elements of the sparse array to the angles of arrival, achieving higher accuracy and higher resolution DOA estimation. |
|---|---|
| AbstractList | This paper proposes a Direction-of-Arrival (DOA) estimation method based on Deep Convolutional Autoencoder (DCAE). This method constructs a DCAE to map the covariance matrix of the received signals of a sparse array into a feature space and then reconstructs it into the covariance matrix of the received signals of a uniform linear array. Subsequently, the DOA estimation is performed in combination with the MUSIC algorithm, which effectively increases the degrees of freedom of the sparse array and better solves the DOA estimation problem under the underdetermined condition of the sparse array. To address the issues of low estimation accuracy and poor angular resolution in traditional algorithms for sparse arrays, a DOA estimation method based on Deep Convolutional Neural Network (DCNN) is proposed. This method extracts the mapping from the covariance matrix of the received signals of the physical elements of the sparse array to the angles of arrival, achieving higher accuracy and higher resolution DOA estimation. |
| ArticleNumber | 105627 |
| Author | Zheng, Guimei Zhou, Hao Guo, Shuhan Zhang, Qin Fu, Xiaolong |
| Author_xml | – sequence: 1 givenname: Shuhan orcidid: 0009-0008-9232-2061 surname: Guo fullname: Guo, Shuhan email: guoshuhan@163.com organization: Air and Missile Defense College Air Force Engineering University, Xi’an, 710051, Shanxi, China – sequence: 2 givenname: Qin orcidid: 0009-0005-8279-9788 surname: Zhang fullname: Zhang, Qin email: zhangqin_7256@163.com organization: Air and Missile Defense College Air Force Engineering University, Xi’an, 710051, Shanxi, China – sequence: 3 givenname: Xiaolong surname: Fu fullname: Fu, Xiaolong email: fuxiaolong_12@163.com organization: Air and Missile Defense College Air Force Engineering University, Xi’an, 710051, Shanxi, China – sequence: 4 givenname: Guimei surname: Zheng fullname: Zheng, Guimei email: zheng-gm@163.com organization: Air and Missile Defense College Air Force Engineering University, Xi’an, 710051, Shanxi, China – sequence: 5 givenname: Hao surname: Zhou fullname: Zhou, Hao email: 17792611529@126.com organization: Air and Missile Defense College Air Force Engineering University, Xi’an, 710051, Shanxi, China |
| BookMark | eNp9kM1OwzAQhH0oEi3wANz8AilrO38Vp6r8SpV6gbO1sdcipY0jOynq2-NSjojT7ErzrXZmxiad74ixWwFzAaK8285t7OcSZJH2opTVhE3TIDIJkF-yWYxbAKhyWU7Z-LBZcopDu8eh9R3f0_DhLXc-8NhjiMQxBDxG3mAky5PDEvXc-O7gd-MJwR3HcfDUGW8pcOzsX5aOxvAjw5cPn9fswuEu0s2vXrH3p8e31Uu23jy_rpbrzMhCDJmtSVEDuCgLMLUrsWpKFA2IonICsXZq4SphVC1MlSuFCh3UkkDlUFeNKNUVE-e7JvgYAzndh5Q0HLUAfepKb3XqSp-60ueuEnN_Zig9dmgp6GjalI5sG8gM2vr2H_ob6VZ4Jw |
| Cites_doi | 10.3390/s16091549 10.1109/TAP.2018.2874430 10.1109/LSP.2015.2409153 10.1109/79.526899 10.1109/TSP.2021.3068353 10.1109/TSP.2010.2089682 10.1109/LSP.2022.3199149 10.1111/j.2517-6161.1996.tb02080.x 10.1109/LSP.2019.2945115 10.1109/TAP.1968.1139138 10.1109/TSP.2005.850882 10.1109/18.212309 10.1109/TSP.2010.2049264 10.1109/TSP.2024.3487256 10.3390/s19030707 10.1109/JSAC.2024.3414613 10.1109/TAES.2024.3499900 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Inc. |
| Copyright_xml | – notice: 2025 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.dsp.2025.105627 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_dsp_2025_105627 S1051200425006499 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABDPE ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADFGL ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c251t-d8e3eb0a9650c8f6a7b6a1b0157f1aa8f39f71c381c7433a3af082e034087b163 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001588368500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-2004 |
| IngestDate | Sat Nov 29 06:54:13 EST 2025 Wed Dec 10 14:23:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sparse array Direction-of-arrival estimation Convolutional autoencoder Convolutional neural network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-d8e3eb0a9650c8f6a7b6a1b0157f1aa8f39f71c381c7433a3af082e034087b163 |
| ORCID | 0009-0008-9232-2061 0009-0005-8279-9788 |
| ParticipantIDs | crossref_primary_10_1016_j_dsp_2025_105627 elsevier_sciencedirect_doi_10_1016_j_dsp_2025_105627 |
| PublicationCentury | 2000 |
| PublicationDate | January 2026 2026-01-00 |
| PublicationDateYYYYMMDD | 2026-01-01 |
| PublicationDate_xml | – month: 01 year: 2026 text: January 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Digital signal processing |
| PublicationYear | 2026 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Vaidyanathan, Pal (bib0009) 2010 Wu, Liu, Huang (bib0024) 2019; 26 Liu, Zhang, Zhang (bib0006) 2024; 72 Johnson, Dudgeon (bib0001) 1993 Pal, Vaidyanathan (bib0013) 2011 Chakrabarty, Habets (bib0021) 2017 Zhang, Shi, Zheng (bib0003) 2025; 61 Zhang, Zhou, Zheng (bib0004) 2025 Tibshirani (bib0018) 1996; 58 Malioutov, Cetin, Willsky (bib0016) 2005; 53 Wagner, Park, Gerstoft (bib0019) 2021; 69 Zhou, Shi, Gu (bib0012) 2013 Meng, Zhou (bib0015) 2019; 19 Wu, Yuan, Ma (bib0026) 2021; 37 Ge, Hu, Dai, Plx (bib0025) 2019; 35 Hamid, Mats (bib0002) 1996; 13 Liu, Vaidyanathan (bib0014) 2015; 22 Linebarger, Sudborough, Tollis (bib0008) 1993; 39 Pal, Vaidyanathan (bib0011) 2010; 58 Liu, Zhang, Yu (bib0023) 2018; 66 Zhou, Ye, Qi (bib0020) 2022; 29 Moffet (bib0007) 1968; 16 Chakrabarty, Habets (bib0022) 2017 Salama, Ahmad, Swamy (bib0017) 2016; 16 Vaidyanathan, Pal (bib0010) 2011; 59 An, Yuen, Guan (bib0005) 2024; 42 Chakrabarty (10.1016/j.dsp.2025.105627_bib0021) 2017 Malioutov (10.1016/j.dsp.2025.105627_bib0016) 2005; 53 Liu (10.1016/j.dsp.2025.105627_bib0006) 2024; 72 Linebarger (10.1016/j.dsp.2025.105627_bib0008) 1993; 39 Tibshirani (10.1016/j.dsp.2025.105627_bib0018) 1996; 58 Wagner (10.1016/j.dsp.2025.105627_bib0019) 2021; 69 Ge (10.1016/j.dsp.2025.105627_bib0025) 2019; 35 Wu (10.1016/j.dsp.2025.105627_bib0026) 2021; 37 Johnson (10.1016/j.dsp.2025.105627_bib0001) 1993 Zhang (10.1016/j.dsp.2025.105627_bib0003) 2025; 61 Vaidyanathan (10.1016/j.dsp.2025.105627_bib0010) 2011; 59 Moffet (10.1016/j.dsp.2025.105627_bib0007) 1968; 16 Liu (10.1016/j.dsp.2025.105627_bib0014) 2015; 22 Vaidyanathan (10.1016/j.dsp.2025.105627_bib0009) 2010 Chakrabarty (10.1016/j.dsp.2025.105627_bib0022) 2017 Wu (10.1016/j.dsp.2025.105627_bib0024) 2019; 26 Zhou (10.1016/j.dsp.2025.105627_bib0012) 2013 Meng (10.1016/j.dsp.2025.105627_bib0015) 2019; 19 Zhou (10.1016/j.dsp.2025.105627_bib0020) 2022; 29 Pal (10.1016/j.dsp.2025.105627_bib0011) 2010; 58 Liu (10.1016/j.dsp.2025.105627_bib0023) 2018; 66 Pal (10.1016/j.dsp.2025.105627_bib0013) 2011 An (10.1016/j.dsp.2025.105627_bib0005) 2024; 42 Salama (10.1016/j.dsp.2025.105627_bib0017) 2016; 16 Hamid (10.1016/j.dsp.2025.105627_bib0002) 1996; 13 Zhang (10.1016/j.dsp.2025.105627_bib0004) 2025 |
| References_xml | – start-page: 136 year: 2017 end-page: 140 ident: bib0021 article-title: Broadband DOA estimation using convolutional neural networks trained with noise signals publication-title: 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics – volume: 26 start-page: 1688 year: 2019 end-page: 1692 ident: bib0024 article-title: Deep convolution net work for direction of arrival estimation with sparse prior publication-title: IEEE Signal Process. Lett. – volume: 59 start-page: 573 year: 2011 end-page: 586 ident: bib0010 article-title: Sparse sensing with co-prime samplers and arrays publication-title: IEEE Trans. Signal Process. – volume: 16 start-page: 1549 year: 2016 end-page: 1577 ident: bib0017 article-title: Underdetermined DOA estimation using MVDR-weighted LASSO publication-title: Sensors – volume: 16 start-page: 172 year: 1968 end-page: 175 ident: bib0007 article-title: Minimum-redundancy linear arrays publication-title: IEEE Trans. Antennas Propag. – volume: 35 start-page: 1376 year: 2019 end-page: 1384 ident: bib0025 article-title: DOA estimation for coherent sources using deep learning method publication-title: Signal Process. – volume: 13 start-page: 67 year: 1996 end-page: 94 ident: bib0002 article-title: Two decades of array signal processing research: the parametric approach publication-title: IEEE Signal Process. Mag. – start-page: 289 year: 2011 end-page: 294 ident: bib0013 article-title: Coprime sampling and the MUSIC algorithm publication-title: 2011 Digital Signal Processing and Signal Processing Education Meeting – year: 2025 ident: bib0004 article-title: DOA estimation of coherent sources with sparse arrays via toeplitz matrix reconstruction – volume: 39 start-page: 716 year: 1993 end-page: 721 ident: bib0008 article-title: Difference bases and sparse sensor arrays publication-title: IEEE Trans. Inf. Theory – volume: 58 start-page: 4167 year: 2010 end-page: 4181 ident: bib0011 article-title: Nested arrays: a novel approach to array processing with enhanced degrees of freedom publication-title: IEEE Trans. Signal Process. – start-page: 1405 year: 2010 end-page: 1409 ident: bib0009 article-title: Sparse sensing with coprime arrays publication-title: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers – volume: 37 start-page: 1 year: 2021 end-page: 10 ident: bib0026 article-title: Deep convolution neural network label decomposition method for large scale DOA Estimation publication-title: Signal Process. – volume: 72 start-page: 5354 year: 2024 end-page: 5370 ident: bib0006 article-title: Joint spectrum sensing and DOA estimation based on a resource-efficient sub-nyquist array receiver publication-title: IEEE Trans. Signal Process. – volume: 66 start-page: 7315 year: 2018 end-page: 7327 ident: bib0023 article-title: Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections publication-title: IEEE Trans. Antennas Propag. – volume: 53 start-page: 3010 year: 2005 end-page: 3022 ident: bib0016 article-title: A sparse signal reconstruction perspective for source localization with sensor arrays publication-title: IEEE Trans. Signal Process. – volume: 61 start-page: 4313 year: 2025 end-page: 4328 ident: bib0003 article-title: Augmented coprime array design via hole analysis for direction of arrival estimation publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0018 article-title: Regression shrinkage and selection via the LASSO publication-title: J. Royal Stat. Soc. Ser. B – volume: 22 start-page: 1438 year: 2015 end-page: 1442 ident: bib0014 article-title: Remarks on the spatial smoothing step in coarray MUSIC publication-title: IEEE Signal Process. Lett. – volume: 42 start-page: 2786 year: 2024 end-page: 2802 ident: bib0005 article-title: Two-dimensional direction-of-arrival estimation using stacked intelligent metasurfaces publication-title: IEEE J. Sel. Areas Commun. – volume: 19 start-page: 707 year: 2019 end-page: 720 ident: bib0015 article-title: Direction-of-arrival estimation in coprime array using the ESPRIT-based method publication-title: Sensors – year: 2017 ident: bib0022 article-title: Multi-speaker localization using convolutional neural network trained with noise publication-title: 2017 Conference on Neural Information Processing Systems – year: 1993 ident: bib0001 article-title: Array Signal Processing-Concepts and Techniques publication-title: Englewood Cliffs – volume: 29 start-page: 1858 year: 2022 end-page: 1862 ident: bib0020 article-title: DOA estimation based on pseudo-noise subspace for relocating enhanced nested array publication-title: IEEE Signal Process. Lett. – start-page: 1 year: 2013 end-page: 5 ident: bib0012 article-title: DECOM: DOA estimation with combined MUSIC for coprime array publication-title: 2013 International Conference on Wireless Communications and Signal Processing – volume: 69 start-page: 2144 year: 2021 end-page: 2157 ident: bib0019 article-title: Gridless DOA estimation and root-MUSIC for non-uniform linear arrays publication-title: IEEE Trans. Signal Process. – start-page: 1405 year: 2010 ident: 10.1016/j.dsp.2025.105627_bib0009 article-title: Sparse sensing with coprime arrays – start-page: 1 year: 2013 ident: 10.1016/j.dsp.2025.105627_bib0012 article-title: DECOM: DOA estimation with combined MUSIC for coprime array – volume: 16 start-page: 1549 issue: 9 year: 2016 ident: 10.1016/j.dsp.2025.105627_bib0017 article-title: Underdetermined DOA estimation using MVDR-weighted LASSO publication-title: Sensors doi: 10.3390/s16091549 – volume: 66 start-page: 7315 issue: 12 year: 2018 ident: 10.1016/j.dsp.2025.105627_bib0023 article-title: Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2018.2874430 – volume: 22 start-page: 1438 issue: 9 year: 2015 ident: 10.1016/j.dsp.2025.105627_bib0014 article-title: Remarks on the spatial smoothing step in coarray MUSIC publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2015.2409153 – volume: 13 start-page: 67 issue: 4 year: 1996 ident: 10.1016/j.dsp.2025.105627_bib0002 article-title: Two decades of array signal processing research: the parametric approach publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.526899 – volume: 69 start-page: 2144 year: 2021 ident: 10.1016/j.dsp.2025.105627_bib0019 article-title: Gridless DOA estimation and root-MUSIC for non-uniform linear arrays publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2021.3068353 – volume: 59 start-page: 573 issue: 2 year: 2011 ident: 10.1016/j.dsp.2025.105627_bib0010 article-title: Sparse sensing with co-prime samplers and arrays publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2089682 – volume: 29 start-page: 1858 year: 2022 ident: 10.1016/j.dsp.2025.105627_bib0020 article-title: DOA estimation based on pseudo-noise subspace for relocating enhanced nested array publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2022.3199149 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.dsp.2025.105627_bib0018 article-title: Regression shrinkage and selection via the LASSO publication-title: J. Royal Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 26 start-page: 1688 issue: 11 year: 2019 ident: 10.1016/j.dsp.2025.105627_bib0024 article-title: Deep convolution net work for direction of arrival estimation with sparse prior publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2945115 – volume: 16 start-page: 172 issue: 2 year: 1968 ident: 10.1016/j.dsp.2025.105627_bib0007 article-title: Minimum-redundancy linear arrays publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.1968.1139138 – volume: 53 start-page: 3010 issue: 8 year: 2005 ident: 10.1016/j.dsp.2025.105627_bib0016 article-title: A sparse signal reconstruction perspective for source localization with sensor arrays publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.850882 – start-page: 136 year: 2017 ident: 10.1016/j.dsp.2025.105627_bib0021 article-title: Broadband DOA estimation using convolutional neural networks trained with noise signals – volume: 35 start-page: 1376 issue: 08 year: 2019 ident: 10.1016/j.dsp.2025.105627_bib0025 article-title: DOA estimation for coherent sources using deep learning method publication-title: Signal Process. – volume: 39 start-page: 716 issue: 2 year: 1993 ident: 10.1016/j.dsp.2025.105627_bib0008 article-title: Difference bases and sparse sensor arrays publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.212309 – year: 2017 ident: 10.1016/j.dsp.2025.105627_bib0022 article-title: Multi-speaker localization using convolutional neural network trained with noise – volume: 37 start-page: 1 issue: 01 year: 2021 ident: 10.1016/j.dsp.2025.105627_bib0026 article-title: Deep convolution neural network label decomposition method for large scale DOA Estimation publication-title: Signal Process. – volume: 58 start-page: 4167 issue: 8 year: 2010 ident: 10.1016/j.dsp.2025.105627_bib0011 article-title: Nested arrays: a novel approach to array processing with enhanced degrees of freedom publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2049264 – year: 2025 ident: 10.1016/j.dsp.2025.105627_bib0004 – start-page: 289 year: 2011 ident: 10.1016/j.dsp.2025.105627_bib0013 article-title: Coprime sampling and the MUSIC algorithm – volume: 72 start-page: 5354 year: 2024 ident: 10.1016/j.dsp.2025.105627_bib0006 article-title: Joint spectrum sensing and DOA estimation based on a resource-efficient sub-nyquist array receiver publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2024.3487256 – year: 1993 ident: 10.1016/j.dsp.2025.105627_bib0001 article-title: Array Signal Processing-Concepts and Techniques – volume: 19 start-page: 707 issue: 3 year: 2019 ident: 10.1016/j.dsp.2025.105627_bib0015 article-title: Direction-of-arrival estimation in coprime array using the ESPRIT-based method publication-title: Sensors doi: 10.3390/s19030707 – volume: 42 start-page: 2786 issue: 10 year: 2024 ident: 10.1016/j.dsp.2025.105627_bib0005 article-title: Two-dimensional direction-of-arrival estimation using stacked intelligent metasurfaces publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2024.3414613 – volume: 61 start-page: 4313 issue: 2 year: 2025 ident: 10.1016/j.dsp.2025.105627_bib0003 article-title: Augmented coprime array design via hole analysis for direction of arrival estimation publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2024.3499900 |
| SSID | ssj0007426 |
| Score | 2.4147847 |
| Snippet | This paper proposes a Direction-of-Arrival (DOA) estimation method based on Deep Convolutional Autoencoder (DCAE). This method constructs a DCAE to map the... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 105627 |
| SubjectTerms | Convolutional autoencoder Convolutional neural network Direction-of-arrival estimation Sparse array |
| Title | DOA estimation method for sparse arrays based on deep convolutional autoencoder and deep convolutional neural network |
| URI | https://dx.doi.org/10.1016/j.dsp.2025.105627 |
| Volume | 168 |
| WOSCitedRecordID | wos001588368500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1051-2004 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007426 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLag4wAHxAZo45d84LQqKHXS2D5OsAETmpg2pIpL5NjOmknLqqRB47_nPTtJs65IgMQlrSw7jfy-2p9f3vseIW9jw3I9lSaIEj2FA0rGgoxLFjAU_0J1GBO7ROEv_OREzGbyaxs6VLtyArwsxc2NXPxXU0MbGBtTZ__C3P1NoQG-g9HhCmaH6x8ZHk57Y5TO8DmJbYloF00Ii0dV27GqKvWzHuP-ZfBdgbF24aLP28dC9YBmeY0Klyg0gZ71DV1QCNN9uDDyIcf9UFxgJZIxhoZgnpdPRei2SIz1aZx_9mzezFfY7D3Xp0XfdtRgw6xQsEKvhn-fW9_zY1Nc2WLot2Drfos-oeZWvCewvYm35nCB9oV37iz23u9w-c7UKDzKplizOPFKA2sa2md4X-YWKORgUt4nW4xPpRiRrYPPh7PjfvPmsavQ1z9H9yLchQSu_dBmKjOgJ-dPyOP2XEEPPB62yT1b7pBHA7XJp6QBZNAVMqhHBgVkUI8M6pFBHTIo9ECz01tmpwNkUEDGpi4eGbRFxjPy7ejw_P2noK26EWj4gy4DI2xks1BJ4O5a5IniWaImGdBGnk-UEnkkcz7RwPQ0sM9IRSoHGmnDKA4Fz4DePyej8rq0u4QmoTRwYJBScxuzLBQW6HjGjRW5ELmO9sh-N4HpwourpF3U4WUKs53ibKd-tvdI3E1x2rJDz_pSwMPvh734t2EvycMVaF-R0bJq7GvyQP9YFnX1pkXNL2LmjXc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DOA+estimation+method+for+sparse+arrays+based+on+deep+convolutional+autoencoder+and+deep+convolutional+neural+network&rft.jtitle=Digital+signal+processing&rft.au=Guo%2C+Shuhan&rft.au=Zhang%2C+Qin&rft.au=Fu%2C+Xiaolong&rft.au=Zheng%2C+Guimei&rft.date=2026-01-01&rft.pub=Elsevier+Inc&rft.issn=1051-2004&rft.volume=168&rft_id=info:doi/10.1016%2Fj.dsp.2025.105627&rft.externalDocID=S1051200425006499 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon |