SAM2Med3D: Leveraging video foundation models for 3D breast MRI segmentation

Foundation models such as the Segment Anything Model 2 (SAM2) have demonstrated impressive generalization across natural image domains. However, their potential in volumetric medical imaging remains largely underexplored, particularly under limited data conditions. In this paper, we present SAM2Med3...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & graphics Ročník 132; s. 104341
Hlavní autori: Chen, Ying, Cui, Wenjing, Dong, Xiaoyan, Zhou, Shuai, Wang, Zhongqiu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2025
Predmet:
ISSN:0097-8493
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Foundation models such as the Segment Anything Model 2 (SAM2) have demonstrated impressive generalization across natural image domains. However, their potential in volumetric medical imaging remains largely underexplored, particularly under limited data conditions. In this paper, we present SAM2Med3D, a novel multi-stage framework that adapts a general-purpose video foundation model for accurate and consistent 3D breast MRI segmentation by treating 3D MRI scan as a sequence of images. Unlike existing image-based approaches (e.g., MedSAM) that require large-scale medical data for fine-tuning, our method combines a lightweight, task-specific segmentation network with a video foundation model, achieving strong performance with only modest training data. To guide the foundation model effectively, we introduce a novel spatial filtering strategy that identifies reliable slices from the initial segmentation to serve as high-quality prompts. Additionally, we propose a confidence-driven fusion mechanism that adaptively integrates coarse and refined predictions across the volume, mitigating segmentation drift and ensuring both local accuracy and global volumetric consistency. We validate SAM2Med3D on two multi-center breast MRI datasets, including both public and self-collected datasets. Experimental results demonstrate that our method outperforms both task-specific segmentation networks and recent foundation-model-based methods, achieving superior accuracy and inter-slice consistency. •Leverages a video foundation model and task-specific model for 3D MRI segmentation.•Proposes a spatial filtering strategy to select reliable initial segmentations as prompts.•Introduces confidence-driven fusion to ensure 3D consistency.•Achieves accurate 3D segmentation on multi-center datasets.
AbstractList Foundation models such as the Segment Anything Model 2 (SAM2) have demonstrated impressive generalization across natural image domains. However, their potential in volumetric medical imaging remains largely underexplored, particularly under limited data conditions. In this paper, we present SAM2Med3D, a novel multi-stage framework that adapts a general-purpose video foundation model for accurate and consistent 3D breast MRI segmentation by treating 3D MRI scan as a sequence of images. Unlike existing image-based approaches (e.g., MedSAM) that require large-scale medical data for fine-tuning, our method combines a lightweight, task-specific segmentation network with a video foundation model, achieving strong performance with only modest training data. To guide the foundation model effectively, we introduce a novel spatial filtering strategy that identifies reliable slices from the initial segmentation to serve as high-quality prompts. Additionally, we propose a confidence-driven fusion mechanism that adaptively integrates coarse and refined predictions across the volume, mitigating segmentation drift and ensuring both local accuracy and global volumetric consistency. We validate SAM2Med3D on two multi-center breast MRI datasets, including both public and self-collected datasets. Experimental results demonstrate that our method outperforms both task-specific segmentation networks and recent foundation-model-based methods, achieving superior accuracy and inter-slice consistency. •Leverages a video foundation model and task-specific model for 3D MRI segmentation.•Proposes a spatial filtering strategy to select reliable initial segmentations as prompts.•Introduces confidence-driven fusion to ensure 3D consistency.•Achieves accurate 3D segmentation on multi-center datasets.
ArticleNumber 104341
Author Zhou, Shuai
Dong, Xiaoyan
Cui, Wenjing
Chen, Ying
Wang, Zhongqiu
Author_xml – sequence: 1
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
  email: 951835012@qq.com
  organization: Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
– sequence: 2
  givenname: Wenjing
  surname: Cui
  fullname: Cui, Wenjing
  email: ppgirlcwj@163.com
  organization: Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
– sequence: 3
  givenname: Xiaoyan
  surname: Dong
  fullname: Dong, Xiaoyan
  email: 894201678@qq.com
  organization: Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
– sequence: 4
  givenname: Shuai
  surname: Zhou
  fullname: Zhou, Shuai
  email: 1197248036@qq.com
  organization: Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province People’s Hospital, Nanjing, China
– sequence: 5
  givenname: Zhongqiu
  surname: Wang
  fullname: Wang, Zhongqiu
  email: zhongqiuwang0815@163.com
  organization: Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
BookMark eNp9kMtOwzAQRb0oEm3hA9j5BxL8SJwEVlXLo1IqJB5ry7HHkaPWRnaoxN-TUtasRjO6ZzRzFmjmgweEbijJKaHidsi16nNGWDn1BS_oDM0JaaqsLhp-iRYpDYQQxkQxR-3basd2YPjmDrdwhKh653t8dAYCtuHLGzW64PEhGNinaRIx3-Augkoj3r1ucYL-AH78TV2hC6v2Ca7_6hJ9PD68r5-z9uVpu161mWYlHTNDrQADSlRGKFXbRlNjp0M7q1kjCsGhEpyzpuS8EloxLXjHRcm6uu5qYi1fInreq2NIKYKVn9EdVPyWlMiTAjnISYE8KZBnBRNzf2amN-DoIMqkHXgNxkXQozTB_UP_APW6ZsU
Cites_doi 10.1109/TMI.2019.2959609
10.1109/JBHI.2025.3564381
10.1109/TIP.2023.3293771
10.1007/978-3-030-87193-2_11
10.1109/ICCV51070.2023.00371
10.1007/s12559-024-10257-5
10.1007/s10278-013-9622-7
10.1109/WACV51458.2022.00333
10.1038/s41467-024-44824-z
10.1016/j.media.2025.103547
10.1038/s41592-020-01008-z
10.1038/s41416-018-0185-8
10.1109/WACV51458.2022.00181
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cag.2025.104341
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cag_2025_104341
S0097849325001827
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABDPE
ABEFU
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AFFNX
AFJKZ
AFTJW
AGHFR
AGQPQ
AGSOS
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
LG9
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
UHS
VH1
VOH
WH7
WUQ
XPP
ZMT
ZY4
~02
~G-
~HD
9DU
AAYXX
ACLOT
CITATION
ID FETCH-LOGICAL-c251t-d1f6edea67d6aa8f9c1df043bfc296463e76332953376ca2c63b3652b88b80ff3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001584148200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0097-8493
IngestDate Sat Nov 29 06:51:00 EST 2025
Sat Sep 20 17:10:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Computer-aided detection
3D Segmentation
Foundation model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-d1f6edea67d6aa8f9c1df043bfc296463e76332953376ca2c63b3652b88b80ff3
ParticipantIDs crossref_primary_10_1016_j_cag_2025_104341
elsevier_sciencedirect_doi_10_1016_j_cag_2025_104341
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Computers & graphics
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yan X, Tang H, Sun S, Ma H, Kong D, Xie X. After-unet: Axial fusion transformer unet for medical image segmentation. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision. 2022, p. 3971–81.
Cao, Wang, Chen, Jiang, Zhang, Tian (b14) 2022
Ma, He, Li, Han, You, Wang (b19) 2024; 15
Ma, Li, Wang (b17) 2024
Saha, Harowicz, Grimm, Kim, Ghate, Walsh (b22) 2018; 119
Zhou, Guo, Zhang, Han, Yu, Wang (b15) 2023; 32
Dang, Nguyen, McCall, Elyan, Moreno-García (b9) 2024; 16
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (b5) 2016
Huang, Lin, Tong, Hu, Zhang, Iwamoto (b8) 2020
Zhou, Siddiquee, Tajbakhsh, Liang (b6) 2019; 39
Yue, Zhang, Hu, Xia, Luo, Wang (b21) 2024; vol. 38
Clark, Vendt, Smith, Freymann, Kirby, Koppel (b23) 2013; 26
Wu, Wang, Hong, Ji, Fu, Xu (b20) 2025; 102
Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, et al. Segment anything. In: Proceedings of the IEEE/CVF international conference on computer vision. 2023, p. 4015–26.
Ronneberger, Fischer, Brox (b4) 2015
Wenxuan W, Chen C, Meng D, Hong Y, Sen Z, Jiangyun L. Transbts: Multimodal brain tumor segmentation using transformer. In: International conference on medical image computing and computer-assisted intervention, springer. 2021, p. 109–19.
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (b3) 2021; 18
Jiang, Ding, Liu, Tao (b7) 2020
Isensee, Wald, Ulrich, Baumgartner, Roy, Maier-Hein (b16) 2024
Ravi, Gabeur, Hu, Hu, Ryali, Ma (b2) 2024
Chen, Lu, Yu, Luo, Adeli, Wang (b10) 2021
Fan, Yu, Huang, Wang, Yang, Jia (b18) 2025
Hatamizadeh A, Tang Y, Nath V, Yang D, Myronenko A, Landman B, et al. Unetr: Transformers for 3d medical image segmentation. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision. 2022, p. 574–84.
10.1016/j.cag.2025.104341_b1
Chen (10.1016/j.cag.2025.104341_b10) 2021
10.1016/j.cag.2025.104341_b12
10.1016/j.cag.2025.104341_b11
Saha (10.1016/j.cag.2025.104341_b22) 2018; 119
Isensee (10.1016/j.cag.2025.104341_b3) 2021; 18
Jiang (10.1016/j.cag.2025.104341_b7) 2020
Ravi (10.1016/j.cag.2025.104341_b2) 2024
Zhou (10.1016/j.cag.2025.104341_b6) 2019; 39
Fan (10.1016/j.cag.2025.104341_b18) 2025
Huang (10.1016/j.cag.2025.104341_b8) 2020
Cao (10.1016/j.cag.2025.104341_b14) 2022
10.1016/j.cag.2025.104341_b13
Yue (10.1016/j.cag.2025.104341_b21) 2024; vol. 38
Isensee (10.1016/j.cag.2025.104341_b16) 2024
Ma (10.1016/j.cag.2025.104341_b17) 2024
Çiçek (10.1016/j.cag.2025.104341_b5) 2016
Ronneberger (10.1016/j.cag.2025.104341_b4) 2015
Ma (10.1016/j.cag.2025.104341_b19) 2024; 15
Wu (10.1016/j.cag.2025.104341_b20) 2025; 102
Clark (10.1016/j.cag.2025.104341_b23) 2013; 26
Zhou (10.1016/j.cag.2025.104341_b15) 2023; 32
Dang (10.1016/j.cag.2025.104341_b9) 2024; 16
References_xml – start-page: 231
  year: 2020
  end-page: 241
  ident: b7
  article-title: Two-stage cascaded u-net: 1st place solution to brats challenge 2019 segmentation task
  publication-title: Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries: 5th international workshop, brainLes 2019, held in conjunction with MICCAI 2019, shenzhen, China, October 17, 2019, revised selected papers, part i 5
– volume: 16
  start-page: 1141
  year: 2024
  end-page: 1160
  ident: b9
  article-title: Two-layer ensemble of deep learning models for medical image segmentation
  publication-title: Cogn Comput
– reference: Hatamizadeh A, Tang Y, Nath V, Yang D, Myronenko A, Landman B, et al. Unetr: Transformers for 3d medical image segmentation. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision. 2022, p. 574–84.
– start-page: 205
  year: 2022
  end-page: 218
  ident: b14
  article-title: Swin-unet: Unet-like pure transformer for medical image segmentation
  publication-title: European conference on computer vision
– volume: 119
  start-page: 508
  year: 2018
  end-page: 516
  ident: b22
  article-title: A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-mri features
  publication-title: Br J Cancer
– volume: 102
  year: 2025
  ident: b20
  article-title: Medical sam adapter: Adapting segment anything model for medical image segmentation
  publication-title: Med Image Anal
– year: 2024
  ident: b2
  article-title: SAM 2: Segment anything in images and videos
– volume: 39
  start-page: 1856
  year: 2019
  end-page: 1867
  ident: b6
  article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans Med Imaging
– start-page: 234
  year: 2015
  end-page: 241
  ident: b4
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical image computing and computer-assisted intervention–mICCAI 2015: 18th international conference, munich, Germany, October 5-9, 2015, proceedings, part III 18
– reference: Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, et al. Segment anything. In: Proceedings of the IEEE/CVF international conference on computer vision. 2023, p. 4015–26.
– start-page: 488
  year: 2024
  end-page: 498
  ident: b16
  article-title: Nnu-net revisited: A call for rigorous validation in 3d medical image segmentation
  publication-title: International conference on medical image computing and computer-assisted intervention
– reference: Wenxuan W, Chen C, Meng D, Hong Y, Sen Z, Jiangyun L. Transbts: Multimodal brain tumor segmentation using transformer. In: International conference on medical image computing and computer-assisted intervention, springer. 2021, p. 109–19.
– volume: 26
  start-page: 1045
  year: 2013
  end-page: 1057
  ident: b23
  article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
– volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  ident: b3
  article-title: Nnu-net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nature Methods
– start-page: 424
  year: 2016
  end-page: 432
  ident: b5
  article-title: 3D U-net: learning dense volumetric segmentation from sparse annotation
  publication-title: Medical image computing and computer-assisted intervention–mICCAI 2016: 19th international conference, athens, Greece, October 17-21, 2016, proceedings, part II 19
– start-page: 1055
  year: 2020
  end-page: 1059
  ident: b8
  article-title: Unet 3+: A full-scale connected unet for medical image segmentation
  publication-title: ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing
– year: 2021
  ident: b10
  article-title: Transunet: Transformers make strong encoders for medical image segmentation
– volume: 32
  start-page: 4036
  year: 2023
  end-page: 4045
  ident: b15
  article-title: Nnformer: volumetric medical image segmentation via a 3D transformer
  publication-title: IEEE Trans Image Process
– year: 2024
  ident: b17
  article-title: U-mamba: Enhancing long-range dependency for biomedical image segmentation
– volume: vol. 38
  start-page: 6890
  year: 2024
  end-page: 6898
  ident: b21
  article-title: Surgicalsam: Efficient class promptable surgical instrument segmentation
  publication-title: Proceedings of the AAAI conference on artificial intelligence
– reference: Yan X, Tang H, Sun S, Ma H, Kong D, Xie X. After-unet: Axial fusion transformer unet for medical image segmentation. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision. 2022, p. 3971–81.
– volume: 15
  start-page: 654
  year: 2024
  ident: b19
  article-title: Segment anything in medical images
  publication-title: Nat Commun
– year: 2025
  ident: b18
  article-title: SliceMamba with neural architecture search for medical image segmentation
  publication-title: IEEE J Biomed Heal Informat.
– volume: 39
  start-page: 1856
  issue: 6
  year: 2019
  ident: 10.1016/j.cag.2025.104341_b6
  article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2959609
– start-page: 1055
  year: 2020
  ident: 10.1016/j.cag.2025.104341_b8
  article-title: Unet 3+: A full-scale connected unet for medical image segmentation
– year: 2025
  ident: 10.1016/j.cag.2025.104341_b18
  article-title: SliceMamba with neural architecture search for medical image segmentation
  publication-title: IEEE J Biomed Heal Informat.
  doi: 10.1109/JBHI.2025.3564381
– start-page: 488
  year: 2024
  ident: 10.1016/j.cag.2025.104341_b16
  article-title: Nnu-net revisited: A call for rigorous validation in 3d medical image segmentation
– volume: 32
  start-page: 4036
  year: 2023
  ident: 10.1016/j.cag.2025.104341_b15
  article-title: Nnformer: volumetric medical image segmentation via a 3D transformer
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2023.3293771
– start-page: 231
  year: 2020
  ident: 10.1016/j.cag.2025.104341_b7
  article-title: Two-stage cascaded u-net: 1st place solution to brats challenge 2019 segmentation task
– ident: 10.1016/j.cag.2025.104341_b11
  doi: 10.1007/978-3-030-87193-2_11
– start-page: 205
  year: 2022
  ident: 10.1016/j.cag.2025.104341_b14
  article-title: Swin-unet: Unet-like pure transformer for medical image segmentation
– volume: vol. 38
  start-page: 6890
  year: 2024
  ident: 10.1016/j.cag.2025.104341_b21
  article-title: Surgicalsam: Efficient class promptable surgical instrument segmentation
– ident: 10.1016/j.cag.2025.104341_b1
  doi: 10.1109/ICCV51070.2023.00371
– year: 2024
  ident: 10.1016/j.cag.2025.104341_b17
– volume: 16
  start-page: 1141
  issue: 3
  year: 2024
  ident: 10.1016/j.cag.2025.104341_b9
  article-title: Two-layer ensemble of deep learning models for medical image segmentation
  publication-title: Cogn Comput
  doi: 10.1007/s12559-024-10257-5
– volume: 26
  start-page: 1045
  year: 2013
  ident: 10.1016/j.cag.2025.104341_b23
  article-title: The cancer imaging archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9622-7
– ident: 10.1016/j.cag.2025.104341_b12
  doi: 10.1109/WACV51458.2022.00333
– volume: 15
  start-page: 654
  issue: 1
  year: 2024
  ident: 10.1016/j.cag.2025.104341_b19
  article-title: Segment anything in medical images
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-44824-z
– year: 2021
  ident: 10.1016/j.cag.2025.104341_b10
– volume: 102
  year: 2025
  ident: 10.1016/j.cag.2025.104341_b20
  article-title: Medical sam adapter: Adapting segment anything model for medical image segmentation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2025.103547
– start-page: 234
  year: 2015
  ident: 10.1016/j.cag.2025.104341_b4
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  ident: 10.1016/j.cag.2025.104341_b3
  article-title: Nnu-net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nature Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 119
  start-page: 508
  issue: 4
  year: 2018
  ident: 10.1016/j.cag.2025.104341_b22
  article-title: A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-mri features
  publication-title: Br J Cancer
  doi: 10.1038/s41416-018-0185-8
– ident: 10.1016/j.cag.2025.104341_b13
  doi: 10.1109/WACV51458.2022.00181
– start-page: 424
  year: 2016
  ident: 10.1016/j.cag.2025.104341_b5
  article-title: 3D U-net: learning dense volumetric segmentation from sparse annotation
– year: 2024
  ident: 10.1016/j.cag.2025.104341_b2
SSID ssj0002264
Score 2.412707
Snippet Foundation models such as the Segment Anything Model 2 (SAM2) have demonstrated impressive generalization across natural image domains. However, their...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 104341
SubjectTerms 3D Segmentation
Computer-aided detection
Foundation model
Title SAM2Med3D: Leveraging video foundation models for 3D breast MRI segmentation
URI https://dx.doi.org/10.1016/j.cag.2025.104341
Volume 132
WOSCitedRecordID wos001584148200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0097-8493
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002264
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBZN3ENyKH2k1GkbdOipyxZ7JWt3czOxS1LsUGqXOrksK63kB3Qd_AjJv8_osQ_cFtJCL4sR7MPzCc1oNPN9CH2QMRWMisAnGRU-ZYr6EWsLv8UjQTjLNAu_EZsILy-jyST-6jQ210ZOIMzz6O4uvvmvUMMYgK1bZ_8C7vKhMAC_AXS4AuxwfRTwo-4wGMqM9PRmfyDh-60QkW64W3qqlFGyIjiGjsEjPY_r6vSNN_x24a3l9KdrScrrwWuhALE288VQXddq5c9cn8dV4QxN4bUpFvgh80VttOfKgCfzdHlfzc7r2XJrkrGzbTqvZyOCjmvLK1NkRZtMVZNklt0YXCG1Uojlsmvzmr8s4TabsIDt-fSTfoM-hSaWHGuHGXtkmlDgsRDGtWCfFO6hRhB2YljcGt2L_uRL6ZJ1t7ClI7XfURxvm0K_nRf9PkCpBR3j5-iZ2y3grkX5BXoi85fosMYh-QoNSrxPcYU2NmjjCm1s0YaRFSY9bNHGgDauo32Evn_uj8_OfSeR4QsITDd-1lZMZjJlYcbSNFKxaGcK_gZXQp-nMyLBf5BA1xCHTKSBYIQT1gl4FPGopRR5jfbzZS7f6OZ9EXDGaKw5BCEujTPOwAGokHQgCmzRJvpY2CW5sUwoSVEiuEjAiIk2YmKN2ES0sFziQjkboiUA859vO_63296ig2ouvkP7m9VWvkdPxe1mvl6duMnwAG3NaEo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAM2Med3D%3A+Leveraging+video+foundation+models+for+3D+breast+MRI+segmentation&rft.jtitle=Computers+%26+graphics&rft.au=Chen%2C+Ying&rft.au=Cui%2C+Wenjing&rft.au=Dong%2C+Xiaoyan&rft.au=Zhou%2C+Shuai&rft.date=2025-11-01&rft.pub=Elsevier+Ltd&rft.issn=0097-8493&rft.volume=132&rft_id=info:doi/10.1016%2Fj.cag.2025.104341&rft.externalDocID=S0097849325001827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-8493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-8493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-8493&client=summon