Stamping workshop scheduling optimization considering multiple constraints under time-of-use electricity pricing
•First consideration of time‑of‑use electricity pricing in stamping workshop scheduling optimization.•A stamping workshop scheduling model considering multiple constraints is established.•A multi-threaded parallel decoding method is designed to improve decoding efficiency.•A selection strategy based...
Gespeichert in:
| Veröffentlicht in: | Computers & industrial engineering Jg. 206; S. 111199 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.08.2025
|
| Schlagworte: | |
| ISSN: | 0360-8352 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •First consideration of time‑of‑use electricity pricing in stamping workshop scheduling optimization.•A stamping workshop scheduling model considering multiple constraints is established.•A multi-threaded parallel decoding method is designed to improve decoding efficiency.•A selection strategy based on non-dominated hierarchy is proposed to accelerate the convergence of the algorithm.•Application validation is conducted in the stamping workshop of an automobile manufacturing enterprise.
In the context of intelligent manufacturing, the automotive manufacturing industry is facing the dual challenges of intensifying competition and rising energy costs. The stamping process is a critical stage in automobile manufacturing. To enhance the production efficiency of the stamping workshop and reduce energy costs, this paper aims to minimize the maximum completion time and total electricity cost by establishing a stamping workshop scheduling model considering multiple constraints under time-of-use (TOU) electricity pricing. An improved NSGA-II algorithm is proposed to solve this problem. The algorithm adopts a hybrid three-layer encoding scheme and designs a multi-threaded parallel decoding method to improve decoding efficiency. A penalty function approach is adopted to generate feasible solutions that satisfy workshop constraints. Meanwhile, a selection strategy based on non-dominated hierarchy is proposed to accelerate the convergence speed of the algorithm in the early stage. Additionally, adaptive crossover and mutation probabilities are introduced to enhance the search ability of the algorithm. Finally, through actual case studies and algorithm comparisons, the effectiveness and superiority of the improved NSGA-II algorithm are verified. |
|---|---|
| AbstractList | •First consideration of time‑of‑use electricity pricing in stamping workshop scheduling optimization.•A stamping workshop scheduling model considering multiple constraints is established.•A multi-threaded parallel decoding method is designed to improve decoding efficiency.•A selection strategy based on non-dominated hierarchy is proposed to accelerate the convergence of the algorithm.•Application validation is conducted in the stamping workshop of an automobile manufacturing enterprise.
In the context of intelligent manufacturing, the automotive manufacturing industry is facing the dual challenges of intensifying competition and rising energy costs. The stamping process is a critical stage in automobile manufacturing. To enhance the production efficiency of the stamping workshop and reduce energy costs, this paper aims to minimize the maximum completion time and total electricity cost by establishing a stamping workshop scheduling model considering multiple constraints under time-of-use (TOU) electricity pricing. An improved NSGA-II algorithm is proposed to solve this problem. The algorithm adopts a hybrid three-layer encoding scheme and designs a multi-threaded parallel decoding method to improve decoding efficiency. A penalty function approach is adopted to generate feasible solutions that satisfy workshop constraints. Meanwhile, a selection strategy based on non-dominated hierarchy is proposed to accelerate the convergence speed of the algorithm in the early stage. Additionally, adaptive crossover and mutation probabilities are introduced to enhance the search ability of the algorithm. Finally, through actual case studies and algorithm comparisons, the effectiveness and superiority of the improved NSGA-II algorithm are verified. |
| ArticleNumber | 111199 |
| Author | Yan, Jihong Wang, Chenglong |
| Author_xml | – sequence: 1 givenname: Jihong surname: Yan fullname: Yan, Jihong email: jyan@hit.edu.cn – sequence: 2 givenname: Chenglong surname: Wang fullname: Wang, Chenglong |
| BookMark | eNp9UMtOwzAQ9KFItIUP4JYfSLCdOmnECVU8KlXiAJwtPzatS2JHtgMqX49DObOXkWZ2VrOzQDPrLCB0Q3BBMKluj4UyUFBMWUHSNM0MzXFZ4XxdMnqJFiEcMcYr1pA5Gl6j6Adj99mX8x_h4IYsqAPosZs4N0TTm28RjbOZcjYYDX4S-rGLZujgl4xeGBtDNtqkZskBuWvzMUAGHajojTLxlA0T2v0VumhFF-D6D5fo_fHhbfOc716etpv7Xa4oIzFXCtO2aaCkrGWipA1ZSwySCFlVNZQVCCExVaKWulalZFoAZbpeSSqVWumqXCJyvqu8C8FDy1OAXvgTJ5hPNfEjTzXxqSZ-ril57s4eSME-DXge0opVoI1Pj3DtzD_uH3vVeNo |
| Cites_doi | 10.1016/j.jclepro.2017.07.158 10.3390/su16062443 10.3390/machines12090590 10.1109/4235.996017 10.1162/evco_a_00204 10.1007/s41660-022-00222-w 10.5859/KAIS.2016.25.4.105 10.15837/ijccc.2025.1.6874 10.1007/s40684-021-00411-x 10.1016/j.jclepro.2021.127850 10.1016/j.cie.2024.109890 10.1016/j.cie.2024.110001 10.3233/THC-213260 10.1080/00207543.2021.1996652 10.1016/j.cie.2024.110004 10.1109/ACCESS.2023.3281364 10.1109/4235.797969 10.1016/j.cie.2024.110151 10.1049/cim2.12117 10.1016/j.jmsy.2021.05.018 10.1016/j.asoc.2025.112764 10.3390/su11010179 10.1007/s00170-016-9732-8 10.1016/j.ejor.2022.09.034 10.1109/TASE.2021.3119353 10.1007/s00170-021-08209-6 10.1016/j.jclepro.2018.11.021 10.1016/j.cie.2021.107557 10.1109/TEVC.2016.2519378 10.1016/j.cie.2024.110419 10.1109/JRFID.2022.3211555 10.1016/j.ijpe.2022.108507 10.1007/s10479-024-06430-6 10.1016/j.cie.2024.110835 10.1109/TEVC.2013.2281535 10.1007/s00170-019-04022-4 10.1016/0360-8352(96)00045-9 10.1016/j.cor.2009.09.013 10.1142/S0219686723500300 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cie.2025.111199 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_cie_2025_111199 S0360835225003456 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AAEDT AAEDW AAFWJ AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYWO ABAOU ABDPE ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADGUI ADMUD ADNMO ADRHT ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- ~HD 9DU AAYXX ACLOT CITATION |
| ID | FETCH-LOGICAL-c251t-cc02f99e325f5a32918b0eb1ab667e36eaab02ca7bd7c3b5dae25d74b2bcc4d63 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001497885900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-8352 |
| IngestDate | Sat Nov 29 07:36:58 EST 2025 Sat Sep 13 17:02:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | NSGA-II algorithm Intelligent manufacturing Parallel decoding method Time-of-use electricity pricing Stamping workshop scheduling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-cc02f99e325f5a32918b0eb1ab667e36eaab02ca7bd7c3b5dae25d74b2bcc4d63 |
| ParticipantIDs | crossref_primary_10_1016_j_cie_2025_111199 elsevier_sciencedirect_doi_10_1016_j_cie_2025_111199 |
| PublicationCentury | 2000 |
| PublicationDate | August 2025 2025-08-00 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ji, Wang, Yan (b0065) 2025; 200 Jia, Yang, Li (b0070) 2024; 16 Tan, Yuan, Wang (b0160) 2021; 160 Park, Ham (b0130) 2022; 248 Zitzler, Thiele (b0210) 1999; 3 Deb, Pratap, Agarwal (b0025) 2002; 6 Xiao, Yin, Ren (b0165) 2024; 46 Deb, Jain (b0020) 2014; 18 Li, Huang, Zhao (b0090) 2017; 165 Zhang, Zhu, Zhou (b0180) 2022; 60 Barlatt, Cohn, Gusikhin (b0005) 2010; 37 Gao, Wang, Li (b0045) 2019; 104 Zhang, Zhuang, Tang (b0190) 2024; 6 Shao, Shao, Pi (b0150) 2022; 19 Gao, Huang, Li (b0040) 2017; 91 Zhang, Z., Wu, L., Peng, T., et al. (2019). An Improved Scheduling Approach for Minimizing Total Energy Consumption and Makespan in a Flexible Job Shop Environment. Peng, Xiong, Ren (b0140) 2022; 6 Gustavsson, Syberfeldt (b0060) 2018; 26 Xiong, Huang, Li (b0175) 2022; 118 Zhao, Wang, Zhu (b0205) 2025; 170 Destouet, Tlahig, Bettayeb (b0030) 2024; 195 Xiong, Huang, Li (b0170) 2022; 9 2019, 11(1), Article 179. DOI: 10.3390/su11010179. Mei, Lu, Lv (b0115) 2024; 12 Cheng, Jin, Olhofer (b0015) 2016; 20 Kashef, Elshaer (b0080) 2023; 22 Jia, Jia, Liu (b0075) 2024; 189 Shi, Xiong (b0155) 2024; 190 Chen, Chen, Tsai (b0010) 2022; 30 North Star Smart Grid Online, 2023. The power purchase prices of power grid companies across the country in July 2023 are announced (with price list attached) (4). http://www.chinasmartgrid.com.cn/news/20230628/648876-4.shtml. (Accessed 26 February 2025). Ghorbanzadeh, Ranjbar (b0055) 2023; 307 Lian, Zheng, Zhu (b0100) 2024; 188 Meng, Zhang, Shao (b0110) 2019; 210 Gao, Wang, Li (b0050) 2021; 311 Zhang, Li, Zhang (b0185) 2024; 191 Fan, Shen, Gao (b0035) 2021; 60 Rahman, Servranckx, Chakrabortty (b0145) 2025; 345 Murata, Ishibuchi, Tanaka (b0120) 1996; 30 Kim (b0085) 2016; 25 Liu, Liang, Hou (b0105) 2023; 11 Li, Wu, He (b0095) 2025; 20 Pawar, Bhosale (b0135) 2022; 6 Fan (10.1016/j.cie.2025.111199_b0035) 2021; 60 Jia (10.1016/j.cie.2025.111199_b0070) 2024; 16 Xiong (10.1016/j.cie.2025.111199_b0175) 2022; 118 Gao (10.1016/j.cie.2025.111199_b0050) 2021; 311 Mei (10.1016/j.cie.2025.111199_b0115) 2024; 12 Pawar (10.1016/j.cie.2025.111199_b0135) 2022; 6 Barlatt (10.1016/j.cie.2025.111199_b0005) 2010; 37 Chen (10.1016/j.cie.2025.111199_b0010) 2022; 30 Ghorbanzadeh (10.1016/j.cie.2025.111199_b0055) 2023; 307 Gustavsson (10.1016/j.cie.2025.111199_b0060) 2018; 26 Lian (10.1016/j.cie.2025.111199_b0100) 2024; 188 Shi (10.1016/j.cie.2025.111199_b0155) 2024; 190 Kashef (10.1016/j.cie.2025.111199_b0080) 2023; 22 Li (10.1016/j.cie.2025.111199_b0095) 2025; 20 Tan (10.1016/j.cie.2025.111199_b0160) 2021; 160 Destouet (10.1016/j.cie.2025.111199_b0030) 2024; 195 Li (10.1016/j.cie.2025.111199_b0090) 2017; 165 Peng (10.1016/j.cie.2025.111199_b0140) 2022; 6 Meng (10.1016/j.cie.2025.111199_b0110) 2019; 210 10.1016/j.cie.2025.111199_b0125 Cheng (10.1016/j.cie.2025.111199_b0015) 2016; 20 Murata (10.1016/j.cie.2025.111199_b0120) 1996; 30 10.1016/j.cie.2025.111199_b0200 Gao (10.1016/j.cie.2025.111199_b0045) 2019; 104 Park (10.1016/j.cie.2025.111199_b0130) 2022; 248 Xiao (10.1016/j.cie.2025.111199_b0165) 2024; 46 Deb (10.1016/j.cie.2025.111199_b0025) 2002; 6 Zhao (10.1016/j.cie.2025.111199_b0205) 2025; 170 Shao (10.1016/j.cie.2025.111199_b0150) 2022; 19 Zhang (10.1016/j.cie.2025.111199_b0180) 2022; 60 Xiong (10.1016/j.cie.2025.111199_b0170) 2022; 9 Gao (10.1016/j.cie.2025.111199_b0040) 2017; 91 Liu (10.1016/j.cie.2025.111199_b0105) 2023; 11 Rahman (10.1016/j.cie.2025.111199_b0145) 2025; 345 Jia (10.1016/j.cie.2025.111199_b0075) 2024; 189 Ji (10.1016/j.cie.2025.111199_b0065) 2025; 200 Kim (10.1016/j.cie.2025.111199_b0085) 2016; 25 Zhang (10.1016/j.cie.2025.111199_b0190) 2024; 6 Zhang (10.1016/j.cie.2025.111199_b0185) 2024; 191 Zitzler (10.1016/j.cie.2025.111199_b0210) 1999; 3 Deb (10.1016/j.cie.2025.111199_b0020) 2014; 18 |
| References_xml | – volume: 160 year: 2021 ident: b0160 article-title: A fatigue-conscious dual resource constrained flexible job shop scheduling problem by enhanced NSGA-II: An application from casting workshop – volume: 46 start-page: 5493 year: 2024 end-page: 5520 ident: b0165 article-title: Study on flexible job shop scheduling problem considering energy saving – volume: 22 start-page: 655 year: 2023 end-page: 665 ident: b0080 article-title: New Ant Colony Algorithm for Solving Partial Job Shop Scheduling Problem – volume: 6 start-page: 851 year: 2022 end-page: 856 ident: b0140 article-title: A Parallel Learning Approach for the Flexible Job Shop Scheduling Problem – volume: 190 year: 2024 ident: b0155 article-title: Solving the multi-objective job shop scheduling problems with overtime consideration by an enhanced NSGA-II – reference: Zhang, Z., Wu, L., Peng, T., et al. (2019). An Improved Scheduling Approach for Minimizing Total Energy Consumption and Makespan in a Flexible Job Shop Environment. – volume: 189 year: 2024 ident: b0075 article-title: A self-learning multi-population evolutionary algorithm for flexible job shop scheduling under time-of-use pricing – volume: 6 year: 2024 ident: b0190 article-title: A hybrid particle swarm optimisation for flexible casting job shop scheduling problem with batch processing machine – volume: 118 start-page: 3933 year: 2022 end-page: 3948 ident: b0175 article-title: Embodied energy of parts in sheet metal forming: Modeling and application for energy saving in the workshop – volume: 195 year: 2024 ident: b0030 article-title: Multi-objective sustainable flexible job shop scheduling problem: Balancing economic, ecological, and social criteria – volume: 25 start-page: 105 year: 2016 end-page: 119 ident: b0085 article-title: The Decoding Approaches of Genetic Algorithm for Job Shop Scheduling Problem – volume: 9 start-page: 1543 year: 2022 end-page: 1562 ident: b0170 article-title: Energy Consumption Evaluation in Stamping Workshops via a Discrete Event Simulation-Based Approach – volume: 307 start-page: 519 year: 2023 end-page: 537 ident: b0055 article-title: Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints – volume: 60 start-page: 298 year: 2021 end-page: 311 ident: b0035 article-title: A hybrid Jaya algorithm for solving flexible job shop scheduling problem considering multiple critical paths – volume: 60 start-page: 6597 year: 2022 end-page: 6615 ident: b0180 article-title: A node sequence-based ant colony optimisation algorithm for die scheduling problem with twin-crane transportation – volume: 104 start-page: 2273 year: 2019 end-page: 2285 ident: b0045 article-title: Comprehensive energy-saving method for sheet metal forming – volume: 188 year: 2024 ident: b0100 article-title: Proactive scheduling for steel plants with unrelated parallel machines and time uncertainty – volume: 248 year: 2022 ident: b0130 article-title: Energy-aware flexible job shop scheduling under time-of-use pricing – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: b0020 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints – volume: 345 start-page: 371 year: 2025 end-page: 403 ident: b0145 article-title: Synchronizing production and delivery in flow shops with time-of-use electricity pricing – volume: 170 year: 2025 ident: b0205 article-title: An inverse reinforcement learning algorithm with population evolution mechanism for the multi-objective flexible job-shop scheduling problem under time-of-use electricity tariffs – volume: 200 year: 2025 ident: b0065 article-title: A Multi-Type data driven framework for solving flexible job shop scheduling problem considering multiple production resource states – volume: 12 year: 2024 ident: b0115 article-title: Research on Multi-Objective Low-Carbon Flexible Job Shop Scheduling Based on Improved NSGA-II – volume: 91 start-page: 667 year: 2017 end-page: 678 ident: b0040 article-title: Carbon emission analysis and reduction for stamping process chain – volume: 37 start-page: 1298 year: 2010 end-page: 1307 ident: b0005 article-title: A hybridization of mathematical programming and dominance-driven enumeration for solving shift-selection and task-sequencing problems – volume: 19 start-page: 3379 year: 2022 end-page: 3394 ident: b0150 article-title: An Ant Colony Optimization Behavior-Based MOEA/D for Distributed Heterogeneous Hybrid Flow Shop Scheduling Problem Under Nonidentical Time-of-Use Electricity Tariffs – volume: 191 year: 2024 ident: b0185 article-title: Multi-objective evolutionary algorithm-enabled multi-stage collaborative scheduling for automotive production – volume: 30 start-page: 957 year: 1996 end-page: 968 ident: b0120 article-title: Multi-objective genetic algorithm and its application to flowshop scheduling – volume: 30 start-page: 1055 year: 2022 end-page: 1075 ident: b0010 article-title: Applying the task-technology fit model to construct the prototype of a medical staff scheduling system – volume: 16 year: 2024 ident: b0070 article-title: The Green Flexible Job-Shop Scheduling Problem Considering Cost, Carbon Emissions, and Customer Satisfaction under Time-of-Use Electricity Pricing – volume: 11 start-page: 54596 year: 2023 end-page: 54606 ident: b0105 article-title: Multi-Strategy Dynamic Evolution-Based Improved MOEA/D Algorithm for Solving Multi-Objective Fuzzy Flexible Job Shop Scheduling Problem – volume: 20 start-page: 773 year: 2016 end-page: 791 ident: b0015 article-title: A reference vector guided evolutionary algorithm for many-objective optimization – reference: , 2019, 11(1), Article 179. DOI: 10.3390/su11010179. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0025 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II – volume: 311 year: 2021 ident: b0050 article-title: Emergy-based method for evaluating and reducing the environmental impact of stamping systems – volume: 26 start-page: 89 year: 2018 end-page: 116 ident: b0060 article-title: A New Algorithm Using the Non-dominated Tree to improve Non-dominated Sorting – volume: 20 year: 2025 ident: b0095 article-title: Intelligent Scheduling of Automotive Stamping Workshops Based on an Enhanced Genetic Algorithm – reference: North Star Smart Grid Online, 2023. The power purchase prices of power grid companies across the country in July 2023 are announced (with price list attached) (4). http://www.chinasmartgrid.com.cn/news/20230628/648876-4.shtml. (Accessed 26 February 2025). – volume: 165 start-page: 1407 year: 2017 end-page: 1419 ident: b0090 article-title: Operation scheduling of multi-hydraulic press system for energy consumption reduction – volume: 210 start-page: 710 year: 2019 end-page: 723 ident: b0110 article-title: MILP models for energy-aware flexible job shop scheduling problem – volume: 6 start-page: 409 year: 2022 end-page: 430 ident: b0135 article-title: Flexible Job Shop Scheduling for Press Working Industries with Operation Precedence Constraint – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: b0210 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach – volume: 165 start-page: 1407 year: 2017 ident: 10.1016/j.cie.2025.111199_b0090 article-title: Operation scheduling of multi-hydraulic press system for energy consumption reduction publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2017.07.158 – volume: 16 issue: 6 year: 2024 ident: 10.1016/j.cie.2025.111199_b0070 article-title: The Green Flexible Job-Shop Scheduling Problem Considering Cost, Carbon Emissions, and Customer Satisfaction under Time-of-Use Electricity Pricing publication-title: Sustainability doi: 10.3390/su16062443 – volume: 12 issue: 9 year: 2024 ident: 10.1016/j.cie.2025.111199_b0115 article-title: Research on Multi-Objective Low-Carbon Flexible Job Shop Scheduling Based on Improved NSGA-II publication-title: Machines doi: 10.3390/machines12090590 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.cie.2025.111199_b0025 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 26 start-page: 89 issue: 1 year: 2018 ident: 10.1016/j.cie.2025.111199_b0060 article-title: A New Algorithm Using the Non-dominated Tree to improve Non-dominated Sorting publication-title: Evolutionary Computation doi: 10.1162/evco_a_00204 – volume: 6 start-page: 409 issue: 2 year: 2022 ident: 10.1016/j.cie.2025.111199_b0135 article-title: Flexible Job Shop Scheduling for Press Working Industries with Operation Precedence Constraint publication-title: Process Integration and Optimization for Sustainability doi: 10.1007/s41660-022-00222-w – ident: 10.1016/j.cie.2025.111199_b0125 – volume: 25 start-page: 105 issue: 4 year: 2016 ident: 10.1016/j.cie.2025.111199_b0085 article-title: The Decoding Approaches of Genetic Algorithm for Job Shop Scheduling Problem publication-title: The Journal of Information Systems doi: 10.5859/KAIS.2016.25.4.105 – volume: 20 issue: 01 year: 2025 ident: 10.1016/j.cie.2025.111199_b0095 article-title: Intelligent Scheduling of Automotive Stamping Workshops Based on an Enhanced Genetic Algorithm publication-title: International Journal of Computers Communications & Control doi: 10.15837/ijccc.2025.1.6874 – volume: 9 start-page: 1543 issue: 6 year: 2022 ident: 10.1016/j.cie.2025.111199_b0170 article-title: Energy Consumption Evaluation in Stamping Workshops via a Discrete Event Simulation-Based Approach publication-title: International Journal of Precision Engineering and Manufacturing-Green Technology doi: 10.1007/s40684-021-00411-x – volume: 311 year: 2021 ident: 10.1016/j.cie.2025.111199_b0050 article-title: Emergy-based method for evaluating and reducing the environmental impact of stamping systems publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2021.127850 – volume: 188 year: 2024 ident: 10.1016/j.cie.2025.111199_b0100 article-title: Proactive scheduling for steel plants with unrelated parallel machines and time uncertainty publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2024.109890 – volume: 190 year: 2024 ident: 10.1016/j.cie.2025.111199_b0155 article-title: Solving the multi-objective job shop scheduling problems with overtime consideration by an enhanced NSGA-II publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2024.110001 – volume: 30 start-page: 1055 issue: 5 year: 2022 ident: 10.1016/j.cie.2025.111199_b0010 article-title: Applying the task-technology fit model to construct the prototype of a medical staff scheduling system publication-title: Technology and Health Care doi: 10.3233/THC-213260 – volume: 60 start-page: 6597 issue: 21 year: 2022 ident: 10.1016/j.cie.2025.111199_b0180 article-title: A node sequence-based ant colony optimisation algorithm for die scheduling problem with twin-crane transportation publication-title: International Journal of Production Research doi: 10.1080/00207543.2021.1996652 – volume: 189 year: 2024 ident: 10.1016/j.cie.2025.111199_b0075 article-title: A self-learning multi-population evolutionary algorithm for flexible job shop scheduling under time-of-use pricing publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2024.110004 – volume: 11 start-page: 54596 year: 2023 ident: 10.1016/j.cie.2025.111199_b0105 article-title: Multi-Strategy Dynamic Evolution-Based Improved MOEA/D Algorithm for Solving Multi-Objective Fuzzy Flexible Job Shop Scheduling Problem publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3281364 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 10.1016/j.cie.2025.111199_b0210 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.797969 – volume: 191 year: 2024 ident: 10.1016/j.cie.2025.111199_b0185 article-title: Multi-objective evolutionary algorithm-enabled multi-stage collaborative scheduling for automotive production publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2024.110151 – volume: 6 issue: 4 year: 2024 ident: 10.1016/j.cie.2025.111199_b0190 article-title: A hybrid particle swarm optimisation for flexible casting job shop scheduling problem with batch processing machine publication-title: IET Collaborative Intelligent Manufacturing doi: 10.1049/cim2.12117 – volume: 60 start-page: 298 year: 2021 ident: 10.1016/j.cie.2025.111199_b0035 article-title: A hybrid Jaya algorithm for solving flexible job shop scheduling problem considering multiple critical paths publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2021.05.018 – volume: 46 start-page: 5493 issue: 3 year: 2024 ident: 10.1016/j.cie.2025.111199_b0165 article-title: Study on flexible job shop scheduling problem considering energy saving publication-title: Journal of Intelligent & Fuzzy Systems – volume: 170 year: 2025 ident: 10.1016/j.cie.2025.111199_b0205 article-title: An inverse reinforcement learning algorithm with population evolution mechanism for the multi-objective flexible job-shop scheduling problem under time-of-use electricity tariffs publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2025.112764 – ident: 10.1016/j.cie.2025.111199_b0200 doi: 10.3390/su11010179 – volume: 91 start-page: 667 issue: 1 year: 2017 ident: 10.1016/j.cie.2025.111199_b0040 article-title: Carbon emission analysis and reduction for stamping process chain publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-016-9732-8 – volume: 307 start-page: 519 issue: 2 year: 2023 ident: 10.1016/j.cie.2025.111199_b0055 article-title: Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2022.09.034 – volume: 19 start-page: 3379 issue: 4 year: 2022 ident: 10.1016/j.cie.2025.111199_b0150 article-title: An Ant Colony Optimization Behavior-Based MOEA/D for Distributed Heterogeneous Hybrid Flow Shop Scheduling Problem Under Nonidentical Time-of-Use Electricity Tariffs publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2021.3119353 – volume: 118 start-page: 3933 issue: 11–12 year: 2022 ident: 10.1016/j.cie.2025.111199_b0175 article-title: Embodied energy of parts in sheet metal forming: Modeling and application for energy saving in the workshop publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-021-08209-6 – volume: 210 start-page: 710 year: 2019 ident: 10.1016/j.cie.2025.111199_b0110 article-title: MILP models for energy-aware flexible job shop scheduling problem publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2018.11.021 – volume: 160 year: 2021 ident: 10.1016/j.cie.2025.111199_b0160 article-title: A fatigue-conscious dual resource constrained flexible job shop scheduling problem by enhanced NSGA-II: An application from casting workshop publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107557 – volume: 20 start-page: 773 issue: 5 year: 2016 ident: 10.1016/j.cie.2025.111199_b0015 article-title: A reference vector guided evolutionary algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2016.2519378 – volume: 195 year: 2024 ident: 10.1016/j.cie.2025.111199_b0030 article-title: Multi-objective sustainable flexible job shop scheduling problem: Balancing economic, ecological, and social criteria publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2024.110419 – volume: 6 start-page: 851 year: 2022 ident: 10.1016/j.cie.2025.111199_b0140 article-title: A Parallel Learning Approach for the Flexible Job Shop Scheduling Problem publication-title: IEEE journal of radio frequency identification doi: 10.1109/JRFID.2022.3211555 – volume: 248 year: 2022 ident: 10.1016/j.cie.2025.111199_b0130 article-title: Energy-aware flexible job shop scheduling under time-of-use pricing publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2022.108507 – volume: 345 start-page: 371 issue: 1 year: 2025 ident: 10.1016/j.cie.2025.111199_b0145 article-title: Synchronizing production and delivery in flow shops with time-of-use electricity pricing publication-title: Annals of Operations Research doi: 10.1007/s10479-024-06430-6 – volume: 200 year: 2025 ident: 10.1016/j.cie.2025.111199_b0065 article-title: A Multi-Type data driven framework for solving flexible job shop scheduling problem considering multiple production resource states publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2024.110835 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.cie.2025.111199_b0020 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281535 – volume: 104 start-page: 2273 issue: 5–8 year: 2019 ident: 10.1016/j.cie.2025.111199_b0045 article-title: Comprehensive energy-saving method for sheet metal forming publication-title: International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-019-04022-4 – volume: 30 start-page: 957 issue: 4 year: 1996 ident: 10.1016/j.cie.2025.111199_b0120 article-title: Multi-objective genetic algorithm and its application to flowshop scheduling publication-title: Computers and Industrial Engineering doi: 10.1016/0360-8352(96)00045-9 – volume: 37 start-page: 1298 issue: 7 year: 2010 ident: 10.1016/j.cie.2025.111199_b0005 article-title: A hybridization of mathematical programming and dominance-driven enumeration for solving shift-selection and task-sequencing problems publication-title: Computers & Operations Research doi: 10.1016/j.cor.2009.09.013 – volume: 22 start-page: 655 issue: 3 year: 2023 ident: 10.1016/j.cie.2025.111199_b0080 article-title: New Ant Colony Algorithm for Solving Partial Job Shop Scheduling Problem publication-title: Journal of Advanced Manufacturing Systems doi: 10.1142/S0219686723500300 |
| SSID | ssj0004591 |
| Score | 2.4518998 |
| Snippet | •First consideration of time‑of‑use electricity pricing in stamping workshop scheduling optimization.•A stamping workshop scheduling model considering multiple... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 111199 |
| SubjectTerms | Intelligent manufacturing NSGA-II algorithm Parallel decoding method Stamping workshop scheduling Time-of-use electricity pricing |
| Title | Stamping workshop scheduling optimization considering multiple constraints under time-of-use electricity pricing |
| URI | https://dx.doi.org/10.1016/j.cie.2025.111199 |
| Volume | 206 |
| WOSCitedRecordID | wos001497885900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004591 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbo0kN7KI-2Km1BPvRUZBScp48IUQEHVKlU7C1y_NAugiTaLBU_v-PXxgIqtZW4ZCNHTlaeL-OZycx8CH0xhMYS9hGiKOXgoGhKuNYpSams2KFOWFJxSzZRXlxU0yn77umtBksnULZtdX_P-mcVNYyBsE3p7D-Ie3VTGIBzEDocQexw_CvBg_l4a4ugTMrVMOv6fXBgYUOxdecdaIhbX3ppMs4tWae5sEosNIOWN2I5WI7chaWfJ50md4Pad6w5c2Fs9978-o0v9DrwHBGDRdR8pAVRY9vDlZ5xodfz-awbB698-Pp4BjNuwgUflaD5KifOh8pCucyYm-RKtBJiTL5Y_VLbceCxKndRhesDUHEH5glWuTsypQcdsn-Y-1pLMjftdvLiBVqnZc6qCVo_OjuZnkft4x2FYvgf4TO3Tfh78KCnDZXI-LjcRG-814CPnLS30Jpqt9GG9yCw18_DNnodtZd8i_oABRyggEco4BgKOIICDlDAERSwhQKOoIAjKGAPhXfo57eTy-NT4hk2iAC7dkmESKhmTKU01zlPKTusmgR2b94URanSQnHeJFTwspGlSJtcckVzWWYNbYTIZJG-R5O2a9UHhHkidQruhslXhlde8UxUhcq40rKSipU76GtYzrp3jVTqkGF4XcM61Wbta7f2OygLC157S9BZeDWg48_TPv7ftE_o1Qjhz2iyXNypXfRS_FrOh8Wex9BvHByKeA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stamping+workshop+scheduling+optimization+considering+multiple+constraints+under+time-of-use+electricity+pricing&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Yan%2C+Jihong&rft.au=Wang%2C+Chenglong&rft.date=2025-08-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.volume=206&rft_id=info:doi/10.1016%2Fj.cie.2025.111199&rft.externalDocID=S0360835225003456 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |