One-step variation included compact modeling with conditional variational autoencoder
•A machine learning assisted compact modeling approach is proposed to include variation in one step by conditional variational autoencoder.•Simplicity and high accuracy are achieved and statistical results generated by the model can reflect the actual situation.•The trained model is compatible with...
Uloženo v:
| Vydáno v: | Solid-state electronics Ročník 227; s. 109119 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2025
|
| Témata: | |
| ISSN: | 0038-1101 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A machine learning assisted compact modeling approach is proposed to include variation in one step by conditional variational autoencoder.•Simplicity and high accuracy are achieved and statistical results generated by the model can reflect the actual situation.•The trained model is compatible with SPICE, thus can simulate variation in circuits.
Efficient and accurate variation modeling serves as a critical part in circuit evaluation, which can reproduce actual electrical behavior of semiconductor devices. Conventional variation modeling usually consists of two steps: compact modeling the basic electrical properties and sub-modeling the variation sources introduced in MOSFET manufacturing process, mostly structural and doping parameters. This lengthy process results in a gap between device production and rapid circuit analysis. In order to improve modeling efficiency, in this work, we propose a one-step variation-included compact modeling approach leveraging machine learning. Utilizing conditional variational autoencoder (cVAE), currents with variation are directly constructed without the sub-modeling step, as variation sources of the cVAE model are automatically extracted. Benchmark against prior distribution of dataset generated by Monte Carlo simulation of BSIM-CMG, normalized variation in figure of merits (FoMs) of cVAE generated I-V curves are all above 0.9. After implementing the model in SPICE, high accuracy in circuit-level variation modeling also indicates the potential of the proposed model. |
|---|---|
| AbstractList | •A machine learning assisted compact modeling approach is proposed to include variation in one step by conditional variational autoencoder.•Simplicity and high accuracy are achieved and statistical results generated by the model can reflect the actual situation.•The trained model is compatible with SPICE, thus can simulate variation in circuits.
Efficient and accurate variation modeling serves as a critical part in circuit evaluation, which can reproduce actual electrical behavior of semiconductor devices. Conventional variation modeling usually consists of two steps: compact modeling the basic electrical properties and sub-modeling the variation sources introduced in MOSFET manufacturing process, mostly structural and doping parameters. This lengthy process results in a gap between device production and rapid circuit analysis. In order to improve modeling efficiency, in this work, we propose a one-step variation-included compact modeling approach leveraging machine learning. Utilizing conditional variational autoencoder (cVAE), currents with variation are directly constructed without the sub-modeling step, as variation sources of the cVAE model are automatically extracted. Benchmark against prior distribution of dataset generated by Monte Carlo simulation of BSIM-CMG, normalized variation in figure of merits (FoMs) of cVAE generated I-V curves are all above 0.9. After implementing the model in SPICE, high accuracy in circuit-level variation modeling also indicates the potential of the proposed model. |
| ArticleNumber | 109119 |
| Author | Tang, Zili Xu, Jinghan Liu, Xiaoyan Zhou, Zheng Zhang, Xing Wang, Shuhan |
| Author_xml | – sequence: 1 givenname: Shuhan surname: Wang fullname: Wang, Shuhan organization: School of Integrated Circuits, Peking University, Beijing 100871, China – sequence: 2 givenname: Zheng surname: Zhou fullname: Zhou, Zheng email: zhouzime@pku.edu.cn organization: School of Integrated Circuits, Peking University, Beijing 100871, China – sequence: 3 givenname: Zili surname: Tang fullname: Tang, Zili organization: School of Integrated Circuits, Peking University, Beijing 100871, China – sequence: 4 givenname: Jinghan surname: Xu fullname: Xu, Jinghan organization: School of Integrated Circuits, Peking University, Beijing 100871, China – sequence: 5 givenname: Xiaoyan surname: Liu fullname: Liu, Xiaoyan organization: School of Integrated Circuits, Peking University, Beijing 100871, China – sequence: 6 givenname: Xing surname: Zhang fullname: Zhang, Xing email: zhx@pku.edu.cn organization: School of Integrated Circuits, Peking University, Beijing 100871, China |
| BookMark | eNp9kMtKAzEUhrOoYFt9AHfzAlNPJsk4wZUUL4VCN3YdchtNmSYlSSu-vRlGcOfq3P7v8PMv0MwHbxG6w7DCgNv7wyolu2qgYWXmGPMZmgOQrsblfI0WKR0AoGkxzNF-522dsj1VFxmdzC74ynk9nI01lQ7Hk9S5OgZjB-c_qi-XP8vWGzcK5fAHlV6ec7BeF228QVe9HJK9_a1LtH95fl-_1dvd62b9tK11w3CudUsU6xjoVpEOeGcIfeCcSEp7hqFRXBNtGtq3CjhVwKiRrFe6w7KnXFFOlghPf3UMKUXbi1N0Rxm_BQYxZiEOomQhxizElEVhHifGFmMXZ6NI2hXf1rhodRYmuH_oH4JVbGA |
| Cites_doi | 10.1109/TED.2023.3274510 10.1016/j.sse.2007.04.008 10.1145/3670474.3685972 10.3390/electronics11172761 10.1109/JEDS.2020.3024669 10.1109/TED.2020.3048918 10.1109/TCAD.2023.3285032 10.1016/j.microrel.2008.07.039 10.1109/TCAD.2010.2042892 10.1007/978-3-7091-6827-1_73 10.1109/TCAD.2022.3193330 10.1109/ACCESS.2020.3014470 10.1109/TED.2018.2790083 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.sse.2025.109119 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_sse_2025_109119 S0038110125000644 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 9JN AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABFRF ABJNI ABMAC ABNEU ABWVN ABXDB ABXRA ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AEZYN AFFNX AFJKZ AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. PZZ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SPG SSH SSM SSQ SST SSZ T5K TAE TN5 WH7 WUQ XSW ZMT ZY4 ~G- 9DU AAYXX ACLOT CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c251t-c63b5850c6b38098d347993a44f5102b9c3cd24f6b094b054da5fbc81af49b493 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001464940600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0038-1101 |
| IngestDate | Sat Nov 29 07:55:41 EST 2025 Sat Jun 21 16:54:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Variational autoencoder Variation modeling Compact model Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-c63b5850c6b38098d347993a44f5102b9c3cd24f6b094b054da5fbc81af49b493 |
| ParticipantIDs | crossref_primary_10_1016_j_sse_2025_109119 elsevier_sciencedirect_doi_10_1016_j_sse_2025_109119 |
| PublicationCentury | 2000 |
| PublicationDate | August 2025 2025-08-00 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Solid-state electronics |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Alam (b0005) 2008; 48 Wei, Wang, Zhao, Jiang, Wan (b0030) 2022; 42 Yang, Sun, Li, Shi, Liu (b0080) 2023; 70 Kingma DP. Auto-encoding variational bayes Li (b0020) 2024 Sohn, Lee, Yan (b0085) 2015; 28 Choe, Kwak, Yu (b0025) 2023 Mehta, Raju, Xiao, Wang, Zhang, Wong (b0055) 2020; 8 Woo, Jeong, Choi, Cho, Kong, Kim (b0040) 2022; 11 Zhang, Jiang, Wang, Guo, Wang, Huang (b0075) 2018; 65 Jan. 1998. Katto (b0100) 2007; 51 Li, McAndrew, Wu, Chaudhry, Victory, Gildenblat (b0045) 2010; 29 Wong (b0060) 2020; 8 Dai (b0065) 2023; 42 Lin S, Roberts SJ, Trigoni N, Clark R, Balancing reconstruction quality and regularisation in ELBO for VAEs; Sep. 2019 [Online]. Available: https://arxiv.org/abs/1909.03765. Jiang, Wang, Wang, Cheng, Asenov, Huang (b0070) 2015 Dietrich, Haase (b0010) 2011 Wang, Kim, Ryu, Jeong, Choi, Kim (b0035) 2021; 68 2013. Zhang L, Peng B, Li Y, Liu H, Dai W, Wang R. When device modeling meets machine learning: opportunities and challenges Sep. 2024. C. C. McAndrew, Statistical Circuit Modeling 10.1016/j.sse.2025.109119_b0090 Wang (10.1016/j.sse.2025.109119_b0035) 2021; 68 Wong (10.1016/j.sse.2025.109119_b0060) 2020; 8 Dai (10.1016/j.sse.2025.109119_b0065) 2023; 42 Woo (10.1016/j.sse.2025.109119_b0040) 2022; 11 Yang (10.1016/j.sse.2025.109119_b0080) 2023; 70 Choe (10.1016/j.sse.2025.109119_b0025) 2023 Katto (10.1016/j.sse.2025.109119_b0100) 2007; 51 Wei (10.1016/j.sse.2025.109119_b0030) 2022; 42 Sohn (10.1016/j.sse.2025.109119_b0085) 2015; 28 Mehta (10.1016/j.sse.2025.109119_b0055) 2020; 8 Jiang (10.1016/j.sse.2025.109119_b0070) 2015 Alam (10.1016/j.sse.2025.109119_b0005) 2008; 48 10.1016/j.sse.2025.109119_b0015 Li (10.1016/j.sse.2025.109119_b0045) 2010; 29 Zhang (10.1016/j.sse.2025.109119_b0075) 2018; 65 Li (10.1016/j.sse.2025.109119_b0020) 2024 10.1016/j.sse.2025.109119_b0050 Dietrich (10.1016/j.sse.2025.109119_b0010) 2011 10.1016/j.sse.2025.109119_b0095 |
| References_xml | – reference: Zhang L, Peng B, Li Y, Liu H, Dai W, Wang R. When device modeling meets machine learning: opportunities and challenges, – volume: 8 start-page: 143519 year: 2020 end-page: 143529 ident: b0055 article-title: Improvement of TCAD augmented machine learning using autoencoder for semiconductor variation identification and inverse design – volume: 68 start-page: 1318 year: 2021 end-page: 1325 ident: b0035 article-title: Artificial neural network-based compact modeling methodology for advanced transistors – reference: . [Online]. Available: https://arxiv.org/abs/1909.03765. – volume: 48 start-page: 1114 year: 2008 end-page: 1122 ident: b0005 article-title: Reliability- and process-variation aware design of integrated circuits publication-title: , – volume: 8 start-page: 992 year: 2020 end-page: 1000 ident: b0060 article-title: TCAD-machine learning framework for device variation and operating temperature analysis with experimental demonstration publication-title: , – volume: 70 start-page: 3935 year: 2023 end-page: 3942 ident: b0080 article-title: Compact modeling of process variations in nanosheet complementary FET (CFET) and circuit performance predictions – volume: 51 start-page: 905 year: 2007 end-page: 912 ident: b0100 article-title: MOSFET I–V characteristics at small and large drain biases in the linear region – reference: ; 2013. – volume: 11 start-page: 2761 year: 2022 ident: b0040 article-title: Machine-learning-based compact modeling for sub-3-nm-node emerging transistors – year: 2024 ident: b0020 article-title: Overview of emerging semiconductor device model methodologies: from device physics to machine learning engines – volume: 42 start-page: 5156 year: 2023 end-page: 5160 ident: b0065 article-title: Statistical compact modeling with artificial neural networks – year: 2023 ident: b0025 article-title: Machine learning-assisted compact modeling of w-doped indium oxide channel transistor for back-end-of-line applications – reference: Kingma DP. Auto-encoding variational bayes, – volume: 42 start-page: 1250 year: 2022 end-page: 1254 ident: b0030 article-title: A new compact MOSFET model based on artificial neural network with unique data preprocessing and sampling techniques – reference: , Jan. 1998. – volume: 65 start-page: 847 year: 2018 end-page: 854 ident: b0075 article-title: Extraction of process variation parameters in FinFET technology based on compact modeling and characterization – year: 2011 ident: b0010 – reference: C. C. McAndrew, Statistical Circuit Modeling, – volume: 28 year: 2015 ident: b0085 article-title: Learning structured output representation using deep conditional generative models – reference: Lin S, Roberts SJ, Trigoni N, Clark R, Balancing reconstruction quality and regularisation in ELBO for VAEs; Sep. 2019, – reference: , Sep. 2024. – volume: 29 start-page: 599 year: 2010 end-page: 606 ident: b0045 article-title: Statistical modeling with the PSP MOSFET model – year: 2015 ident: b0070 article-title: Predictive compact modeling of random variations in FinFET technology for 16/14nm node and beyond – year: 2024 ident: 10.1016/j.sse.2025.109119_b0020 article-title: Overview of emerging semiconductor device model methodologies: from device physics to machine learning engines publication-title: Fundam Res – ident: 10.1016/j.sse.2025.109119_b0090 – volume: 70 start-page: 3935 issue: 7 year: 2023 ident: 10.1016/j.sse.2025.109119_b0080 article-title: Compact modeling of process variations in nanosheet complementary FET (CFET) and circuit performance predictions publication-title: IEEE Trans Electron Devices doi: 10.1109/TED.2023.3274510 – volume: 51 start-page: 905 issue: 6 year: 2007 ident: 10.1016/j.sse.2025.109119_b0100 article-title: MOSFET I–V characteristics at small and large drain biases in the linear region publication-title: Solid-State Electron doi: 10.1016/j.sse.2007.04.008 – ident: 10.1016/j.sse.2025.109119_b0015 doi: 10.1145/3670474.3685972 – volume: 11 start-page: 2761 issue: 17 year: 2022 ident: 10.1016/j.sse.2025.109119_b0040 article-title: Machine-learning-based compact modeling for sub-3-nm-node emerging transistors publication-title: Electronics doi: 10.3390/electronics11172761 – volume: 8 start-page: 992 year: 2020 ident: 10.1016/j.sse.2025.109119_b0060 article-title: TCAD-machine learning framework for device variation and operating temperature analysis with experimental demonstration publication-title: IEEE J Electron Devices Soc, doi: 10.1109/JEDS.2020.3024669 – ident: 10.1016/j.sse.2025.109119_b0095 – volume: 68 start-page: 1318 issue: 3 year: 2021 ident: 10.1016/j.sse.2025.109119_b0035 article-title: Artificial neural network-based compact modeling methodology for advanced transistors publication-title: IEEE Trans Electron Devices doi: 10.1109/TED.2020.3048918 – volume: 28 year: 2015 ident: 10.1016/j.sse.2025.109119_b0085 article-title: Learning structured output representation using deep conditional generative models publication-title: Adv Neural Inf Proces Syst NIPS – volume: 42 start-page: 5156 issue: 12 year: 2023 ident: 10.1016/j.sse.2025.109119_b0065 article-title: Statistical compact modeling with artificial neural networks publication-title: IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. doi: 10.1109/TCAD.2023.3285032 – volume: 48 start-page: 1114 issue: 8 year: 2008 ident: 10.1016/j.sse.2025.109119_b0005 article-title: Reliability- and process-variation aware design of integrated circuits publication-title: Microelectron Reliab, doi: 10.1016/j.microrel.2008.07.039 – volume: 29 start-page: 599 issue: 4 year: 2010 ident: 10.1016/j.sse.2025.109119_b0045 article-title: Statistical modeling with the PSP MOSFET model publication-title: IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. doi: 10.1109/TCAD.2010.2042892 – year: 2023 ident: 10.1016/j.sse.2025.109119_b0025 article-title: Machine learning-assisted compact modeling of w-doped indium oxide channel transistor for back-end-of-line applications publication-title: IEEE Trans Electron Devices – ident: 10.1016/j.sse.2025.109119_b0050 doi: 10.1007/978-3-7091-6827-1_73 – year: 2011 ident: 10.1016/j.sse.2025.109119_b0010 – volume: 42 start-page: 1250 issue: 4 year: 2022 ident: 10.1016/j.sse.2025.109119_b0030 article-title: A new compact MOSFET model based on artificial neural network with unique data preprocessing and sampling techniques publication-title: IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. doi: 10.1109/TCAD.2022.3193330 – volume: 8 start-page: 143519 year: 2020 ident: 10.1016/j.sse.2025.109119_b0055 article-title: Improvement of TCAD augmented machine learning using autoencoder for semiconductor variation identification and inverse design publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3014470 – year: 2015 ident: 10.1016/j.sse.2025.109119_b0070 article-title: Predictive compact modeling of random variations in FinFET technology for 16/14nm node and beyond publication-title: IEEE Int Electron Devices Meet (IEDM) – volume: 65 start-page: 847 issue: 3 year: 2018 ident: 10.1016/j.sse.2025.109119_b0075 article-title: Extraction of process variation parameters in FinFET technology based on compact modeling and characterization publication-title: IEEE Trans Electron Devices doi: 10.1109/TED.2018.2790083 |
| SSID | ssj0002610 |
| Score | 2.4355562 |
| Snippet | •A machine learning assisted compact modeling approach is proposed to include variation in one step by conditional variational autoencoder.•Simplicity and high... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 109119 |
| SubjectTerms | Compact model Machine learning Variation modeling Variational autoencoder |
| Title | One-step variation included compact modeling with conditional variational autoencoder |
| URI | https://dx.doi.org/10.1016/j.sse.2025.109119 |
| Volume | 227 |
| WOSCitedRecordID | wos001464940600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0038-1101 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002610 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLY64DAOCBgI2EA-7AQyamKnjY8IMfFLbNKAVVyi2E7UVFVa0aTiz9_zrzQbTBpIXKLIitvofdbL957f-4zQV02JezKnpCvCPmEqEARuOAmzQHRVAATBHNN5f92_uYkHA_6j07nyvTDzcb8s46cnPn1XqGEMwNats6-Au_lRGIB7AB2uADtc_wv472VGALrp0RzC4NTVMspxrTJlK85lZc-_adKwEBKrwuUEm0laQ6CuJlrnUrkK3pHv6B0XiphOpKPFKToNN__lM9DDerhYeg_DSW02QoaZ-1aadIF99KEYF35sYB67hJfzs11OIoyaijiXKPPNMovKJON8wbcC2wjazje0ygDPHLnNKYyOZzOtZRpGWvYqcM71T33sn2azU8uURYZgsQ9oOexHHFzc8snF2eCy-TBDsOhUOu17-E1uU-731x-9TFNa1ON2Ha25mAGfWKw3UCcrN9FqS0nyE7rzqOMGQOxRxw517FHHGnXcQh23UMct1LfQ3bez29Nz4k7MIBJ4akVkjwqI_7qyJ2jc5bHSfcKcpozl4HtDwSWVKmR5T0BUL4CtqzTKhYyDNGdcME630VI5KbMdhGNdwJhRobQmpKARlzlnUgkWUZZyHu2iQ2-gZGqFURJfMThKwJqJtmZirbmLmDdh4pidZWwJ4P3vaXtvm_YZfVwsyi9oqXqss320IudVMXs8cKviN18rc9Y |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-step+variation+included+compact+modeling+with+conditional+variational+autoencoder&rft.jtitle=Solid-state+electronics&rft.au=Wang%2C+Shuhan&rft.au=Zhou%2C+Zheng&rft.au=Tang%2C+Zili&rft.au=Xu%2C+Jinghan&rft.date=2025-08-01&rft.pub=Elsevier+Ltd&rft.issn=0038-1101&rft.volume=227&rft_id=info:doi/10.1016%2Fj.sse.2025.109119&rft.externalDocID=S0038110125000644 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-1101&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-1101&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-1101&client=summon |