Noncommutative symmetric functions and skewing operators

Skewing operators play a central role in the symmetric function theory because of the importance of the product structure of the symmetric function space. The theory of noncommutative symmetric functions is a useful tool for studying expansions of a given symmetric function in terms of various bases...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics Ročník 348; číslo 1; s. 114255
Hlavní autor: Hwang, Byung-Hak
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2025
Témata:
ISSN:0012-365X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Skewing operators play a central role in the symmetric function theory because of the importance of the product structure of the symmetric function space. The theory of noncommutative symmetric functions is a useful tool for studying expansions of a given symmetric function in terms of various bases. In this paper, we establish a further development of the theory for studying skewing operators. Using this machinery, we are able to easily reproduce the Littlewood–Richardson rule and provide recurrence relations for chromatic quasisymmetric functions, which generalize Harada–Precup's recurrence.
ISSN:0012-365X
DOI:10.1016/j.disc.2024.114255