Time and energy driven online scheduling problem in EV charging
•Proposal of an online scheduling algorithm for electric vehicle (EV) charging that minimizes maximum flow time during peak charging periods.•The algorithm achieves a competitive ratio of γ=3.4528⋅(1+ϵ) compared to the optimal offline solution.•Utilization of the EV charging power curve characterist...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 1044; s. 115266 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.08.2025
|
| Témata: | |
| ISSN: | 0304-3975 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Proposal of an online scheduling algorithm for electric vehicle (EV) charging that minimizes maximum flow time during peak charging periods.•The algorithm achieves a competitive ratio of γ=3.4528⋅(1+ϵ) compared to the optimal offline solution.•Utilization of the EV charging power curve characteristics to optimize both time efficiency and energy intake.•Significant reduction in queuing congestion and optimization of charging time during peak hours.•Effective balance between time cost and energy intake, enhancing charging station throughput.
Electric vehicles (EVs) become more and more popular, along with the higher and higher efficiency demand for charging scheduling. This paper studies the online scheduling problem of EV charging that minimizes the maximum flow time, solving the problem of queuing congestion at charging stations during peak hours. Based on the characteristics of the charging power curve of electric vehicles, we design an online scheduling algorithm for EV charging and prove that the ratio of this algorithm to the optimal offline algorithm is γ=3.4528⋅(1+ϵ). We analyse and find that the proposed algorithm can adjust the charging time proportionally, allowing the electric vehicle EV j to gradually reach the final State of Charge (SOC), which is 0.7313+0.2687⋅jini, from its initial charging state (jini). According to the battery overheating protection mechanism, charging will stop when the battery level starts to decrease. This method effectively balances the trade-off between time cost and energy intake, significantly improving the queuing situation for charging electric vehicles during peak hours. |
|---|---|
| AbstractList | •Proposal of an online scheduling algorithm for electric vehicle (EV) charging that minimizes maximum flow time during peak charging periods.•The algorithm achieves a competitive ratio of γ=3.4528⋅(1+ϵ) compared to the optimal offline solution.•Utilization of the EV charging power curve characteristics to optimize both time efficiency and energy intake.•Significant reduction in queuing congestion and optimization of charging time during peak hours.•Effective balance between time cost and energy intake, enhancing charging station throughput.
Electric vehicles (EVs) become more and more popular, along with the higher and higher efficiency demand for charging scheduling. This paper studies the online scheduling problem of EV charging that minimizes the maximum flow time, solving the problem of queuing congestion at charging stations during peak hours. Based on the characteristics of the charging power curve of electric vehicles, we design an online scheduling algorithm for EV charging and prove that the ratio of this algorithm to the optimal offline algorithm is γ=3.4528⋅(1+ϵ). We analyse and find that the proposed algorithm can adjust the charging time proportionally, allowing the electric vehicle EV j to gradually reach the final State of Charge (SOC), which is 0.7313+0.2687⋅jini, from its initial charging state (jini). According to the battery overheating protection mechanism, charging will stop when the battery level starts to decrease. This method effectively balances the trade-off between time cost and energy intake, significantly improving the queuing situation for charging electric vehicles during peak hours. |
| ArticleNumber | 115266 |
| Author | Xu, Yicheng Guo, Xinru Dai, Sijia Han, Xinxin Zhang, Yong |
| Author_xml | – sequence: 1 givenname: Xinru orcidid: 0000-0002-5719-1659 surname: Guo fullname: Guo, Xinru email: xr.guo@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China – sequence: 2 givenname: Sijia surname: Dai fullname: Dai, Sijia email: sj.dai@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China – sequence: 3 givenname: Xinxin surname: Han fullname: Han, Xinxin email: hanxin@szpu.edu.cn organization: School of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen, PR China – sequence: 4 givenname: Yicheng surname: Xu fullname: Xu, Yicheng email: yc.xu@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China – sequence: 5 givenname: Yong surname: Zhang fullname: Zhang, Yong email: zhangyong@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China |
| BookMark | eNp9j01rAjEQhnOwULX9Ab3lD-w237tLD6WI_QChF9tryCaTNaJZSazgv2_EnjuXGWZ4hveZoUkcIyD0QElNCVWP2_poc80IkzWlkik1QVPCiah418hbNMt5S0rJRk3R8zrsAZvoMERIwxm7FE4Q8Rh3IQLOdgPup4wDPqSx38Eeh4iX39huTBrK-g7deLPLcP_X5-jrdblevFerz7ePxcuqskzSY9Ur2woiPFedcp70PbfEOiPajnvVMc9ML7hvRUNFA9IRRhuplKFdiSxouc0Rvf61acw5gdeHFPYmnTUl-mKtt7pY64u1vloX5unKQAl2CpB0tgGiBRcS2KN2Y_iH_gWyAWJw |
| Cites_doi | 10.1109/TII.2017.2682960 10.4086/toc.2016.v012a014 10.1016/j.tcs.2020.03.017 10.1137/S0895480199357078 10.1287/ijoc.13.2.157.10520 10.1109/10.250574 10.1016/j.apenergy.2021.118382 10.1145/375827.375840 10.1142/S0129054104002480 10.1109/72.883477 10.1007/s10878-020-00602-3 10.1016/j.procs.2018.10.158 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.tcs.2025.115266 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| ExternalDocumentID | 10_1016_j_tcs_2025_115266 S030439752500204X |
| GrantInformation_xml | – fundername: Shenzhen Polytechnic Research Fund grantid: 6023310009K – fundername: Shenzhen Science and Technology Program grantid: CJGJZD20210408092806017 – fundername: National Key R&D Program of China grantid: 2022YFE0196100 funderid: https://doi.org/10.13039/501100012166 – fundername: NSFC grantid: 12071460 funderid: https://doi.org/10.13039/501100001809 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2024A1515030197 funderid: https://doi.org/10.13039/501100021171 – fundername: NSFC grantid: 12371321 funderid: https://doi.org/10.13039/501100001809 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGRNS AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSH SSV SSW T5K TN5 WH7 YNT ZMT ~G- 29Q 9DU AAEDT AAQXK AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO ADVLN AEXQZ AGHFR AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB G-2 HZ~ R2- SSZ TAE WUQ ZY4 ~HD |
| ID | FETCH-LOGICAL-c251t-b6c8404f3696df0bb3c0cda4893f692f2ab43f847147e5d0217566a1939741b43 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001481701300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-3975 |
| IngestDate | Sat Nov 29 06:56:52 EST 2025 Sat Jun 07 17:02:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Scheduling Online algorithm Competitive analysis Flow-time EV charging |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-b6c8404f3696df0bb3c0cda4893f692f2ab43f847147e5d0217566a1939741b43 |
| ORCID | 0000-0002-5719-1659 |
| ParticipantIDs | crossref_primary_10_1016_j_tcs_2025_115266 elsevier_sciencedirect_doi_10_1016_j_tcs_2025_115266 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 2025-08-00 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Theoretical computer science |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Osprey (br0010) Nait-Sidi-Moh, Ruzmetov, Bakhouya, Naitmalek, Gaber (br0180) 2018; 141 Pinedo (br0030) 2012; vol. 29 Anand, Garg, Kumar (br0060) 2012 Eden, Feldman, Fiat, Taub (br0080) 2018 Im, Li (br0170) 2023 Yang, Deng, Qiu, Li, Lai, Dong (br0230) 2017; 13 Gibbs, MacKay (br0260) 2000; 11 Powell, Cezar, Rajagopal (br0020) 2022; 309 Han, Moraga (br0240) 1995 Skutella (br0120) 2001; 48 Li (br0150) 2017 Mastrolilli (br0040) 2004; 15 Im, Shadloo (br0160) 2020 Hoogeveen, Schuurman, Woeginger (br0100) 2001; 13 Ling, He (br0250) 1993; 40 Schulz, Skutella (br0110) 2002; 15 Chen, Potts, Woeginger (br0090) 1998; vol. 1–3 Sethuraman, Squillante (br0130) 1999 Zhang, Chin, Poon, Ting, Xu, Yu (br0210) 2020; 821 Im, Moseley, Pruhs, Stein (br0190) 2017 Anand, Bringmann, Friedrich, Garg, Kumar (br0070) 2013 Li, Hua, Hu, Ting, Zhang (br0200) 2020; 40 Bansal, Srinivasan, Svensson (br0140) 2016 Pinedo (br0220) 2008 Bansal (br0050) 2016; 12 Anand (10.1016/j.tcs.2025.115266_br0070) 2013 Anand (10.1016/j.tcs.2025.115266_br0060) 2012 Powell (10.1016/j.tcs.2025.115266_br0020) 2022; 309 Ling (10.1016/j.tcs.2025.115266_br0250) 1993; 40 Eden (10.1016/j.tcs.2025.115266_br0080) 2018 Skutella (10.1016/j.tcs.2025.115266_br0120) 2001; 48 Bansal (10.1016/j.tcs.2025.115266_br0140) 2016 Im (10.1016/j.tcs.2025.115266_br0190) 2017 Schulz (10.1016/j.tcs.2025.115266_br0110) 2002; 15 Sethuraman (10.1016/j.tcs.2025.115266_br0130) 1999 Pinedo (10.1016/j.tcs.2025.115266_br0030) 2012; vol. 29 Li (10.1016/j.tcs.2025.115266_br0150) 2017 Bansal (10.1016/j.tcs.2025.115266_br0050) 2016; 12 Yang (10.1016/j.tcs.2025.115266_br0230) 2017; 13 Zhang (10.1016/j.tcs.2025.115266_br0210) 2020; 821 Im (10.1016/j.tcs.2025.115266_br0160) 2020 Han (10.1016/j.tcs.2025.115266_br0240) 1995 Pinedo (10.1016/j.tcs.2025.115266_br0220) 2008 Im (10.1016/j.tcs.2025.115266_br0170) 2023 Gibbs (10.1016/j.tcs.2025.115266_br0260) 2000; 11 Osprey (10.1016/j.tcs.2025.115266_br0010) Mastrolilli (10.1016/j.tcs.2025.115266_br0040) 2004; 15 Nait-Sidi-Moh (10.1016/j.tcs.2025.115266_br0180) 2018; 141 Hoogeveen (10.1016/j.tcs.2025.115266_br0100) 2001; 13 Li (10.1016/j.tcs.2025.115266_br0200) 2020; 40 Chen (10.1016/j.tcs.2025.115266_br0090) 1998; vol. 1–3 |
| References_xml | – volume: 48 start-page: 206 year: 2001 end-page: 242 ident: br0120 article-title: Convex quadratic and semidefinite programming relaxations in scheduling publication-title: J. ACM – volume: 15 start-page: 385 year: 2004 end-page: 401 ident: br0040 article-title: Scheduling to minimize max flow time: off-line and on-line algorithms publication-title: Int. J. Found. Comput. Sci. – start-page: 2917 year: 2023 end-page: 2946 ident: br0170 article-title: Improved approximations for unrelated machine scheduling publication-title: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) – volume: 821 start-page: 15 year: 2020 end-page: 22 ident: br0210 article-title: Offline and online algorithms for single-minded selling problem publication-title: Theor. Comput. Sci. – volume: 13 start-page: 2214 year: 2017 end-page: 2226 ident: br0230 article-title: Electric vehicle route selection and charging navigation strategy based on crowd sensing publication-title: IEEE Trans. Ind. Inform. – volume: vol. 29 year: 2012 ident: br0030 article-title: Scheduling – volume: 309 year: 2022 ident: br0020 article-title: Scalable probabilistic estimates of electric vehicle charging given observed driver behavior publication-title: Appl. Energy – start-page: 27:1 year: 2018 end-page: 27:14 ident: br0080 article-title: Truthful prompt scheduling for minimizing sum of completion times publication-title: 26th Annual European Symposium on Algorithms (ESA) – volume: 40 start-page: 366 year: 2020 end-page: 378 ident: br0200 article-title: Approximation algorithms for the selling with preference publication-title: J. Comb. Optim. – ident: br0010 – volume: 13 start-page: 157 year: 2001 end-page: 168 ident: br0100 article-title: Non-approximability results for scheduling problems with minsum criteria publication-title: INFORMS J. Comput. – volume: 12 start-page: 1 year: 2016 end-page: 14 ident: br0050 article-title: Minimizing maximum flow-time on related machines publication-title: Theory Comput. – volume: vol. 1–3 start-page: 1493 year: 1998 end-page: 1641 ident: br0090 article-title: A review of machine scheduling: complexity, algorithms and approximability publication-title: Handbook of Combinatorial Optimization – volume: 141 start-page: 127 year: 2018 end-page: 134 ident: br0180 article-title: A prediction model of electric vehicle charging requests publication-title: Proc. Comput. Sci. – volume: 40 start-page: 1193 year: 1993 end-page: 1200 ident: br0250 article-title: Entropic analysis of biological growth models publication-title: IEEE Trans. Biomed. Eng. – start-page: 1228 year: 2012 end-page: 1241 ident: br0060 article-title: Resource augmentation for weighted flow-time explained by dual fitting publication-title: Proceedings of the 2012 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) – volume: 15 start-page: 450 year: 2002 end-page: 469 ident: br0110 article-title: Scheduling unrelated machines by randomized rounding publication-title: SIAM J. Discrete Math. – start-page: 13 year: 2013 end-page: 24 ident: br0070 article-title: Minimizing maximum (weighted) flow-time on related and unrelated machines publication-title: Automata, Languages, and Programming: 40th International Colloquium (ICALP) – year: 2008 ident: br0220 article-title: Scheduling: Theory, Algorithms, and Systems – start-page: 156 year: 2016 end-page: 167 ident: br0140 article-title: Lift-and-round to improve weighted completion time on unrelated machines publication-title: Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing (STOC) – start-page: 195 year: 1995 end-page: 201 ident: br0240 article-title: The influence of the sigmoid function parameters on the speed of backpropagation learning publication-title: International Workshop on Artificial Neural Networks (IWANN) – start-page: 283 year: 2017 end-page: 294 ident: br0150 article-title: Scheduling to minimize total weighted completion time via time-indexed linear programming relaxations publication-title: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) – volume: 11 start-page: 1458 year: 2000 end-page: 1464 ident: br0260 article-title: Variational Gaussian process classifiers publication-title: IEEE Trans. Neural Netw. – start-page: 2790 year: 2020 end-page: 2809 ident: br0160 article-title: Weighted completion time minimization for unrelated machines via iterative fair contention resolution publication-title: Proceedings of the 2020 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) – start-page: 51:1 year: 2017 end-page: 51:10 ident: br0190 article-title: Minimizing maximum flow time on related machines via dynamic posted pricing publication-title: 25th Annual European Symposium on Algorithms (ESA) – start-page: 963 year: 1999 end-page: 964 ident: br0130 article-title: Optimal scheduling of multiclass parallel machines publication-title: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) – start-page: 1228 year: 2012 ident: 10.1016/j.tcs.2025.115266_br0060 article-title: Resource augmentation for weighted flow-time explained by dual fitting – start-page: 283 year: 2017 ident: 10.1016/j.tcs.2025.115266_br0150 article-title: Scheduling to minimize total weighted completion time via time-indexed linear programming relaxations – volume: 13 start-page: 2214 issue: 5 year: 2017 ident: 10.1016/j.tcs.2025.115266_br0230 article-title: Electric vehicle route selection and charging navigation strategy based on crowd sensing publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2682960 – year: 2008 ident: 10.1016/j.tcs.2025.115266_br0220 – start-page: 156 year: 2016 ident: 10.1016/j.tcs.2025.115266_br0140 article-title: Lift-and-round to improve weighted completion time on unrelated machines – start-page: 2917 year: 2023 ident: 10.1016/j.tcs.2025.115266_br0170 article-title: Improved approximations for unrelated machine scheduling – volume: vol. 29 year: 2012 ident: 10.1016/j.tcs.2025.115266_br0030 – start-page: 195 year: 1995 ident: 10.1016/j.tcs.2025.115266_br0240 article-title: The influence of the sigmoid function parameters on the speed of backpropagation learning – start-page: 2790 year: 2020 ident: 10.1016/j.tcs.2025.115266_br0160 article-title: Weighted completion time minimization for unrelated machines via iterative fair contention resolution – volume: 12 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.tcs.2025.115266_br0050 article-title: Minimizing maximum flow-time on related machines publication-title: Theory Comput. doi: 10.4086/toc.2016.v012a014 – start-page: 27:1 year: 2018 ident: 10.1016/j.tcs.2025.115266_br0080 article-title: Truthful prompt scheduling for minimizing sum of completion times – volume: 821 start-page: 15 year: 2020 ident: 10.1016/j.tcs.2025.115266_br0210 article-title: Offline and online algorithms for single-minded selling problem publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2020.03.017 – volume: 15 start-page: 450 issue: 4 year: 2002 ident: 10.1016/j.tcs.2025.115266_br0110 article-title: Scheduling unrelated machines by randomized rounding publication-title: SIAM J. Discrete Math. doi: 10.1137/S0895480199357078 – volume: vol. 1–3 start-page: 1493 year: 1998 ident: 10.1016/j.tcs.2025.115266_br0090 article-title: A review of machine scheduling: complexity, algorithms and approximability – volume: 13 start-page: 157 issue: 2 year: 2001 ident: 10.1016/j.tcs.2025.115266_br0100 article-title: Non-approximability results for scheduling problems with minsum criteria publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.13.2.157.10520 – volume: 40 start-page: 1193 issue: 12 year: 1993 ident: 10.1016/j.tcs.2025.115266_br0250 article-title: Entropic analysis of biological growth models publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.250574 – volume: 309 year: 2022 ident: 10.1016/j.tcs.2025.115266_br0020 article-title: Scalable probabilistic estimates of electric vehicle charging given observed driver behavior publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118382 – volume: 48 start-page: 206 issue: 2 year: 2001 ident: 10.1016/j.tcs.2025.115266_br0120 article-title: Convex quadratic and semidefinite programming relaxations in scheduling publication-title: J. ACM doi: 10.1145/375827.375840 – start-page: 13 year: 2013 ident: 10.1016/j.tcs.2025.115266_br0070 article-title: Minimizing maximum (weighted) flow-time on related and unrelated machines – volume: 15 start-page: 385 issue: 02 year: 2004 ident: 10.1016/j.tcs.2025.115266_br0040 article-title: Scheduling to minimize max flow time: off-line and on-line algorithms publication-title: Int. J. Found. Comput. Sci. doi: 10.1142/S0129054104002480 – ident: 10.1016/j.tcs.2025.115266_br0010 – start-page: 51:1 year: 2017 ident: 10.1016/j.tcs.2025.115266_br0190 article-title: Minimizing maximum flow time on related machines via dynamic posted pricing – volume: 11 start-page: 1458 issue: 6 year: 2000 ident: 10.1016/j.tcs.2025.115266_br0260 article-title: Variational Gaussian process classifiers publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.883477 – volume: 40 start-page: 366 issue: 2 year: 2020 ident: 10.1016/j.tcs.2025.115266_br0200 article-title: Approximation algorithms for the selling with preference publication-title: J. Comb. Optim. doi: 10.1007/s10878-020-00602-3 – start-page: 963 year: 1999 ident: 10.1016/j.tcs.2025.115266_br0130 article-title: Optimal scheduling of multiclass parallel machines – volume: 141 start-page: 127 year: 2018 ident: 10.1016/j.tcs.2025.115266_br0180 article-title: A prediction model of electric vehicle charging requests publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2018.10.158 |
| SSID | ssj0000576 |
| Score | 2.4487224 |
| Snippet | •Proposal of an online scheduling algorithm for electric vehicle (EV) charging that minimizes maximum flow time during peak charging periods.•The algorithm... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 115266 |
| SubjectTerms | Competitive analysis EV charging Flow-time Online algorithm Scheduling |
| Title | Time and energy driven online scheduling problem in EV charging |
| URI | https://dx.doi.org/10.1016/j.tcs.2025.115266 |
| Volume | 1044 |
| WOSCitedRecordID | wos001481701300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0304-3975 databaseCode: AIEXJ dateStart: 20211214 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000576 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF609aAH3-KbPXiyRJrtJpucpEhFRYvgg9xCdpOFFIzSh_TnO5vdbGpV0IOXUNJ0EzJfZ76ZnQdCJ27oCekm3EkD4TvUy6TDM84ccJ5pKCgHSlI2cb1l_X4QReG9KVccleMEWFEE02n49q-ihnMgbFU6-wdx20XhBHwGocMRxA7H3wk-f9FbApku60uHSqG1dEuMFjizYFxMDXo5S0ZFPHrPrbJlUmXHBhZDtspRmPEPLWMzbeLOpAy2RnkxnNRh7zJH4CEf5Emt4gpz3TS3gIwmpQlQ6ajmziYAQTyb_mYLr9TmSqgHoFil2qZ0Ri8C7yR6usoXla2jB4OzsVDd04l3Vl_7uT32nNmyyYRVntoghiVitUSsl1hETcK8ENR1s3vdi25qC-0xvYdtHrza7S7z_uae43u-MsNBHtfRqnEecFcLfQMtZMUmWqsGc2CjpzfRyp1txjvaQucKERgQgTUisEYE1ojANSKwQQTOC9x7xhUittHTZe_x4soxczMcAWx17HBfgNtOpRrVmMo25x3RFmmi2gxJPySSJJx2pKIllGVeqrxSIPUJUHlwLl34bgc1itci20VYJAGVxE9Eh8F_t0O4G0iauSwlrp-0WbiHTqu3E7_p9ijxj_LYQ7R6f7HBquZtMWDh55_t_-UeB2i5xughaoyHk-wILYn3cT4aHhsgfAC6Gm1g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+and+energy+driven+online+scheduling+problem+in+EV+charging&rft.jtitle=Theoretical+computer+science&rft.au=Guo%2C+Xinru&rft.au=Dai%2C+Sijia&rft.au=Han%2C+Xinxin&rft.au=Xu%2C+Yicheng&rft.date=2025-08-01&rft.issn=0304-3975&rft.volume=1044&rft.spage=115266&rft_id=info:doi/10.1016%2Fj.tcs.2025.115266&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2025_115266 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |