Deterministic non-adaptive contention resolution on a shared channel

In a multiple access channel, autonomous stations are able to transmit and listen to a shared device. A fundamental problem, called contention resolution, is to allow any station to successfully deliver its message by resolving the conflicts that arise when several stations transmit simultaneously....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computer and system sciences Ročník 133; s. 1 - 22
Hlavní autori: De Marco, Gianluca, Kowalski, Dariusz R., Stachowiak, Grzegorz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.05.2023
Predmet:
ISSN:0022-0000, 1090-2724
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In a multiple access channel, autonomous stations are able to transmit and listen to a shared device. A fundamental problem, called contention resolution, is to allow any station to successfully deliver its message by resolving the conflicts that arise when several stations transmit simultaneously. Despite a long history on such a problem, most of the results deal with the static setting when all stations start simultaneously, while many fundamental questions remain open in the realistic scenario when stations can join the channel at arbitrary times. In this paper, we explore the impact that three major channel features (asynchrony among stations, knowledge of the number of contenders and possibility of switching off stations after a successful transmission) can have on the time complexity of non-adaptive deterministic algorithms. We establish upper and lower bounds allowing to understand which parameters permit time-efficient contention resolution and which do not.
ISSN:0022-0000
1090-2724
DOI:10.1016/j.jcss.2022.11.001