Computing eternal vertex cover number of maximal outerplanar graphs in linear time

Eternal vertex cover problem is a variant of the classical vertex cover problem modeled as a two player attacker-defender game. Computing the eternal vertex cover number of graphs is known to be NP-hard in general and even for bipartite graphs. There is a quadratic complexity algorithm known for thi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 1056; s. 115530
Hlavní autoři: Babu, Jasine, Murali Krishnan, K., Prabhakaran, Veena, Warrier, Nandini J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 21.11.2025
Témata:
ISSN:0304-3975
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Eternal vertex cover problem is a variant of the classical vertex cover problem modeled as a two player attacker-defender game. Computing the eternal vertex cover number of graphs is known to be NP-hard in general and even for bipartite graphs. There is a quadratic complexity algorithm known for this problem for chordal graphs. Maximal outerplanar graphs form a subclass of chordal graphs, for which no algorithm of sub-quadratic time complexity is known. In this paper, we obtain a linear time recursive algorithm for computing eternal vertex cover number of maximal outerplanar graphs.
ISSN:0304-3975
DOI:10.1016/j.tcs.2025.115530