A near-optimal kernel for a coloring problem

For a fixed integer q, the q− Coloring problem asks to decide if a given graph has a vertex coloring with q colors such that no two adjacent vertices receive the same color. In a series of papers, it has been shown that for every q≥3, the q− Coloring problem parameterized by the vertex cover number...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics Vol. 377; pp. 66 - 73
Main Authors: Haviv, Ishay, Rabinovich, Dror
Format: Journal Article
Language:English
Published: Elsevier B.V 31.12.2025
Subjects:
ISSN:0166-218X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For a fixed integer q, the q− Coloring problem asks to decide if a given graph has a vertex coloring with q colors such that no two adjacent vertices receive the same color. In a series of papers, it has been shown that for every q≥3, the q− Coloring problem parameterized by the vertex cover number k admits a kernel of bit-size O˜(kq−1), but admits no kernel of bit-size O(kq−1−ɛ) for ɛ>0 unless NP⊆coNP/poly (Jansen and Kratsch, 2013; Jansen and Pieterse, 2019). In 2020, Schalken proposed the question of the kernelizability of the q− Coloring problem parameterized by the number k of vertices whose removal results in a disjoint union of edges and isolated vertices. He proved that for every q≥3, the problem admits a kernel of bit-size O˜(k2q−2), but admits no kernel of bit-size O(k2q−3−ɛ) for ɛ>0 unless NP⊆coNP/poly. He further proved that for q∈{3,4} the problem admits a near-optimal kernel of bit-size O˜(k2q−3) and asked whether such a kernel is achievable for all integers q≥3. In this short paper, we settle this question in the affirmative.
AbstractList For a fixed integer q, the q− Coloring problem asks to decide if a given graph has a vertex coloring with q colors such that no two adjacent vertices receive the same color. In a series of papers, it has been shown that for every q≥3, the q− Coloring problem parameterized by the vertex cover number k admits a kernel of bit-size O˜(kq−1), but admits no kernel of bit-size O(kq−1−ɛ) for ɛ>0 unless NP⊆coNP/poly (Jansen and Kratsch, 2013; Jansen and Pieterse, 2019). In 2020, Schalken proposed the question of the kernelizability of the q− Coloring problem parameterized by the number k of vertices whose removal results in a disjoint union of edges and isolated vertices. He proved that for every q≥3, the problem admits a kernel of bit-size O˜(k2q−2), but admits no kernel of bit-size O(k2q−3−ɛ) for ɛ>0 unless NP⊆coNP/poly. He further proved that for q∈{3,4} the problem admits a near-optimal kernel of bit-size O˜(k2q−3) and asked whether such a kernel is achievable for all integers q≥3. In this short paper, we settle this question in the affirmative.
Author Haviv, Ishay
Rabinovich, Dror
Author_xml – sequence: 1
  givenname: Ishay
  orcidid: 0000-0002-2903-076X
  surname: Haviv
  fullname: Haviv, Ishay
  email: ishayhav@mta.ac.il
– sequence: 2
  givenname: Dror
  surname: Rabinovich
  fullname: Rabinovich, Dror
BookMark eNp9j8tqwzAQRbVIoUnaD-hOH1C7IzuSLboKoS8IdJNFd0KPUbFrW0Yyhf59FdJ14cIwA2e4Z0NWU5iQkDsGJQMmHvrS6bGsoOIliBy-Iut8F0XF2o9rskmpBwCWtzW539MJdSzCvHSjHugXxgkH6kOkmtowhNhNn3SOwQw43pArr4eEt39zS07PT6fDa3F8f3k77I-FrThbCum9dIIL9H7HLRgnDbS1EJ4D11KD4a6pG8tka7XTxjdG2B0CCsm4dbLeEnZ5a2NIKaJXc8zl4o9ioM6GqlfZUJ0NFYgcnpnHC4O513eHUSXb4WTRdRHtolzo_qF_AbMzXNg
Cites_doi 10.1145/3349618
10.1016/j.ic.2013.08.005
10.1016/j.tcs.2010.10.043
10.1016/0304-3975(83)90020-8
10.1145/3624704
10.1007/978-3-540-30559-0_22
10.1007/s00453-019-00660-y
10.1007/s00453-019-00578-5
10.1016/S0166-218X(02)00242-1
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.dam.2025.06.065
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 73
ExternalDocumentID 10_1016_j_dam_2025_06_065
S0166218X2500383X
GrantInformation_xml – fundername: Israel Science Foundation, Israel
  grantid: 1218/20
  funderid: http://dx.doi.org/10.13039/501100003977
GroupedDBID -~X
ADEZE
AFTJW
ALMA_UNASSIGNED_HOLDINGS
FDB
OAUVE
AAYXX
AI.
CITATION
FA8
VH1
WUQ
ID FETCH-LOGICAL-c251t-9ff9d656eff45c0bd9b08366f505a9a0b5d737c198cadabf7b6c4e0e6915cd93
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001528919300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-218X
IngestDate Sat Nov 29 07:31:48 EST 2025
Sat Oct 11 16:52:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Graph coloring
Parameterized complexity
Linear algebra
Kernelization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-9ff9d656eff45c0bd9b08366f505a9a0b5d737c198cadabf7b6c4e0e6915cd93
ORCID 0000-0002-2903-076X
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_dam_2025_06_065
elsevier_sciencedirect_doi_10_1016_j_dam_2025_06_065
PublicationCentury 2000
PublicationDate 2025-12-31
PublicationDateYYYYMMDD 2025-12-31
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Discrete Applied Mathematics
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Steps, in: Proc. of the 30th International Workshop on Graph-Theoretic Concepts in Computer Science, WG’04, 2004, pp. 257–269.
Schalken (b12) 2020
Colors in
Jansen, Kratsch (b8) 2013; 231
Jansen, Włodarczyk (b11) 2024; 16
Jansen, Pieterse (b9) 2019; 81
Jansen, Pieterse (b10) 2019; 11
I. Haviv, D. Rabinovich, Kernelization for Orthogonality Dimension, in: Proc. of the 19th International Symposium on Parameterized and Exact Computation, IPEC’24, 2024, pp. 8:1–8:17.
Fiala, Golovach, Kratochvíl (b4) 2011; 412
Chen, Jansen, Pieterse (b2) 2020; 82
Yap (b13) 1983; 26
Jansen (b7) 2013
Cai (b1) 2003; 127
B. Chor, M.R. Fellows, D.W. Juedes, Linear Kernels in Linear Time, or How to Save
Fomin, Lokshtanov, Saurabh, Zehavi (b5) 2019
Jansen (10.1016/j.dam.2025.06.065_b8) 2013; 231
Yap (10.1016/j.dam.2025.06.065_b13) 1983; 26
Jansen (10.1016/j.dam.2025.06.065_b7) 2013
Schalken (10.1016/j.dam.2025.06.065_b12) 2020
Jansen (10.1016/j.dam.2025.06.065_b11) 2024; 16
Cai (10.1016/j.dam.2025.06.065_b1) 2003; 127
Chen (10.1016/j.dam.2025.06.065_b2) 2020; 82
Fiala (10.1016/j.dam.2025.06.065_b4) 2011; 412
Fomin (10.1016/j.dam.2025.06.065_b5) 2019
10.1016/j.dam.2025.06.065_b6
Jansen (10.1016/j.dam.2025.06.065_b10) 2019; 11
Jansen (10.1016/j.dam.2025.06.065_b9) 2019; 81
10.1016/j.dam.2025.06.065_b3
References_xml – volume: 412
  start-page: 2513
  year: 2011
  end-page: 2523
  ident: b4
  article-title: Parameterized complexity of coloring problems: Treewidth versus vertex cover
  publication-title: Theoret. Comput. Sci.
– volume: 127
  start-page: 415
  year: 2003
  end-page: 429
  ident: b1
  article-title: Parameterized complexity of vertex colouring
  publication-title: Discrete Appl. Math.
– reference: I. Haviv, D. Rabinovich, Kernelization for Orthogonality Dimension, in: Proc. of the 19th International Symposium on Parameterized and Exact Computation, IPEC’24, 2024, pp. 8:1–8:17.
– year: 2013
  ident: b7
  article-title: The Power of Data Reduction: Kernels for Fundamental Graph Problems
– volume: 16
  start-page: 4:1
  year: 2024
  end-page: 4:20
  ident: b11
  article-title: Optimal polynomial-time compression for boolean max CSP
  publication-title: ACM Trans. Comput. Theory
– year: 2020
  ident: b12
  article-title: Efficient Kernels for
– reference: Steps, in: Proc. of the 30th International Workshop on Graph-Theoretic Concepts in Computer Science, WG’04, 2004, pp. 257–269.
– volume: 231
  start-page: 70
  year: 2013
  end-page: 88
  ident: b8
  article-title: Data reduction for graph coloring problems
  publication-title: Inform. and Comput.
– reference: Colors in
– volume: 82
  start-page: 2200
  year: 2020
  end-page: 2242
  ident: b2
  article-title: Best-case and worst-case sparsifiability of boolean CSPs
  publication-title: Algorithmica
– volume: 11
  start-page: 28:1
  year: 2019
  end-page: 26
  ident: b10
  article-title: Optimal sparsification for some binary CSPs using low-degree polynomials
  publication-title: ACM Trans. Comput. Theory
– year: 2019
  ident: b5
  article-title: Kernelization: Theory of Parameterized Preprocessing
– volume: 81
  start-page: 3865
  year: 2019
  end-page: 3889
  ident: b9
  article-title: Optimal data reduction for graph coloring using low-degree polynomials
  publication-title: Algorithmica
– volume: 26
  start-page: 287
  year: 1983
  end-page: 300
  ident: b13
  article-title: Some consequences of non-uniform conditions on uniform classes
  publication-title: Theoret. Comput. Sci.
– reference: B. Chor, M.R. Fellows, D.W. Juedes, Linear Kernels in Linear Time, or How to Save
– ident: 10.1016/j.dam.2025.06.065_b6
– volume: 11
  start-page: 28:1
  issue: 4
  year: 2019
  ident: 10.1016/j.dam.2025.06.065_b10
  article-title: Optimal sparsification for some binary CSPs using low-degree polynomials
  publication-title: ACM Trans. Comput. Theory
  doi: 10.1145/3349618
– volume: 231
  start-page: 70
  year: 2013
  ident: 10.1016/j.dam.2025.06.065_b8
  article-title: Data reduction for graph coloring problems
  publication-title: Inform. and Comput.
  doi: 10.1016/j.ic.2013.08.005
– volume: 412
  start-page: 2513
  issue: 23
  year: 2011
  ident: 10.1016/j.dam.2025.06.065_b4
  article-title: Parameterized complexity of coloring problems: Treewidth versus vertex cover
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2010.10.043
– volume: 26
  start-page: 287
  issue: 3
  year: 1983
  ident: 10.1016/j.dam.2025.06.065_b13
  article-title: Some consequences of non-uniform conditions on uniform classes
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(83)90020-8
– year: 2013
  ident: 10.1016/j.dam.2025.06.065_b7
– volume: 16
  start-page: 4:1
  issue: 1
  year: 2024
  ident: 10.1016/j.dam.2025.06.065_b11
  article-title: Optimal polynomial-time compression for boolean max CSP
  publication-title: ACM Trans. Comput. Theory
  doi: 10.1145/3624704
– ident: 10.1016/j.dam.2025.06.065_b3
  doi: 10.1007/978-3-540-30559-0_22
– volume: 82
  start-page: 2200
  issue: 8
  year: 2020
  ident: 10.1016/j.dam.2025.06.065_b2
  article-title: Best-case and worst-case sparsifiability of boolean CSPs
  publication-title: Algorithmica
  doi: 10.1007/s00453-019-00660-y
– year: 2020
  ident: 10.1016/j.dam.2025.06.065_b12
– volume: 81
  start-page: 3865
  issue: 10
  year: 2019
  ident: 10.1016/j.dam.2025.06.065_b9
  article-title: Optimal data reduction for graph coloring using low-degree polynomials
  publication-title: Algorithmica
  doi: 10.1007/s00453-019-00578-5
– year: 2019
  ident: 10.1016/j.dam.2025.06.065_b5
– volume: 127
  start-page: 415
  issue: 3
  year: 2003
  ident: 10.1016/j.dam.2025.06.065_b1
  article-title: Parameterized complexity of vertex colouring
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(02)00242-1
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.434642
Snippet For a fixed integer q, the q− Coloring problem asks to decide if a given graph has a vertex coloring with q colors such that no two adjacent vertices receive...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 66
SubjectTerms Graph coloring
Kernelization
Linear algebra
Parameterized complexity
Title A near-optimal kernel for a coloring problem
URI https://dx.doi.org/10.1016/j.dam.2025.06.065
Volume 377
WOSCitedRecordID wos001528919300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20211209
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001218
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0166-218X
  databaseCode: AIEXJ
  dateStart: 20220331
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001218
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEA66etCD-MQ3PXhSC-1ukzTHxV1RURHdQ28lSRNcH13pros_30mT7hYfoIKXUgpNmnzp9Jvp5BuEDoBjhJqy2JeimfmRbmJfUKLgjQ-xbmVSC15uFL6k19dxkrAbV1FvWJYToHkev72xl3-FGq4B2Gbr7C_gnjQKF-AcQIcjwA7HHwHfPsphSP4AbMEzzP-jKnL1ZJMlj4xEdWH3n5d1ZOrUtNMHCwIUekJMryaKrsOpnRr3x6VZGd5Ps29uObjXAzA5ZYimUwyKeiwBcHGKhVWA69MmFxtzJMQHJpDUjWbLFV-xZo-Q2gfUlib5ZJptlOABOjcCAE1cyqbaOhEfFK_vTI-mQ6BnAXjQySyaa1LM4gaaa593k4uaPpgRv1uoImrTH0hApCIn626fvfqhXab2fXiErylJjWb0ltGS8w-8tsV1Bc2ofBUt1qBYQ8dtr46wZxH2AGGPexXCnkN4HfVOu72TM98VvfAlUM2Rz7RmGZBspXWEZSAyJoyAONFAVTnjgcAZbVEZsljyjAtNBZGRChRhIZYZa22gRj7I1SbyuJHq0VxwTFUUQjuRAjYagH_IqYpVuIUOq2GnL1baJK1y_h5SmKPUzFFq8h4J3kJRNTGp42aWc6WA7_e3bf_tth20MF2eu6gxKl7VHpqX41F_WOy7VfAOQUlZGw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+near-optimal+kernel+for+a+coloring+problem&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Haviv%2C+Ishay&rft.au=Rabinovich%2C+Dror&rft.date=2025-12-31&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.volume=377&rft.spage=66&rft.epage=73&rft_id=info:doi/10.1016%2Fj.dam.2025.06.065&rft.externalDocID=S0166218X2500383X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon