NodeHGAE: Node-oriented heterogeneous graph autoencoder

Heterogeneous graph autoencoder (HGAE), as an unsupervised learning approach, aims to encode nodes and edges of heterogeneous graphs into low-dimensional vector representations, and simultaneously reconstruct the original graph structure from node representations. Existing heterogeneous graph encode...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 719; s. 122448
Hlavní autoři: Zhu, Xiangkai, Li, Chao, Yan, Yeyu, Zhao, Zhongying, Duan, Hua, Zeng, Qingtian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.11.2025
Témata:
ISSN:0020-0255
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Heterogeneous graph autoencoder (HGAE), as an unsupervised learning approach, aims to encode nodes and edges of heterogeneous graphs into low-dimensional vector representations, and simultaneously reconstruct the original graph structure from node representations. Existing heterogeneous graph encoders typically follow the metapath paradigm, encoding different semantic information and then employing decoders to reconstruct nodes attributes and edges information. However, the interaction between different semantic structures is underestimated which may lead to loss of semantic information. Moreover, employing graph-level unified attention mechanism to weigh the importance of different semantic structures of nodes is a suboptimal choice. Motivated by these challenges, a novel method named Node-oriented Heterogeneous Graph Autoencoder (NodeHGAE) is proposed. It first aggregates different semantic information based on node neighborhoods and utilizes the Chebyshev function to derive high-order neighborhood information of nodes. Then, low-rank matrix and parameter decoupling are proposed to assign node-specific attention and semantic information is integrated from different levels. Additionally, node-level and graph-level contrastive loss are proposed to redress the noise problem in the process of feature and topology coupling in HGAE. Experiments have shown that NodeHGAE outperforms state-of-the-art methods on four public heterogeneous graph datasets. The code of NodeHGAE can be found at Github.1
AbstractList Heterogeneous graph autoencoder (HGAE), as an unsupervised learning approach, aims to encode nodes and edges of heterogeneous graphs into low-dimensional vector representations, and simultaneously reconstruct the original graph structure from node representations. Existing heterogeneous graph encoders typically follow the metapath paradigm, encoding different semantic information and then employing decoders to reconstruct nodes attributes and edges information. However, the interaction between different semantic structures is underestimated which may lead to loss of semantic information. Moreover, employing graph-level unified attention mechanism to weigh the importance of different semantic structures of nodes is a suboptimal choice. Motivated by these challenges, a novel method named Node-oriented Heterogeneous Graph Autoencoder (NodeHGAE) is proposed. It first aggregates different semantic information based on node neighborhoods and utilizes the Chebyshev function to derive high-order neighborhood information of nodes. Then, low-rank matrix and parameter decoupling are proposed to assign node-specific attention and semantic information is integrated from different levels. Additionally, node-level and graph-level contrastive loss are proposed to redress the noise problem in the process of feature and topology coupling in HGAE. Experiments have shown that NodeHGAE outperforms state-of-the-art methods on four public heterogeneous graph datasets. The code of NodeHGAE can be found at Github.1
ArticleNumber 122448
Author Li, Chao
Zhu, Xiangkai
Duan, Hua
Yan, Yeyu
Zeng, Qingtian
Zhao, Zhongying
Author_xml – sequence: 1
  givenname: Xiangkai
  orcidid: 0009-0007-0623-7016
  surname: Zhu
  fullname: Zhu, Xiangkai
  email: 18063597830@163.com
  organization: School of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
– sequence: 2
  givenname: Chao
  orcidid: 0000-0002-3131-2723
  surname: Li
  fullname: Li, Chao
  email: lichao@sdust.edu.cn
  organization: School of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
– sequence: 3
  givenname: Yeyu
  orcidid: 0000-0002-6288-453X
  surname: Yan
  fullname: Yan, Yeyu
  email: yanyeyu-work@foxmail.com
  organization: Institute of Information Science, Beijing Jiaotong University, Beijing, 100044, China
– sequence: 4
  givenname: Zhongying
  surname: Zhao
  fullname: Zhao, Zhongying
  email: zzysuin@163.com
  organization: School of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
– sequence: 5
  givenname: Hua
  surname: Duan
  fullname: Duan, Hua
  email: huaduan59@163.com
  organization: College of Mathematics and Systems Science, Shandong University of Science and Technology, Qianwangang Road, Qingdao 266590, Shandong, China
– sequence: 6
  givenname: Qingtian
  surname: Zeng
  fullname: Zeng, Qingtian
  email: qtzeng@sdust.edu.cn
  organization: School of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
BookMark eNp9j0FOwzAQRb0oEm3hAOxygYSxE9sJrKqqtEgVbGBtOfa4TQRxZadI3B5X6ZrVjEb_jf5bkNngByTkgUJBgYrHvuiGWDBgvKCMVVU9I3MABnm68FuyiLEHgEoKMSfyzVvcbVebp-yy5T50OIxosyOOGPwBB_TnmB2CPh0zfR49Diblwh25cfor4v11Lsnny-Zjvcv379vX9WqfG8bpmDcN11JWwhnmmAXeiNpJW_GWo9RY1caV3ApR87axhqaqDByroawNtg22ZbkkdPprgo8xoFOn0H3r8KsoqIut6lWyVRdbNdkm5nliMBX76TCoaJKVQdsFNKOyvvuH_gNq8GBR
Cites_doi 10.1016/j.ins.2023.02.092
10.1016/j.ins.2023.119139
10.1145/3474379
10.1145/3706115
10.3166/ejc.7.311-327
10.1016/j.eswa.2023.120115
10.1109/TKDE.2024.3377431
10.1109/TKDE.2021.3138788
10.1016/j.ins.2023.03.034
10.1109/TKDE.2021.3101356
ContentType Journal Article
Copyright 2025 Elsevier Inc.
Copyright_xml – notice: 2025 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2025.122448
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
ExternalDocumentID 10_1016_j_ins_2025_122448
S0020025525005808
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
77I
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c251t-995a7746fc2f2d05968f7d45b5e7ae48cf35d6685b9dc144820f28038ceb9eb33
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001523186300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:00:58 EST 2025
Sat Oct 11 16:51:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Heterogeneous graph autoencoder
Heterogeneous graph representation learning
Graph neural network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-995a7746fc2f2d05968f7d45b5e7ae48cf35d6685b9dc144820f28038ceb9eb33
ORCID 0000-0002-3131-2723
0009-0007-0623-7016
0000-0002-6288-453X
ParticipantIDs crossref_primary_10_1016_j_ins_2025_122448
elsevier_sciencedirect_doi_10_1016_j_ins_2025_122448
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ji, Wang, Shi, Wang, Philip (br0250) 2021; 35
Jin, Huo, Liang, Yang (br0350) 2021
Li, Lu, Wu, Ling (br0120) 2023; 632
Park, Kim, Han, Yu (br0230) 2020
Yang, Wang, Tao, Sun, Liu, Yu, Wang (br0030) 2023
Wang, Li, Yu, Han, Gao, Shen (br0060) 2023
Yang, Guan, Li, Zhao, Cui, Wang (br0300) 2021
Jing, Park, Tong (br0330) 2021
Tan, Liu, Huang, Choi, Li, Chen, Hu (br0160) 2023
He, Wei, Wen (br0280) 2022; 35
Liu, Gao, Ji (br0320) 2020
Liu, Guan, Giunchiglia, Liang, Feng (br0020) 2021
Hou, He, Cen, Liu, Dong, Kharlamov, Tang (br0150) 2023
Suykens (br0360) 2001; 7
Xie, Xu, Chen, Li, Jiang, Su, Wang, Pei (br0090) 2023
Li, Yan, Fu, Zhao, Zeng (br0040) 2023; 632
Simonovsky, Komodakis (br0140) October 2018
Zhuang, Wang, Zhao, Sun (br0210) 2023; 642
Zhang, Li, Zhao (br0180) 2025
Wang, Suo, Wei, Wang, Wang, Dai, Zhang (br0080) 2023; 35
Wang, Liu, Han, Shi (br0240) 2021
Yan, Li, Yu, Li, Zhao (br0290) 2023; 225
Tian, Dong, Zhang, Zhang, Chawla (br0070) 2023
Zheng, Zhu, Liu, Li, Zhao (br0110) 2023
Huo, He, Li, Jin, Dang, Pedrycz, Wu, Zhang (br0190) 2025; 16
Hou, Liu, Cen, Dong, Yang, Wang, Tang (br0310) 2022
Van der Maaten, Hinton (br0370) 2008; 9
Zhang, Li, Huang, Wu, Zhou, Yang, Gao (br0010) 2022; 40
Dong, Chawla, Swami (br0200) 2017
Yu, Ge, Li, Zhou (br0050) 2024
Kipf, Welling (br0260) 2016
Yan, Liu, Wei, Li, Li, Lin (br0100) 2023
Chen, Wu, Wang, Guo (br0170) 2023
Ren, Liu (br0220) 2020
Kipf, Welling (br0130) 2016
Wang, Ji, Shi, Wang, Ye, Cui, Yu (br0270) 2019
Wang, Ji, Shi, Wang, Ye, Cui, Yu (br0340) 2019
He (10.1016/j.ins.2025.122448_br0280) 2022; 35
Yang (10.1016/j.ins.2025.122448_br0030) 2023
Yang (10.1016/j.ins.2025.122448_br0300) 2021
Xie (10.1016/j.ins.2025.122448_br0090) 2023
Wang (10.1016/j.ins.2025.122448_br0340) 2019
Chen (10.1016/j.ins.2025.122448_br0170) 2023
Hou (10.1016/j.ins.2025.122448_br0150) 2023
Dong (10.1016/j.ins.2025.122448_br0200) 2017
Yan (10.1016/j.ins.2025.122448_br0100) 2023
Ren (10.1016/j.ins.2025.122448_br0220) 2020
Hou (10.1016/j.ins.2025.122448_br0310) 2022
Park (10.1016/j.ins.2025.122448_br0230) 2020
Ji (10.1016/j.ins.2025.122448_br0250) 2021; 35
Wang (10.1016/j.ins.2025.122448_br0240) 2021
Jing (10.1016/j.ins.2025.122448_br0330) 2021
Jin (10.1016/j.ins.2025.122448_br0350) 2021
Wang (10.1016/j.ins.2025.122448_br0080) 2023; 35
Liu (10.1016/j.ins.2025.122448_br0020) 2021
Yu (10.1016/j.ins.2025.122448_br0050) 2024
Tan (10.1016/j.ins.2025.122448_br0160) 2023
Kipf (10.1016/j.ins.2025.122448_br0260) 2016
Van der Maaten (10.1016/j.ins.2025.122448_br0370) 2008; 9
Wang (10.1016/j.ins.2025.122448_br0060) 2023
Huo (10.1016/j.ins.2025.122448_br0190) 2025; 16
Zhuang (10.1016/j.ins.2025.122448_br0210) 2023; 642
Li (10.1016/j.ins.2025.122448_br0040) 2023; 632
Li (10.1016/j.ins.2025.122448_br0120) 2023; 632
Simonovsky (10.1016/j.ins.2025.122448_br0140) 2018
Kipf (10.1016/j.ins.2025.122448_br0130)
Zheng (10.1016/j.ins.2025.122448_br0110) 2023
Yan (10.1016/j.ins.2025.122448_br0290) 2023; 225
Suykens (10.1016/j.ins.2025.122448_br0360) 2001; 7
Zhang (10.1016/j.ins.2025.122448_br0010) 2022; 40
Liu (10.1016/j.ins.2025.122448_br0320) 2020
Tian (10.1016/j.ins.2025.122448_br0070) 2023
Wang (10.1016/j.ins.2025.122448_br0270) 2019
Zhang (10.1016/j.ins.2025.122448_br0180) 2025
References_xml – start-page: 338
  year: 2020
  end-page: 348
  ident: br0320
  article-title: Towards deeper graph neural networks
  publication-title: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– start-page: 594
  year: 2022
  end-page: 604
  ident: br0310
  article-title: Graphmae: self-supervised masked graph autoencoders
  publication-title: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
– start-page: 2874
  year: 2023
  end-page: 2884
  ident: br0090
  article-title: Unsupervised anomaly detection on microservice traces through graph vae
  publication-title: Proceedings of the ACM Web Conference 2023
– year: 2023
  ident: br0110
  article-title: Node-oriented spectral filtering for graph neural networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2016
  ident: br0130
  article-title: Variational graph auto-encoders
– year: 2020
  ident: br0220
  article-title: Heterogeneous deep graph infomax
  publication-title: Workshop of Deep Learning on Graphs: Methodologies and Applications Co-Located with the Thirty-Fourth AAAI Conference on Artificial Intelligence
– start-page: 5371
  year: 2020
  end-page: 5378
  ident: br0230
  article-title: Unsupervised attributed multiplex network embedding
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34
– volume: 35
  start-page: 7264
  year: 2022
  end-page: 7276
  ident: br0280
  article-title: Convolutional neural networks on graphs with Chebyshev approximation, revisited
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 4191
  year: 2023
  end-page: 4198
  ident: br0170
  article-title: Dual low-rank graph autoencoder for semantic and topological networks
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37
– start-page: 8142
  year: 2021
  end-page: 8152
  ident: br0020
  article-title: Deep attention diffusion graph neural networks for text classification
  publication-title: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
– start-page: 2414
  year: 2021
  end-page: 2424
  ident: br0330
  article-title: Hdmi: high-order deep multiplex infomax
  publication-title: Proceedings of the Web Conference 2021
– start-page: 9997
  year: 2023
  end-page: 10005
  ident: br0070
  article-title: Heterogeneous graph masked autoencoders
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37
– start-page: 135
  year: 2017
  end-page: 144
  ident: br0200
  article-title: metapath2vec: scalable representation learning for heterogeneous networks
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 787
  year: 2023
  end-page: 795
  ident: br0160
  article-title: S2gae: self-supervised graph autoencoders are generalizable learners with graph masking
  publication-title: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining
– year: 2016
  ident: br0260
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: International Conference on Learning Representations
– volume: 642
  year: 2023
  ident: br0210
  article-title: Adaptive dual graph contrastive learning based on heterogeneous signed network for predicting adverse drug reaction
  publication-title: Inf. Sci.
– start-page: 1726
  year: 2021
  end-page: 1736
  ident: br0240
  article-title: Self-supervised heterogeneous graph neural network with co-contrastive learning
  publication-title: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
– volume: 225
  year: 2023
  ident: br0290
  article-title: Osgnn: original graph and subgraph aggregated graph neural network
  publication-title: Expert Syst. Appl.
– volume: 632
  start-page: 424
  year: 2023
  end-page: 438
  ident: br0040
  article-title: Hetregat-fc: heterogeneous residual graph attention network via feature completion
  publication-title: Inf. Sci.
– volume: 7
  start-page: 311
  year: 2001
  end-page: 327
  ident: br0360
  article-title: Support vector machines: a nonlinear modelling and control perspective
  publication-title: Eur. J. Control
– year: 2024
  ident: br0050
  article-title: Heterogeneous graph contrastive learning with meta-path contexts and adaptively weighted negative samples
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 5606
  year: 2023
  end-page: 5618
  ident: br0100
  article-title: Skeletonmae: graph-based masked autoencoder for skeleton sequence pre-training
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 16
  start-page: 1
  year: 2025
  end-page: 21
  ident: br0190
  article-title: Heterogeneous graph neural networks using self-supervised reciprocally contrastive learning
  publication-title: ACM Trans. Intell. Syst. Technol.
– start-page: 661
  year: 2023
  end-page: 669
  ident: br0030
  article-title: Dgrec: graph neural network for recommendation with diversified embedding generation
  publication-title: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining
– volume: 40
  start-page: 1
  year: 2022
  end-page: 29
  ident: br0010
  article-title: efraudcom: an e-commerce fraud detection system via competitive graph neural networks
  publication-title: ACM Trans. Inf. Syst.
– start-page: 412
  year: October 2018
  end-page: 422
  ident: br0140
  article-title: Graphvae: towards generation of small graphs using variational autoencoders
  publication-title: Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27
– start-page: 2022
  year: 2019
  end-page: 2032
  ident: br0270
  article-title: Heterogeneous graph attention network
  publication-title: The World Wide Web Conference
– start-page: 2022
  year: 2019
  end-page: 2032
  ident: br0340
  article-title: Heterogeneous graph attention network
  publication-title: The World Wide Web Conference
– start-page: 737
  year: 2023
  end-page: 746
  ident: br0150
  article-title: Graphmae2: a decoding-enhanced masked self-supervised graph learner
  publication-title: Proceedings of the ACM Web Conference 2023
– start-page: 13269
  year: 2025
  end-page: 13276
  ident: br0180
  article-title: Teacher-guided edge discriminator for personalized graph masked autoencoder
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 39
– start-page: 391
  year: 2021
  end-page: 400
  ident: br0350
  article-title: Heterogeneous graph neural network via attribute completion
  publication-title: Proceedings of the Web Conference 2021
– start-page: 136
  year: 2023
  end-page: 144
  ident: br0060
  article-title: Heterogeneous graph contrastive multi-view learning
  publication-title: Proceedings of the 2023 SIAM International Conference on Data Mining (SDM)
– year: 2021
  ident: br0300
  article-title: Interpretable and efficient heterogeneous graph convolutional network
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 9
  year: 2008
  ident: br0370
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 632
  start-page: 439
  year: 2023
  end-page: 453
  ident: br0120
  article-title: Multi-view representation model based on graph autoencoder
  publication-title: Inf. Sci.
– volume: 35
  start-page: 3938
  year: 2023
  end-page: 3951
  ident: br0080
  article-title: Hgate: heterogeneous graph attention auto-encoders
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 35
  start-page: 521
  year: 2021
  end-page: 532
  ident: br0250
  article-title: Heterogeneous graph propagation network
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 632
  start-page: 439
  year: 2023
  ident: 10.1016/j.ins.2025.122448_br0120
  article-title: Multi-view representation model based on graph autoencoder
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.02.092
– start-page: 136
  year: 2023
  ident: 10.1016/j.ins.2025.122448_br0060
  article-title: Heterogeneous graph contrastive multi-view learning
– start-page: 737
  year: 2023
  ident: 10.1016/j.ins.2025.122448_br0150
  article-title: Graphmae2: a decoding-enhanced masked self-supervised graph learner
– start-page: 2022
  year: 2019
  ident: 10.1016/j.ins.2025.122448_br0270
  article-title: Heterogeneous graph attention network
– year: 2016
  ident: 10.1016/j.ins.2025.122448_br0260
  article-title: Semi-supervised classification with graph convolutional networks
– start-page: 2022
  year: 2019
  ident: 10.1016/j.ins.2025.122448_br0340
  article-title: Heterogeneous graph attention network
– volume: 642
  year: 2023
  ident: 10.1016/j.ins.2025.122448_br0210
  article-title: Adaptive dual graph contrastive learning based on heterogeneous signed network for predicting adverse drug reaction
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119139
– start-page: 2414
  year: 2021
  ident: 10.1016/j.ins.2025.122448_br0330
  article-title: Hdmi: high-order deep multiplex infomax
– start-page: 661
  year: 2023
  ident: 10.1016/j.ins.2025.122448_br0030
  article-title: Dgrec: graph neural network for recommendation with diversified embedding generation
– start-page: 594
  year: 2022
  ident: 10.1016/j.ins.2025.122448_br0310
  article-title: Graphmae: self-supervised masked graph autoencoders
– volume: 40
  start-page: 1
  issue: 3
  year: 2022
  ident: 10.1016/j.ins.2025.122448_br0010
  article-title: efraudcom: an e-commerce fraud detection system via competitive graph neural networks
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/3474379
– start-page: 4191
  year: 2023
  ident: 10.1016/j.ins.2025.122448_br0170
  article-title: Dual low-rank graph autoencoder for semantic and topological networks
– volume: 16
  start-page: 1
  issue: 1
  year: 2025
  ident: 10.1016/j.ins.2025.122448_br0190
  article-title: Heterogeneous graph neural networks using self-supervised reciprocally contrastive learning
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/3706115
– start-page: 5371
  year: 2020
  ident: 10.1016/j.ins.2025.122448_br0230
  article-title: Unsupervised attributed multiplex network embedding
– volume: 7
  start-page: 311
  issue: 2–3
  year: 2001
  ident: 10.1016/j.ins.2025.122448_br0360
  article-title: Support vector machines: a nonlinear modelling and control perspective
  publication-title: Eur. J. Control
  doi: 10.3166/ejc.7.311-327
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.ins.2025.122448_br0370
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– start-page: 412
  year: 2018
  ident: 10.1016/j.ins.2025.122448_br0140
  article-title: Graphvae: towards generation of small graphs using variational autoencoders
– start-page: 135
  year: 2017
  ident: 10.1016/j.ins.2025.122448_br0200
  article-title: metapath2vec: scalable representation learning for heterogeneous networks
– volume: 225
  year: 2023
  ident: 10.1016/j.ins.2025.122448_br0290
  article-title: Osgnn: original graph and subgraph aggregated graph neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120115
– year: 2023
  ident: 10.1016/j.ins.2025.122448_br0110
  article-title: Node-oriented spectral filtering for graph neural networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 5606
  year: 2023
  ident: 10.1016/j.ins.2025.122448_br0100
  article-title: Skeletonmae: graph-based masked autoencoder for skeleton sequence pre-training
– volume: 35
  start-page: 7264
  year: 2022
  ident: 10.1016/j.ins.2025.122448_br0280
  article-title: Convolutional neural networks on graphs with Chebyshev approximation, revisited
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 35
  start-page: 521
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2025.122448_br0250
  article-title: Heterogeneous graph propagation network
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 2874
  year: 2023
  ident: 10.1016/j.ins.2025.122448_br0090
  article-title: Unsupervised anomaly detection on microservice traces through graph vae
– start-page: 8142
  year: 2021
  ident: 10.1016/j.ins.2025.122448_br0020
  article-title: Deep attention diffusion graph neural networks for text classification
– start-page: 338
  year: 2020
  ident: 10.1016/j.ins.2025.122448_br0320
  article-title: Towards deeper graph neural networks
– year: 2024
  ident: 10.1016/j.ins.2025.122448_br0050
  article-title: Heterogeneous graph contrastive learning with meta-path contexts and adaptively weighted negative samples
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2024.3377431
– start-page: 13269
  year: 2025
  ident: 10.1016/j.ins.2025.122448_br0180
  article-title: Teacher-guided edge discriminator for personalized graph masked autoencoder
– start-page: 391
  year: 2021
  ident: 10.1016/j.ins.2025.122448_br0350
  article-title: Heterogeneous graph neural network via attribute completion
– ident: 10.1016/j.ins.2025.122448_br0130
– start-page: 787
  year: 2023
  ident: 10.1016/j.ins.2025.122448_br0160
  article-title: S2gae: self-supervised graph autoencoders are generalizable learners with graph masking
– start-page: 9997
  year: 2023
  ident: 10.1016/j.ins.2025.122448_br0070
  article-title: Heterogeneous graph masked autoencoders
– volume: 35
  start-page: 3938
  issue: 4
  year: 2023
  ident: 10.1016/j.ins.2025.122448_br0080
  article-title: Hgate: heterogeneous graph attention auto-encoders
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3138788
– start-page: 1726
  year: 2021
  ident: 10.1016/j.ins.2025.122448_br0240
  article-title: Self-supervised heterogeneous graph neural network with co-contrastive learning
– volume: 632
  start-page: 424
  year: 2023
  ident: 10.1016/j.ins.2025.122448_br0040
  article-title: Hetregat-fc: heterogeneous residual graph attention network via feature completion
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.03.034
– year: 2020
  ident: 10.1016/j.ins.2025.122448_br0220
  article-title: Heterogeneous deep graph infomax
– year: 2021
  ident: 10.1016/j.ins.2025.122448_br0300
  article-title: Interpretable and efficient heterogeneous graph convolutional network
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3101356
SSID ssj0004766
Score 2.4764419
Snippet Heterogeneous graph autoencoder (HGAE), as an unsupervised learning approach, aims to encode nodes and edges of heterogeneous graphs into low-dimensional...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 122448
SubjectTerms Graph neural network
Heterogeneous graph autoencoder
Heterogeneous graph representation learning
Title NodeHGAE: Node-oriented heterogeneous graph autoencoder
URI https://dx.doi.org/10.1016/j.ins.2025.122448
Volume 719
WOSCitedRecordID wos001523186300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect (Freedom Collection)
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004766
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLYY3WE7TNAxrduYfEAcQJnAjuN4twp1A4QqDkXquESJf9B2UlJBM8F_v-fYSdMyJDjsEkVR4kT5Pj1_7_n5PYT2jjSIWm5IoIVQQWiOZJCRKA2OuQL6SBmFpqquf8GHw3g8Fpe-2-hd1U6A53l8fy_m_xVquAZg262zL4C7GRQuwDmADkeAHY7PAn5YKH36sz-wvr49DwpbytgKy4lNfSngQW3zXqtS1YdpuShsLUvls3RndWZ7s6vx0E-Sjfi-npQWmDEQ6-Z3Om1SeqZ--b5oLIkLrv7SD2UrPl3FZq8nRX7zUE-bPupAmN9-17Kk4HZaf6RtSbm3fs4W2jU7V0XzkZl2EYMZ-Ba2Yjph35b3rpbEXpuqmgTCOjdtlsAQiR0icUO8Qh3CmQD71umfDcbnyz2y3K1b199dr3BXuX5r3_FvjdLSHaMt9M47DLjvgN5GGzrvoretMpJdtOs3n-B93MINe7P9HvGaEt_xCiHwCiFwRQjcIsQOuvoxGJ2cBr5hRiBBpi4CIVgKcj4ykhiibGOl2HAVsoxpnuowloYyFUUxy4SS4EmD-jO2O1ksdSZ0RukHtJkXuf6IMAPhbLQ2PDIgmA1NCaVSEE1TGoeSqh46qH9RMnd1UZInQemhsP6JieesE2wJEOLpxz695B2f0ZslT7-gzcVtqXfRa_lnMb27_erZ8BfFdmtN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NodeHGAE%3A+Node-oriented+heterogeneous+graph+autoencoder&rft.jtitle=Information+sciences&rft.au=Zhu%2C+Xiangkai&rft.au=Li%2C+Chao&rft.au=Yan%2C+Yeyu&rft.au=Zhao%2C+Zhongying&rft.date=2025-11-01&rft.issn=0020-0255&rft.volume=719&rft.spage=122448&rft_id=info:doi/10.1016%2Fj.ins.2025.122448&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2025_122448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon