Optimization-based model order reduction of fluid-structure interaction problems
We introduce optimization-based full-order and reduced-order formulations of fluid-structure interaction problems. We study the flow of an incompressible Newtonian fluid which interacts with an elastic body: we consider an arbitrary Lagrangian Eulerian formulation of the fluid problem and a fully La...
Uložené v:
| Vydané v: | Journal of computational physics Ročník 536; s. 114084 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.09.2025
|
| Predmet: | |
| ISSN: | 0021-9991 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We introduce optimization-based full-order and reduced-order formulations of fluid-structure interaction problems. We study the flow of an incompressible Newtonian fluid which interacts with an elastic body: we consider an arbitrary Lagrangian Eulerian formulation of the fluid problem and a fully Lagrangian formulation of the solid problem; we rely on a finite element discretization of both fluid and solid equations. The distinctive feature of our approach is an implicit coupling of fluid and structural problems that relies on the solution to a constrained optimization problem with equality constraints. We discuss the application of projection-based model reduction to both fluid and solid subproblems: we rely on Galerkin projection for the solid equations and on least-squares Petrov-Galerkin projection for the fluid equations. Numerical results for three model problems illustrate the many features of the formulation. |
|---|---|
| ISSN: | 0021-9991 |
| DOI: | 10.1016/j.jcp.2025.114084 |