A hybrid dynamic mode decomposition algorithm combining random and sparsity promoting and its application to viscoelastic flow around circular cylinder
•We propose a hybrid method called sparsity promoting randomized dynamic mode decomposition (SP-RDMD).•SP-RDMD can reconstruct the overall flow pattern of the viscoelastic flow field with fewer modes.•SP-DMD significantly improves the computational efficiency for the viscoelastic flow field. Dynamic...
Uložené v:
| Vydané v: | Applied mathematics and computation Ročník 505; s. 129508 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
15.11.2025
|
| Predmet: | |
| ISSN: | 0096-3003 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •We propose a hybrid method called sparsity promoting randomized dynamic mode decomposition (SP-RDMD).•SP-RDMD can reconstruct the overall flow pattern of the viscoelastic flow field with fewer modes.•SP-DMD significantly improves the computational efficiency for the viscoelastic flow field.
Dynamic mode decomposition (DMD) algorithm is widely applied to identify the flow characteristics of fluid dynamic field. However, for high-dimensional viscoelastic fluid systems, DMD might often result in unsatisfactory performance because of its huge computation cost. Therefore, we propose an improved dynamic mode decomposition algorithm, called sparsity promoting randomized dynamic mode decomposition (SP-RDMD). In our method, random projection techniques is firstly used to reduce the computational complexity, and then sparsity promoting is furtherly incorporated to remove the non-critical modes. Then we apply this method to study viscoelastic flow around circular cylinder. The numerical results show that the presented algorithm can effectively identify and extract the low-dimensional dynamic structure of viscoelastic fluid with steady state. Comparing with the traditional DMD, SP-RDMD can not only reconstruct the overall flow pattern of the viscoelastic flow field with fewer modes, but also make the reconstructed viscoelastic flow field show more local details. Moreover, the computational efficiency of SP-RDMD could be improved significantly yet. |
|---|---|
| AbstractList | •We propose a hybrid method called sparsity promoting randomized dynamic mode decomposition (SP-RDMD).•SP-RDMD can reconstruct the overall flow pattern of the viscoelastic flow field with fewer modes.•SP-DMD significantly improves the computational efficiency for the viscoelastic flow field.
Dynamic mode decomposition (DMD) algorithm is widely applied to identify the flow characteristics of fluid dynamic field. However, for high-dimensional viscoelastic fluid systems, DMD might often result in unsatisfactory performance because of its huge computation cost. Therefore, we propose an improved dynamic mode decomposition algorithm, called sparsity promoting randomized dynamic mode decomposition (SP-RDMD). In our method, random projection techniques is firstly used to reduce the computational complexity, and then sparsity promoting is furtherly incorporated to remove the non-critical modes. Then we apply this method to study viscoelastic flow around circular cylinder. The numerical results show that the presented algorithm can effectively identify and extract the low-dimensional dynamic structure of viscoelastic fluid with steady state. Comparing with the traditional DMD, SP-RDMD can not only reconstruct the overall flow pattern of the viscoelastic flow field with fewer modes, but also make the reconstructed viscoelastic flow field show more local details. Moreover, the computational efficiency of SP-RDMD could be improved significantly yet. |
| ArticleNumber | 129508 |
| Author | Zhang, Rui-Bo Feng, Jin-Qian Li, Xuan Lei, Xiong Su, Jin |
| Author_xml | – sequence: 1 givenname: Xuan surname: Li fullname: Li, Xuan – sequence: 2 givenname: Jin surname: Su fullname: Su, Jin email: sujin@xpu.edu.cn – sequence: 3 givenname: Jin-Qian surname: Feng fullname: Feng, Jin-Qian – sequence: 4 givenname: Xiong surname: Lei fullname: Lei, Xiong – sequence: 5 givenname: Rui-Bo surname: Zhang fullname: Zhang, Rui-Bo |
| BookMark | eNp9kE1OwzAQhb0oEm3hAOx8gQQ7aZJarKqKPwmJDaytiT1pp0rsyE6LchKuS0pZs5mRZt57M_oWbOa8Q8bupEilkOX9IYXOpJnIilRmqhDrGZsLocokFyK_ZosYD0KIqpSrOfve8P1YB7Lcjg46MrzzFrlF47veRxrIOw7tzgca9h2fpjU5cjsewFnf8any2EOYlCPvg-_8cN6exzREDn3fkoHflMHzE0XjsYU4TIea1n9xCP44aQ0Fc2whcDO25CyGG3bVQBvx9q8v2efT48f2JXl7f37dbt4SkxVySNb1qlKIwqgaMgWwLkUOVqmisNJirmwjylrZqmoALeSIlbB2tV4pkzUZmixfMnnJNcHHGLDRfaAOwqil0Gea-qAnmvpMU19oTp6Hiwenx06EQUdD6AxaCmgGbT394_4Bp9yG0w |
| Cites_doi | 10.1371/journal.pone.0209836 10.1007/s00332-012-9130-9 10.1016/j.euromechflu.2016.11.015 10.1016/j.oceaneng.2022.112579 10.1103/PhysRevFluids.8.023101 10.1109/LCSYS.2020.3015776 10.2514/1.J057870 10.1016/j.cnsns.2021.105833 10.1146/annurev-fluid-010816-060042 10.1007/s11071-005-2824-x 10.1063/1.4863670 10.1137/19M1259948 10.1109/TPWRS.2020.3012419 10.35848/1347-4065/ac1c3c 10.1016/j.cviu.2016.02.005 10.1063/5.0095163 10.1585/pfr.15.1301001 10.1017/S0022112010001217 10.1063/5.0100419 10.1146/annurev-fluid-010719-060107 10.3934/jcd.2014.1.391 10.1016/j.jnnfm.2018.12.009 10.7566/JPSJ.87.054003 10.1146/annurev-fluid-030121-015835 10.3390/math9212803 10.1109/ACCESS.2022.3193157 10.1103/PhysRevE.103.012201 10.1073/pnas.17.5.315 10.18637/jss.v089.i11 10.2514/1.J058462 10.1017/S0022112009992059 10.1002/fld.4181 10.1146/annurev.fl.25.010193.002543 10.1137/M1124176 10.1063/1.5093507 10.1007/s11071-021-07167-8 10.1007/s00332-017-9423-0 10.1063/1.5092166 10.1002/nme.5499 10.1146/annurev-fluid-011212-140652 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Inc. |
| Copyright_xml | – notice: 2025 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.amc.2025.129508 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| ExternalDocumentID | 10_1016_j_amc_2025_129508 S0096300325002346 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 6J9 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABAOU ABFNM ABFRF ABJNI ABMAC ACDAQ ACGFO ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADGUI AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSH SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- 5VS 9DU AAQXK AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ADIYS ADMUD ADNMO AFFNX AGQPQ AI. ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ LG9 M26 R2- TAE VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c251t-8b479ee0c9ba29aa8603ad9955d1de39df06b9d77faeda3ee70dd4849c2f2ec23 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001498954100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0096-3003 |
| IngestDate | Sat Nov 29 07:54:43 EST 2025 Sat Jul 05 17:12:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Viscoelastic flow Model reduction Dynamic mode decomposition Randomized algorithm Sparsity promoting |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-8b479ee0c9ba29aa8603ad9955d1de39df06b9d77faeda3ee70dd4849c2f2ec23 |
| ParticipantIDs | crossref_primary_10_1016_j_amc_2025_129508 elsevier_sciencedirect_doi_10_1016_j_amc_2025_129508 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-15 |
| PublicationDateYYYYMMDD | 2025-11-15 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied mathematics and computation |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Kou, Zhang (bib0005) 2018; 36 Kou, Zhang (bib0008) 2017; 62 Rowley, Henningson (bib0045) 2009; 641 Mezić (bib0046) 2005; 41 Jovanovic, Schmid, Nichols (bib0040) 2013 Surasinghe, Bollt (bib0032) 2021; 9 Li (bib0012) 2021 Baddoo (bib0014) 2022; 478 Shakeri, Jung, Seemann (bib0025) 2022; 34 Berkooz, Holmes, Lumley (bib0003) 1993; 25 Wu (bib0022) 2022; 265 Murata (bib0041) 2018; 87 Brunton (bib0048) 2019 Nonomura, Shibata, Takaki (bib0013) 2019; 14 Koopman (bib0044) 1931; 17 Chen, Tu, Rowley (bib0049) 2012; 22 Tu (bib0006) 2014; 1 Schmid (bib0007) 2022; 54 Pan, Arnold-Medabalimi, Duraisamy (bib0036) 2021 Rowley, Dawson (bib0021) 2017; 49 Kusaba, Kuboyama, Inagaki (bib0042) 2020; 15 Erichson (bib0030) 2019; 89 Ahmed (bib0031) 2022; 34 Lee, Trask, Stinis (bib0010) 2022 Kusaba (bib0017) 2021; 61 Schmid (bib0004) 2010; 656 Gutierrez-Castillo, Thomases (bib0023) 2019; 264 Gupta, Saha (bib0051) 2022; 300 Askham, Kutz (bib0015) 2018; 17 Benjamin Erichson, Mathelin, Kutz, Brunton (bib0027) 2019 Bistrian, Navon (bib0034) 2017; 112 Curtis, Alford-Lago (bib0019) 2021; 103 Ohmichi, Kobayashi, Kanazaki (bib0011) 2019; 31 Alves, Oliveira, Pinho (bib0020) 2021; 53 Bai (bib0029) 2020; 58 Lu, Tartakovsky (bib0018) 2020; 42 Li (bib0026) 2022; 107 Kutz (bib0016) 2016 Korda, Mezić (bib0050) 2017; 28 Henshaw, Martin, Guasto (bib0024) 2023; 8 Kou, Zhang (bib0009) 2019; 31 Alassaf, Fan (bib0033) 2021; 36 Annoni, Seiler, Jovanović (bib0038) 2016 Taira (bib0001) 2020; 58 Tsolovikos (bib0039) 2021; 5 Erichson, Donovan (bib0028) 2016; 146 Bollt (bib0047) 2021; 100 Stankiewicz (bib0002) 2016; 81 Mezić (bib0043) 2013; 45 Iwasaki (bib0037) 2022; 10 Jovanović, Schmid, Nichols (bib0035) 2014; 26 Askham (10.1016/j.amc.2025.129508_bib0015) 2018; 17 Ahmed (10.1016/j.amc.2025.129508_bib0031) 2022; 34 Schmid (10.1016/j.amc.2025.129508_bib0007) 2022; 54 Li (10.1016/j.amc.2025.129508_bib0012) 2021 Schmid (10.1016/j.amc.2025.129508_bib0004) 2010; 656 Henshaw (10.1016/j.amc.2025.129508_bib0024) 2023; 8 Iwasaki (10.1016/j.amc.2025.129508_bib0037) 2022; 10 Bai (10.1016/j.amc.2025.129508_bib0029) 2020; 58 Murata (10.1016/j.amc.2025.129508_bib0041) 2018; 87 Mezić (10.1016/j.amc.2025.129508_bib0046) 2005; 41 Tu (10.1016/j.amc.2025.129508_bib0006) 2014; 1 Gutierrez-Castillo (10.1016/j.amc.2025.129508_bib0023) 2019; 264 Annoni (10.1016/j.amc.2025.129508_bib0038) 2016 Shakeri (10.1016/j.amc.2025.129508_bib0025) 2022; 34 Kou (10.1016/j.amc.2025.129508_bib0009) 2019; 31 Jovanović (10.1016/j.amc.2025.129508_bib0035) 2014; 26 Kutz (10.1016/j.amc.2025.129508_bib0016) 2016 Nonomura (10.1016/j.amc.2025.129508_bib0013) 2019; 14 Bistrian (10.1016/j.amc.2025.129508_bib0034) 2017; 112 Baddoo (10.1016/j.amc.2025.129508_bib0014) 2022; 478 Alassaf (10.1016/j.amc.2025.129508_bib0033) 2021; 36 Lu (10.1016/j.amc.2025.129508_bib0018) 2020; 42 Taira (10.1016/j.amc.2025.129508_bib0001) 2020; 58 Wu (10.1016/j.amc.2025.129508_bib0022) 2022; 265 Surasinghe (10.1016/j.amc.2025.129508_bib0032) 2021; 9 Gupta (10.1016/j.amc.2025.129508_bib0051) 2022; 300 Kou (10.1016/j.amc.2025.129508_bib0008) 2017; 62 Benjamin Erichson (10.1016/j.amc.2025.129508_bib0027) 2019 Erichson (10.1016/j.amc.2025.129508_bib0030) 2019; 89 Korda (10.1016/j.amc.2025.129508_bib0050) 2017; 28 Rowley (10.1016/j.amc.2025.129508_bib0021) 2017; 49 Pan (10.1016/j.amc.2025.129508_bib0036) 2021 Kusaba (10.1016/j.amc.2025.129508_bib0017) 2021; 61 Curtis (10.1016/j.amc.2025.129508_bib0019) 2021; 103 Koopman (10.1016/j.amc.2025.129508_bib0044) 1931; 17 Lee (10.1016/j.amc.2025.129508_bib0010) 2022 Ohmichi (10.1016/j.amc.2025.129508_bib0011) 2019; 31 Brunton (10.1016/j.amc.2025.129508_bib0048) 2019 Jovanovic (10.1016/j.amc.2025.129508_bib0040) 2013 Alves (10.1016/j.amc.2025.129508_bib0020) 2021; 53 Li (10.1016/j.amc.2025.129508_bib0026) 2022; 107 Chen (10.1016/j.amc.2025.129508_bib0049) 2012; 22 Mezić (10.1016/j.amc.2025.129508_bib0043) 2013; 45 Kou (10.1016/j.amc.2025.129508_bib0005) 2018; 36 Erichson (10.1016/j.amc.2025.129508_bib0028) 2016; 146 Bollt (10.1016/j.amc.2025.129508_bib0047) 2021; 100 Rowley (10.1016/j.amc.2025.129508_bib0045) 2009; 641 Berkooz (10.1016/j.amc.2025.129508_bib0003) 1993; 25 Stankiewicz (10.1016/j.amc.2025.129508_bib0002) 2016; 81 Tsolovikos (10.1016/j.amc.2025.129508_bib0039) 2021; 5 Kusaba (10.1016/j.amc.2025.129508_bib0042) 2020; 15 |
| References_xml | – volume: 641 start-page: 115 year: 2009 end-page: 127 ident: bib0045 article-title: Spectral analysis of nonlinear flows publication-title: J. Fluid Mech. – year: 2016 ident: bib0038 article-title: Sparsity-promoting dynamic mode decomposition for systems with inputs publication-title: 2016 IEEE 55th Conference on Decision and Control (CDC) – start-page: 26 year: 2013 ident: bib0040 article-title: Sparsity-promoting dynamic mode decomposition publication-title: Phys. Fluids – volume: 17 start-page: 380 year: 2018 end-page: 416 ident: bib0015 article-title: Variable projection methods for an optimized dynamic mode decomposition publication-title: SIAM J. Appl. Dyn. Syst. – volume: 100 year: 2021 ident: bib0047 article-title: Geometric considerations of a good dictionary for Koopman analysis of dynamical systems: cardinality, “primary eigenfunction,” and efficient representation publication-title: Commun. Nonlinear Sci. Numer. Simul. – start-page: 1 year: 2016 end-page: 78 ident: bib0016 article-title: Dynamic Mode decomposition: Data-Driven Modeling of Complex Systems – volume: 45 start-page: 357 year: 2013 end-page: 378 ident: bib0043 article-title: Analysis of fluid flows via spectral properties of the Koopman operator publication-title: Annu. Rev. Fluid. Mech. – volume: 26 year: 2014 ident: bib0035 article-title: Sparsity-promoting dynamic mode decomposition publication-title: Phys. Fluids – volume: 1 start-page: 391 year: 2014 end-page: 421 ident: bib0006 article-title: On dynamic mode decomposition: theory and applications publication-title: J. Computat. Dynamics – volume: 49 start-page: 387 year: 2017 end-page: 417 ident: bib0021 article-title: Model reduction for flow analysis and control publication-title: Annu. Rev. Fluid. Mech. – volume: 10 start-page: 80748 year: 2022 end-page: 80763 ident: bib0037 article-title: Evaluation of optimization algorithms and noise robustness of sparsity-promoting dynamic mode decomposition publication-title: IEEE Access – volume: 478 year: 2022 ident: bib0014 article-title: Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization publication-title: Proc Math Phys Eng Sci – volume: 28 start-page: 687 year: 2017 end-page: 710 ident: bib0050 article-title: On convergence of extended dynamic mode decomposition to the Koopman operator publication-title: J. Nonlinear Sci. – volume: 264 start-page: 48 year: 2019 end-page: 61 ident: bib0023 article-title: Proper orthogonal decomposition (POD) of the flow dynamics for a viscoelastic fluid in a four-roll mill geometry at the Stokes limit publication-title: J. Nonnewton. Fluid. Mech. – year: 2022 ident: bib0010 article-title: Structure-preserving sparse identification of nonlinear dynamics for data-driven modeling publication-title: Mathematical and Scientific Machine Learning – volume: 54 start-page: 225 year: 2022 end-page: 254 ident: bib0007 article-title: Dynamic mode decomposition and its variants publication-title: Annu. Rev. Fluid. Mech. – volume: 17 start-page: 315 year: 1931 end-page: 318 ident: bib0044 article-title: Hamiltonian systems and transformation in hilbert space publication-title: Proc. Natl Acad. Sci. – volume: 81 start-page: 178 year: 2016 end-page: 191 ident: bib0002 article-title: Modal decomposition-based global stability analysis for reduced order modeling of 2D and 3D wake flows publication-title: Int. J. Numer. Methods Fluids – volume: 112 start-page: 3 year: 2017 end-page: 25 ident: bib0034 article-title: Randomized dynamic mode decomposition for nonintrusive reduced order modelling publication-title: Int. J. Numer. Methods Eng. – volume: 103 year: 2021 ident: bib0019 article-title: Dynamic-mode decomposition and optimal prediction publication-title: Phys. Rev. E – volume: 9 year: 2021 ident: bib0032 article-title: Randomized projection learning method for dynamic mode decomposition publication-title: Mathematics – volume: 25 start-page: 539 year: 1993 end-page: 575 ident: bib0003 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Annu. Rev. Fluid. Mech – year: 2019 ident: bib0048 article-title: Notes On Koopman Operator Theory – volume: 8 year: 2023 ident: bib0024 article-title: Dynamic mode structure of active turbulence publication-title: Phys. Rev. Fluids – volume: 656 start-page: 5 year: 2010 end-page: 28 ident: bib0004 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J. Fluid Mech. – year: 2021 ident: bib0012 article-title: Dynamic Mode Decomposition Based Algorithms as Feature Detection Techniques: Application to Large Flow Databases – volume: 36 start-page: 1399 year: 2021 end-page: 1408 ident: bib0033 article-title: Randomized dynamic mode decomposition for oscillation modal analysis publication-title: IEEE Trans. Power Syst. – volume: 14 year: 2019 ident: bib0013 article-title: Extended-Kalman-filter-based dynamic mode decomposition for simultaneous system identification and denoising publication-title: PLoS One – volume: 62 start-page: 109 year: 2017 end-page: 129 ident: bib0008 article-title: An improved criterion to select dominant modes from dynamic mode decomposition publication-title: Eur. J. Mech. B. Fluids – volume: 53 start-page: 509 year: 2021 end-page: 541 ident: bib0020 article-title: Numerical methods for viscoelastic fluid flows publication-title: Annu. Rev. Fluid. Mech. – start-page: 917 year: 2021 ident: bib0036 article-title: Sparsity-promoting algorithms for the discovery of informative Koopman-invariant subspaces publication-title: J. Fluid Mech. – volume: 22 start-page: 887 year: 2012 end-page: 915 ident: bib0049 publication-title: J. Nonlinear Sci. – volume: 34 year: 2022 ident: bib0025 article-title: Characterizing purely elastic turbulent flow of a semi-dilute entangled polymer solution in a serpentine channel publication-title: Phys. Fluids – volume: 36 start-page: 163 year: 2018 end-page: 179 ident: bib0005 article-title: Dynamic mode decomposition and its applications in fluid dynamics publication-title: Acta. Aerodynamica Sinica – volume: 15 year: 2020 ident: bib0042 article-title: Sparsity-promoting dynamic mode decomposition of plasma turbulence publication-title: Plasma Fusion Res. – volume: 31 year: 2019 ident: bib0009 article-title: Dynamic mode decomposition with exogenous input for data-driven modeling of unsteady flows publication-title: Phys. Fluids – volume: 265 year: 2022 ident: bib0022 article-title: Improvement of mode selection criterion of dynamic mode decomposition in a hydrofoil cavitation multiphase flow case publication-title: Ocean Eng. – volume: 34 year: 2022 ident: bib0031 article-title: Dynamic mode decomposition with core sketch publication-title: Phys. Fluids – volume: 87 year: 2018 ident: bib0041 article-title: Analysis of coherent phonon signals by sparsity-promoting dynamic mode decomposition publication-title: J. Phys. Soc. Jpn. – volume: 58 start-page: 998 year: 2020 end-page: 1022 ident: bib0001 article-title: Modal analysis of fluid flows: applications and outlook publication-title: AIAA J. – volume: 107 start-page: 3683 year: 2022 end-page: 3707 ident: bib0026 article-title: A parametric and feasibility study for data sampling of the dynamic mode decomposition: range, resolution, and universal convergence states publication-title: Nonlinear Dyn. – year: 2019 ident: bib0027 article-title: Randomized Dynamic Mode Decomposition – volume: 58 start-page: 561 year: 2020 end-page: 574 ident: bib0029 article-title: Dynamic mode decomposition for compressive system identification publication-title: AIAA J. – volume: 42 start-page: A1639 year: 2020 end-page: A1662 ident: bib0018 article-title: Prediction accuracy of dynamic mode decomposition publication-title: SIAM J. Sci. Comput. – volume: 5 start-page: 1145 year: 2021 end-page: 1150 ident: bib0039 article-title: Estimation and control of fluid flows using sparsity-promoting dynamic mode decomposition publication-title: IEEE Control. Syst. Letters – volume: 31 year: 2019 ident: bib0011 article-title: Numerical investigation of wake structures of an atmospheric entry capsule by modal analysis publication-title: Phys. Fluids – volume: 89 start-page: 1 year: 2019 end-page: 48 ident: bib0030 article-title: Randomized matrix decompositions using R publication-title: J. Stat. Softw. – volume: 41 start-page: 309 year: 2005 end-page: 325 ident: bib0046 article-title: Spectral properties of dynamical systems, model reduction and decompositions publication-title: Nonlinear Dyn. – volume: 300 year: 2022 ident: bib0051 article-title: Modal analysis of viscoelastic wakes: challenges and adaptations publication-title: J. Nonnewton. Fluid. Mech. – volume: 61 year: 2021 ident: bib0017 article-title: A new combination of Hankel and sparsity-promoting dynamic mode decompositions and its application to the prediction of plasma turbulence publication-title: Jpn J Appl Phys – volume: 146 start-page: 40 year: 2016 end-page: 50 ident: bib0028 article-title: Randomized low-rank dynamic mode decomposition for motion detection publication-title: Comput. Vision Image Understanding – volume: 14 issue: 2 year: 2019 ident: 10.1016/j.amc.2025.129508_bib0013 article-title: Extended-Kalman-filter-based dynamic mode decomposition for simultaneous system identification and denoising publication-title: PLoS One doi: 10.1371/journal.pone.0209836 – volume: 22 start-page: 887 issue: 6 year: 2012 ident: 10.1016/j.amc.2025.129508_bib0049 article-title: Variants of dynamic mode decomposition: boundary condition, Koopman, and fourier analyses publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-012-9130-9 – volume: 62 start-page: 109 year: 2017 ident: 10.1016/j.amc.2025.129508_bib0008 article-title: An improved criterion to select dominant modes from dynamic mode decomposition publication-title: Eur. J. Mech. B. Fluids doi: 10.1016/j.euromechflu.2016.11.015 – year: 2022 ident: 10.1016/j.amc.2025.129508_bib0010 article-title: Structure-preserving sparse identification of nonlinear dynamics for data-driven modeling – volume: 265 year: 2022 ident: 10.1016/j.amc.2025.129508_bib0022 article-title: Improvement of mode selection criterion of dynamic mode decomposition in a hydrofoil cavitation multiphase flow case publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112579 – volume: 8 issue: 2 year: 2023 ident: 10.1016/j.amc.2025.129508_bib0024 article-title: Dynamic mode structure of active turbulence publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.8.023101 – volume: 5 start-page: 1145 issue: 4 year: 2021 ident: 10.1016/j.amc.2025.129508_bib0039 article-title: Estimation and control of fluid flows using sparsity-promoting dynamic mode decomposition publication-title: IEEE Control. Syst. Letters doi: 10.1109/LCSYS.2020.3015776 – volume: 58 start-page: 561 issue: 2 year: 2020 ident: 10.1016/j.amc.2025.129508_bib0029 article-title: Dynamic mode decomposition for compressive system identification publication-title: AIAA J. doi: 10.2514/1.J057870 – volume: 100 year: 2021 ident: 10.1016/j.amc.2025.129508_bib0047 article-title: Geometric considerations of a good dictionary for Koopman analysis of dynamical systems: cardinality, “primary eigenfunction,” and efficient representation publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2021.105833 – volume: 49 start-page: 387 issue: 1 year: 2017 ident: 10.1016/j.amc.2025.129508_bib0021 article-title: Model reduction for flow analysis and control publication-title: Annu. Rev. Fluid. Mech. doi: 10.1146/annurev-fluid-010816-060042 – year: 2019 ident: 10.1016/j.amc.2025.129508_bib0048 – volume: 41 start-page: 309 issue: 1–3 year: 2005 ident: 10.1016/j.amc.2025.129508_bib0046 article-title: Spectral properties of dynamical systems, model reduction and decompositions publication-title: Nonlinear Dyn. doi: 10.1007/s11071-005-2824-x – volume: 26 issue: 2 year: 2014 ident: 10.1016/j.amc.2025.129508_bib0035 article-title: Sparsity-promoting dynamic mode decomposition publication-title: Phys. Fluids doi: 10.1063/1.4863670 – start-page: 1 year: 2016 ident: 10.1016/j.amc.2025.129508_bib0016 – volume: 42 start-page: A1639 issue: 3 year: 2020 ident: 10.1016/j.amc.2025.129508_bib0018 article-title: Prediction accuracy of dynamic mode decomposition publication-title: SIAM J. Sci. Comput. doi: 10.1137/19M1259948 – volume: 36 start-page: 1399 issue: 2 year: 2021 ident: 10.1016/j.amc.2025.129508_bib0033 article-title: Randomized dynamic mode decomposition for oscillation modal analysis publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2020.3012419 – volume: 61 issue: SA year: 2021 ident: 10.1016/j.amc.2025.129508_bib0017 article-title: A new combination of Hankel and sparsity-promoting dynamic mode decompositions and its application to the prediction of plasma turbulence publication-title: Jpn J Appl Phys doi: 10.35848/1347-4065/ac1c3c – year: 2016 ident: 10.1016/j.amc.2025.129508_bib0038 article-title: Sparsity-promoting dynamic mode decomposition for systems with inputs – volume: 146 start-page: 40 year: 2016 ident: 10.1016/j.amc.2025.129508_bib0028 article-title: Randomized low-rank dynamic mode decomposition for motion detection publication-title: Comput. Vision Image Understanding doi: 10.1016/j.cviu.2016.02.005 – volume: 34 issue: 6 year: 2022 ident: 10.1016/j.amc.2025.129508_bib0031 article-title: Dynamic mode decomposition with core sketch publication-title: Phys. Fluids doi: 10.1063/5.0095163 – volume: 15 issue: 0 year: 2020 ident: 10.1016/j.amc.2025.129508_bib0042 article-title: Sparsity-promoting dynamic mode decomposition of plasma turbulence publication-title: Plasma Fusion Res. doi: 10.1585/pfr.15.1301001 – volume: 656 start-page: 5 year: 2010 ident: 10.1016/j.amc.2025.129508_bib0004 article-title: Dynamic mode decomposition of numerical and experimental data publication-title: J. Fluid Mech. doi: 10.1017/S0022112010001217 – start-page: 26 year: 2013 ident: 10.1016/j.amc.2025.129508_bib0040 article-title: Sparsity-promoting dynamic mode decomposition publication-title: Phys. Fluids – volume: 34 issue: 7 year: 2022 ident: 10.1016/j.amc.2025.129508_bib0025 article-title: Characterizing purely elastic turbulent flow of a semi-dilute entangled polymer solution in a serpentine channel publication-title: Phys. Fluids doi: 10.1063/5.0100419 – volume: 300 year: 2022 ident: 10.1016/j.amc.2025.129508_bib0051 article-title: Modal analysis of viscoelastic wakes: challenges and adaptations publication-title: J. Nonnewton. Fluid. Mech. – volume: 478 issue: 2260 year: 2022 ident: 10.1016/j.amc.2025.129508_bib0014 article-title: Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization publication-title: Proc Math Phys Eng Sci – volume: 53 start-page: 509 issue: 1 year: 2021 ident: 10.1016/j.amc.2025.129508_bib0020 article-title: Numerical methods for viscoelastic fluid flows publication-title: Annu. Rev. Fluid. Mech. doi: 10.1146/annurev-fluid-010719-060107 – volume: 1 start-page: 391 issue: 2 year: 2014 ident: 10.1016/j.amc.2025.129508_bib0006 article-title: On dynamic mode decomposition: theory and applications publication-title: J. Computat. Dynamics doi: 10.3934/jcd.2014.1.391 – volume: 264 start-page: 48 year: 2019 ident: 10.1016/j.amc.2025.129508_bib0023 article-title: Proper orthogonal decomposition (POD) of the flow dynamics for a viscoelastic fluid in a four-roll mill geometry at the Stokes limit publication-title: J. Nonnewton. Fluid. Mech. doi: 10.1016/j.jnnfm.2018.12.009 – volume: 87 issue: 5 year: 2018 ident: 10.1016/j.amc.2025.129508_bib0041 article-title: Analysis of coherent phonon signals by sparsity-promoting dynamic mode decomposition publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.87.054003 – volume: 36 start-page: 163 issue: 2 year: 2018 ident: 10.1016/j.amc.2025.129508_bib0005 article-title: Dynamic mode decomposition and its applications in fluid dynamics publication-title: Acta. Aerodynamica Sinica – volume: 54 start-page: 225 issue: 1 year: 2022 ident: 10.1016/j.amc.2025.129508_bib0007 article-title: Dynamic mode decomposition and its variants publication-title: Annu. Rev. Fluid. Mech. doi: 10.1146/annurev-fluid-030121-015835 – year: 2019 ident: 10.1016/j.amc.2025.129508_bib0027 – volume: 9 issue: 21 year: 2021 ident: 10.1016/j.amc.2025.129508_bib0032 article-title: Randomized projection learning method for dynamic mode decomposition publication-title: Mathematics doi: 10.3390/math9212803 – volume: 10 start-page: 80748 year: 2022 ident: 10.1016/j.amc.2025.129508_bib0037 article-title: Evaluation of optimization algorithms and noise robustness of sparsity-promoting dynamic mode decomposition publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3193157 – volume: 103 issue: 1 year: 2021 ident: 10.1016/j.amc.2025.129508_bib0019 article-title: Dynamic-mode decomposition and optimal prediction publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.103.012201 – volume: 17 start-page: 315 issue: 5 year: 1931 ident: 10.1016/j.amc.2025.129508_bib0044 article-title: Hamiltonian systems and transformation in hilbert space publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.17.5.315 – volume: 89 start-page: 1 issue: 11 year: 2019 ident: 10.1016/j.amc.2025.129508_bib0030 article-title: Randomized matrix decompositions using R publication-title: J. Stat. Softw. doi: 10.18637/jss.v089.i11 – volume: 58 start-page: 998 issue: 3 year: 2020 ident: 10.1016/j.amc.2025.129508_bib0001 article-title: Modal analysis of fluid flows: applications and outlook publication-title: AIAA J. doi: 10.2514/1.J058462 – volume: 641 start-page: 115 year: 2009 ident: 10.1016/j.amc.2025.129508_bib0045 article-title: Spectral analysis of nonlinear flows publication-title: J. Fluid Mech. doi: 10.1017/S0022112009992059 – volume: 81 start-page: 178 issue: 3 year: 2016 ident: 10.1016/j.amc.2025.129508_bib0002 article-title: Modal decomposition-based global stability analysis for reduced order modeling of 2D and 3D wake flows publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.4181 – volume: 25 start-page: 539 issue: 1 year: 1993 ident: 10.1016/j.amc.2025.129508_bib0003 article-title: The proper orthogonal decomposition in the analysis of turbulent flows publication-title: Annu. Rev. Fluid. Mech doi: 10.1146/annurev.fl.25.010193.002543 – volume: 17 start-page: 380 issue: 1 year: 2018 ident: 10.1016/j.amc.2025.129508_bib0015 article-title: Variable projection methods for an optimized dynamic mode decomposition publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/M1124176 – volume: 31 issue: 5 year: 2019 ident: 10.1016/j.amc.2025.129508_bib0009 article-title: Dynamic mode decomposition with exogenous input for data-driven modeling of unsteady flows publication-title: Phys. Fluids doi: 10.1063/1.5093507 – volume: 107 start-page: 3683 issue: 4 year: 2022 ident: 10.1016/j.amc.2025.129508_bib0026 article-title: A parametric and feasibility study for data sampling of the dynamic mode decomposition: range, resolution, and universal convergence states publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-07167-8 – start-page: 917 year: 2021 ident: 10.1016/j.amc.2025.129508_bib0036 article-title: Sparsity-promoting algorithms for the discovery of informative Koopman-invariant subspaces publication-title: J. Fluid Mech. – volume: 28 start-page: 687 issue: 2 year: 2017 ident: 10.1016/j.amc.2025.129508_bib0050 article-title: On convergence of extended dynamic mode decomposition to the Koopman operator publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-017-9423-0 – year: 2021 ident: 10.1016/j.amc.2025.129508_bib0012 – volume: 31 issue: 7 year: 2019 ident: 10.1016/j.amc.2025.129508_bib0011 article-title: Numerical investigation of wake structures of an atmospheric entry capsule by modal analysis publication-title: Phys. Fluids doi: 10.1063/1.5092166 – volume: 112 start-page: 3 issue: 1 year: 2017 ident: 10.1016/j.amc.2025.129508_bib0034 article-title: Randomized dynamic mode decomposition for nonintrusive reduced order modelling publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.5499 – volume: 45 start-page: 357 issue: 1 year: 2013 ident: 10.1016/j.amc.2025.129508_bib0043 article-title: Analysis of fluid flows via spectral properties of the Koopman operator publication-title: Annu. Rev. Fluid. Mech. doi: 10.1146/annurev-fluid-011212-140652 |
| SSID | ssj0007614 |
| Score | 2.4689662 |
| Snippet | •We propose a hybrid method called sparsity promoting randomized dynamic mode decomposition (SP-RDMD).•SP-RDMD can reconstruct the overall flow pattern of the... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 129508 |
| SubjectTerms | Dynamic mode decomposition Model reduction Randomized algorithm Sparsity promoting Viscoelastic flow |
| Title | A hybrid dynamic mode decomposition algorithm combining random and sparsity promoting and its application to viscoelastic flow around circular cylinder |
| URI | https://dx.doi.org/10.1016/j.amc.2025.129508 |
| Volume | 505 |
| WOSCitedRecordID | wos001498954100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0096-3003 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007614 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIf2UPok6QsdeqpxcCTbso5LSWlLG1qSwt6MXt447NqL99HkfxT6dzuyLK-3D2gLvQgzIO3i-dB8lr6ZQeiFoMyoQsmQU0nCOI5omGkThwkTPKFMypSrttkEOz3NJhP-cTT66nNhNjNWVdnVFV_8V1eDDZxtU2f_wt39omCAZ3A6jOB2GP_I8ePg4tqmYQXaNZtvm90E2ljxeKfQCsRsWjfl6mJuJeWy7RERQNDStWuYAbuM02osnFivy2O0dwyDC29LWzflUtUGGLit-1rM6i-BaGyjpkCVjVO4quuZrcjYDFmwp77zvmbs0ufXLda72oD3rdpgst6C-GzdIq_sDfD2p50p_FQONUZuLqw2HR5ukMRm-bn0Tnfi5rNudkSh9rMrpFFEh7t40mZv_xwR3OHE5ZGY24KVJDkCgpNE2Tb89aLEM7uuXRZYITCZOL2B9glLOOye--O3J5N3fYRnqasZ7_-Hvy1vdYM__NCv-c6Aw5zfRXe6jw88dqC5h0amuo9uf9h64QH6NsYOPriDD7bwwTvwwT18cA8f7OCDYcQePriHT2sG-OABfPCqxkP4YAsf7OCDPXywh89D9Pn1yfmrN2HXvCNUQJlXYSZjxo2JFJeCcCGyNKJCc54k-lgbynURpZJrxgphtKDGsEjrOIu5IgUxitBHaK-qK3OAcJqlXFAhbVCPjw0RBsIQlZIUikYiSQ_RS_-K84Wr0ZJ78eJlDv7IrT9y549DFHsn5B3JdOQxB8T8ftrjf5v2BN3awvop2ls1a_MM3VSbVblsnne4-g6z-aqz |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+dynamic+mode+decomposition+algorithm+combining+random+and+sparsity+promoting+and+its+application+to+viscoelastic+flow+around+circular+cylinder&rft.jtitle=Applied+mathematics+and+computation&rft.au=Li%2C+Xuan&rft.au=Su%2C+Jin&rft.au=Feng%2C+Jin-Qian&rft.au=Lei%2C+Xiong&rft.date=2025-11-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.volume=505&rft_id=info:doi/10.1016%2Fj.amc.2025.129508&rft.externalDocID=S0096300325002346 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |