An almost optimal approximation algorithm for monotone submodular multiple knapsack

We study the problem of maximizing a monotone submodular function subject to a Multiple Knapsack constraint. The input is a set I of items, each has a non-negative weight, and a set of bins of arbitrary capacities. Also, we are given a submodular, monotone and non-negative function f over subsets of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computer and system sciences Ročník 125; s. 149 - 165
Hlavní autoři: Fairstein, Yaron, Kulik, Ariel, Naor, Joseph (Seffi), Raz, Danny, Shachnai, Hadas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.05.2022
Témata:
ISSN:0022-0000, 1090-2724
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the problem of maximizing a monotone submodular function subject to a Multiple Knapsack constraint. The input is a set I of items, each has a non-negative weight, and a set of bins of arbitrary capacities. Also, we are given a submodular, monotone and non-negative function f over subsets of the items. The objective is to find a packing of a subset of items A⊆I in the bins such that f(A) is maximized. Our main result is an almost optimal polynomial time (1−e−1−ε)-approximation algorithm for the problem, for any ε>0. The algorithm relies on a structuring technique which converts a general multiple knapsack constraint to a constraint in which the bins are partitioned into groups of exponentially increasing cardinalities, each consisting of bins of uniform capacity. We derive the result by combining structuring with a refined analysis of techniques for submodular optimization subject to knapsack constraints.
ISSN:0022-0000
1090-2724
DOI:10.1016/j.jcss.2021.11.005