Uncertain dynamics characteristic forecasting in composite plates with multi-defects of electric aircraft via physics-augmented meta-learning

•A physics-enhanced Meta-learning Framework is proposed to predict dynamic characteristics of composite plate with defects.•Attention meta-learning mechanism is used for cross task meta knowledge weighted extraction.•The effectiveness of the PMF has been verified through comparison with physics-data...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Aerospace science and technology Ročník 164; s. 110363
Hlavní autoři: Xu, Duo, Zang, Jian, Song, Xu-Yuan, Zhang, Zhen, Zhang, Ye-Wei, Chen, Li-Qun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Masson SAS 01.09.2025
Témata:
ISSN:1270-9638
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A physics-enhanced Meta-learning Framework is proposed to predict dynamic characteristics of composite plate with defects.•Attention meta-learning mechanism is used for cross task meta knowledge weighted extraction.•The effectiveness of the PMF has been verified through comparison with physics-data driven models.•Physics mechanisms transfers prior solutions as new input features to the training of model.•Extremum stiffness equations are embedded as physical constraints into loss function of the model. The dynamics characteristic forecasting of composite plates with defects faces fundamental barriers stemming from multiscale material heterogeneity, stochastic manufacturing defects, and the gap between idealized theoretical models and real-world engineering scenarios. To address these limitations, this study introduces a physics-enhanced meta-learning framework (PMF) that synergizes cross-task meta-knowledge with attention-weighted transfer and stiffness-bounded physical constraints. A similarity-driven attention mechanism enables adaptive transfer of cross-task meta-knowledge to defective plate structures, derived through meta-learning on theoretical-experimental hybrid datasets. Furthermore, the extremal stiffness equations (max/zero stiffness to intact/perforated plate) are incorporated into the framework as physical boundary constraints. This integration allows adaptive prediction across the entire stiffness spectrum, thereby generalizing dynamics modeling for arbitrary defect-induced stiffness distributions. Experimental validation demonstrates that this approach achieves higher-fidelity accuracy in predicting nonlinear dynamics responses and defect-driven modal under few-shot conditions compared to physics-data driven models and purely data-driven models, while reducing computational costs. The PMF addresses the issues of inaccurate prediction and high costs of traditional models under complex conditions such as experimental uncertainties, limited datasets, and significant sample variations, especially in solving defect-induced modal transitions and nonlinear dynamics responses. The PMF bridges the gap between idealized models and real-world engineering conditions, providing a new intelligent modelling tool with both physical interpretability and data-driven adaptability for engineering fields such as the structural health monitoring of aviation composite materials.
AbstractList •A physics-enhanced Meta-learning Framework is proposed to predict dynamic characteristics of composite plate with defects.•Attention meta-learning mechanism is used for cross task meta knowledge weighted extraction.•The effectiveness of the PMF has been verified through comparison with physics-data driven models.•Physics mechanisms transfers prior solutions as new input features to the training of model.•Extremum stiffness equations are embedded as physical constraints into loss function of the model. The dynamics characteristic forecasting of composite plates with defects faces fundamental barriers stemming from multiscale material heterogeneity, stochastic manufacturing defects, and the gap between idealized theoretical models and real-world engineering scenarios. To address these limitations, this study introduces a physics-enhanced meta-learning framework (PMF) that synergizes cross-task meta-knowledge with attention-weighted transfer and stiffness-bounded physical constraints. A similarity-driven attention mechanism enables adaptive transfer of cross-task meta-knowledge to defective plate structures, derived through meta-learning on theoretical-experimental hybrid datasets. Furthermore, the extremal stiffness equations (max/zero stiffness to intact/perforated plate) are incorporated into the framework as physical boundary constraints. This integration allows adaptive prediction across the entire stiffness spectrum, thereby generalizing dynamics modeling for arbitrary defect-induced stiffness distributions. Experimental validation demonstrates that this approach achieves higher-fidelity accuracy in predicting nonlinear dynamics responses and defect-driven modal under few-shot conditions compared to physics-data driven models and purely data-driven models, while reducing computational costs. The PMF addresses the issues of inaccurate prediction and high costs of traditional models under complex conditions such as experimental uncertainties, limited datasets, and significant sample variations, especially in solving defect-induced modal transitions and nonlinear dynamics responses. The PMF bridges the gap between idealized models and real-world engineering conditions, providing a new intelligent modelling tool with both physical interpretability and data-driven adaptability for engineering fields such as the structural health monitoring of aviation composite materials.
ArticleNumber 110363
Author Xu, Duo
Zhang, Ye-Wei
Song, Xu-Yuan
Chen, Li-Qun
Zang, Jian
Zhang, Zhen
Author_xml – sequence: 1
  givenname: Duo
  surname: Xu
  fullname: Xu, Duo
  organization: College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, PR China
– sequence: 2
  givenname: Jian
  surname: Zang
  fullname: Zang, Jian
  email: zangjian106@163.com
  organization: College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, PR China
– sequence: 3
  givenname: Xu-Yuan
  surname: Song
  fullname: Song, Xu-Yuan
  organization: College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, PR China
– sequence: 4
  givenname: Zhen
  surname: Zhang
  fullname: Zhang, Zhen
  organization: College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, PR China
– sequence: 5
  givenname: Ye-Wei
  orcidid: 0000-0003-1748-3849
  surname: Zhang
  fullname: Zhang, Ye-Wei
  email: zhangyewei1218@126.com
  organization: College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, PR China
– sequence: 6
  givenname: Li-Qun
  orcidid: 0000-0002-3694-0833
  surname: Chen
  fullname: Chen, Li-Qun
  organization: Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200444, PR China
BookMark eNp9kEtOwzAQhr0oEm3hAOx8gQQ_EqcWK1TxkiqxoWvLsSetq8SJbLeoh-DOuCprVjOL-f6Z-RZo5kcPCD1QUlJCxeOh1DGVjLC6pJRwwWdoTllDCin46hYtYjwQQpis2Bz9bL2BkLTz2J69HpyJ2Ox10CZBcDE5g7sxgMmJzu9wHjPjMI3RJcBTrxNE_O3SHg_HPrnCQgcmRTx2GPrchYxrF0zQXcInp_G0P8e8otDH3QA-gcUDJF30oIPP-XfoptN9hPu_ukTb15ev9Xux-Xz7WD9vCsNqmorGWiMpUN6CANrULQHRMGBWVA2nBioJ0jadlC0Hy-vKVtCuulYy0QhaG8OXiF5zTRhjDNCpKbhBh7OiRF0cqoPKH6uLQ3V1mJmnKwP5sJODoKJxkO1Zl_0kZUf3D_0Lzl2Clg
Cites_doi 10.1016/j.engappai.2024.109584
10.1016/j.cma.2021.113933
10.1016/j.ymssp.2023.110967
10.1016/j.cma.2021.113741
10.1016/j.cma.2025.117844
10.1016/j.ymssp.2024.112044
10.1016/j.cma.2025.117852
10.1016/j.aei.2024.103072
10.1016/j.engappai.2024.109748
10.1016/j.ymssp.2025.112398
10.1016/j.ast.2022.107365
10.1016/j.ast.2025.110148
10.1016/j.measurement.2024.115402
10.1016/j.euromechsol.2022.104889
10.1016/j.ymssp.2024.111652
10.1016/j.eswa.2025.127851
10.1016/j.compstruc.2022.106915
10.1016/j.jcp.2022.111402
10.1007/s00366-023-01799-7
10.1016/j.ast.2025.109961
10.1142/S0219455426500781
10.1016/j.ast.2025.110090
10.1016/j.ymssp.2023.110359
10.1016/j.engappai.2025.110383
10.1016/j.ast.2025.110021
10.1080/15397734.2024.2337914
10.1016/j.jmapro.2024.09.091
10.1016/j.eswa.2023.122997
10.1016/j.engappai.2024.107858
10.1016/j.tws.2022.110369
10.1016/j.tws.2024.111928
10.1016/j.tws.2024.112495
10.1007/s00707-024-03909-y
10.1007/s00466-022-02252-0
10.1016/j.ymssp.2024.111444
10.1016/j.ast.2025.109991
10.1016/j.asoc.2022.109424
10.1016/j.compstruct.2025.118913
10.1016/j.aei.2024.102363
10.1016/j.compstruct.2025.118970
10.1016/j.ast.2024.109205
10.1109/JAS.2024.124470
10.1016/j.tws.2022.110309
10.1016/j.ymssp.2025.112370
10.1016/j.ins.2023.119795
10.1016/j.ast.2024.109454
10.1016/j.tws.2023.111423
10.1016/j.engstruct.2024.117822
10.1016/j.ijmecsci.2024.109545
10.1016/j.engappai.2024.109980
10.1016/j.compstruct.2025.119049
10.1016/j.ymssp.2023.110528
10.1016/j.ymssp.2024.111564
10.1016/j.ress.2024.110556
10.1016/j.cma.2024.117691
10.1016/j.compstruct.2024.118727
10.1016/j.ast.2025.110152
10.1016/j.aei.2025.103215
10.1016/j.compstruct.2025.118929
10.1016/j.ast.2024.109554
10.1016/j.engfracmech.2024.110239
10.1063/5.0272267
10.1016/j.compstruct.2024.118514
10.1016/j.tws.2025.113159
ContentType Journal Article
Copyright 2025 Elsevier Masson SAS
Copyright_xml – notice: 2025 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.ast.2025.110363
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ast_2025_110363
S1270963825004341
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHJVU
AHPGS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
XPP
ZMT
~G-
9DU
AAYXX
ACLOT
CITATION
EFLBG
~HD
ID FETCH-LOGICAL-c251t-7ddc91e13be6e175b0e672e2d64731ce49e9d7f99b3ed354d4eb8fb9267615cc3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001513288700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1270-9638
IngestDate Sat Nov 29 07:46:24 EST 2025
Sat Aug 09 17:31:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Composite plates with defects
Physics-enhanced meta-learning framework (PMF)
Deep Learning
Few-shot
Dynamics Analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-7ddc91e13be6e175b0e672e2d64731ce49e9d7f99b3ed354d4eb8fb9267615cc3
ORCID 0000-0002-3694-0833
0000-0003-1748-3849
ParticipantIDs crossref_primary_10_1016_j_ast_2025_110363
elsevier_sciencedirect_doi_10_1016_j_ast_2025_110363
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Aerospace science and technology
PublicationYear 2025
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Cao, Huang, Zhang, Wu, Zhang, Ding (bib0035) 2024
Li, Wang, Yang, Qin (bib0005) 2025; 358
Preetha Hareendran, Alipour (bib0037) 2022; 129
Wang, Lou, Li, Yang (bib0070) 2024; 131
Gao, Zhu, Wang, Shu, Liu, Miao, Yang (bib0028) 2025; 438
Sun, Jin, Zhuo, Ding, Guo, Han (bib0067) 2024; 131
Yang, Li, Lei, Yang, Liu, Gao (bib0021) 2024; 218
Qiao, Zhang, Wang (bib0073) 2023; 200
Jagtap, Mao, Adams, Karniadakis (bib0044) 2022; 466
Meftah, Aldosari, Tounsi, Cuong-Le, Khedher, Alluqmani (bib0010) 2024; 306
Li, Zhu, Hu, Xing, Xiang (bib0072) 2025; 226
Li, Zhu, Hu, Xing, Xiang (bib0065) 2025; 226
Zhang, Yan, Zhang, Yang, Zhan (bib0042) 2025; 212
Bai, Rabczuk, Gupta, Alzubaidi, Gu (bib0048) 2023; 71
Yang, Yu, Lou, Cui, Li (bib0034) 2025; 64
Tan, Tien, Dzung, Ha, Dong, Ninh (bib0057) 2024; 202
Fallah, Aghdam (bib0058) 2024; 40
Zhao, Jiao, Xu, Chen, Zio (bib0064) 2025; 139
Zhang, Liu, Yue, Liang, Wang (bib0062) 2024; 216
Xu, Hou, Hou, Li, Ren, Duraihem, Mahrous Awwad, Saeed (bib0008) 2025; 159
Zuo, Ye, Yuan, Zhang (bib0033) 2025; 159
Liu, Peng (bib0060) 2025; 240
Mu, Jiang, Wang, Dong (bib0066) 2025; 141
Li, Wang, Gao, Zhang (bib0074) 2025; 284
Haghighat, Raissi, Moure, Gomez, Juanes (bib0047) 2021; 379
Zhang, Tao, Wang, Yang, Fan (bib0029) 2024; 60
Li, Xing, Xiang, Chen, Hu (bib0063) 2025
Liao, Lin, Zhang, Wu (bib0038) 2023; 275
Chen, Lai, Yang (bib0043) 2024; 196
Ji, Zhang, Wang, Qin, Yue, Li, Li, Meng, Wang, Zhang, Lu (bib0007) 2025
Liu, Sun, Liu, Ma, Du, Li (bib0016) 2024; 280
Liu, Chen, Xu (bib0024) 2025; 353
Kabasi, Marbaniang, Ghosh (bib0051) 2023; 182
Li, He, Ren, Shao (bib0040) 2025; 65
Qi, Wang, Xu (bib0002) 2025; 159
Raissi, Yazdani, Karniadakis (bib0045) 2020; 367
Wang, Zang, Yang, Zhang, Song, Zhang, Chen (bib0006) 2024; 155
Chang, Lin (bib0059) 2025; 142
Li, Bazant, Zhu (bib0050) 2021; 383
Chouhan, Kumar Sahu, Punera (bib0001) 2025; 360
Belabed, Abdeldjebbar, Abdelmoumen Anis, Abdelouahed, Yaylacı (bib0015) 2024; 52
Lakhdar, Chorfi, Belalia, Khedher, Alluqmani, Tounsi, Yaylacı (bib0013) 2024; 235
Liu, Guo, Di, Zheng (bib0054) 2025; 147
Li, Su, Xiang, Yao, Hu (bib0061) 2024; 208
Guo, Li, Li, Song, Xu, Yang (bib0036) 2025; 37
Lin, Kong, Han, Wang, Dong, Liu, Chu (bib0068) 2024; 220
Zang, Zhang, Yang, Zhang, Song, Zhang, Chen (bib0009) 2024
Varun, Ankit, Abdelouahed (bib0014) 2022; 45
Hu, Xu, Chen, Huang, Cai, Qiu, He (bib0003) 2024; 153
Chen, Zhou, Wu, Fu, Xue (bib0032) 2025; 160
Zhang, Liu, Xing, Zhang, Yan, Liu (bib0019) 2025; 438
He, Zhao, Yan (bib0039) 2023; 98
Hu, Qi, Chao (bib0049) 2024; 205
Belabed, Tounsi, Al-Osta, Tounsi, Minh (bib0011) 2024; 36
Zang, Xu, Yang, Song, Zhang, Zhang, Chen (bib0026) 2025; 227
Zhang, Lei, Chan, Dong (bib0055) 2024; 84
Liu, Sun, Yan, Du, Liu, Li (bib0018) 2023; 183
Yang, Wang, Luo (bib0071) 2024; 653
Yang, Lei, Li, Li (bib0022) 2024; 244
Keshun, Puzhou, Peng, Yingkui (bib0053) 2025; 253
Shabani, Li, Laliberte, Qi (bib0004) 2024; 155
Guo, Deng, Ma, Tian, Le, Zhang (bib0046) 2024; 150
Gu, Wen, Chen (bib0027) 2025; 357
Tounsi, Belabed, Bounouara, Balubaid, Mahmoud, Bousahla, Tounsi (bib0012) 2024
Fang, Shen, Wang (bib0030) 2025
Xiong, Fink, Zhou, Ma (bib0023) 2023; 197
Chen, Lai, Yang, Ni, Yang, Cheung (bib0052) 2025; 436
Chen, Lai, Yang (bib0056) 2024; 196
Zhang, Sun, Zhang, Ma, Du, Xu, Li (bib0017) 2025; 357
Li, Wan, Wang, Hu (bib0041) 2024; 348
Zhao, Song, Han, Yang, Zhang (bib0069) 2025; 224
Yang, Zhang, Wu, Zhang, Zhang, Liu, Wang (bib0025) 2024; 306
Wang, Wang, Wang, Cao, Sun, Li, Yang (bib0031) 2022; 121
Li, Yu, Lei, Li, Yang (bib0020) 2024; 11
Liu (10.1016/j.ast.2025.110363_bib0060) 2025; 240
Tan (10.1016/j.ast.2025.110363_bib0057) 2024; 202
Gu (10.1016/j.ast.2025.110363_bib0027) 2025; 357
Liu (10.1016/j.ast.2025.110363_bib0054) 2025; 147
Guo (10.1016/j.ast.2025.110363_bib0046) 2024; 150
Preetha Hareendran (10.1016/j.ast.2025.110363_bib0037) 2022; 129
Chen (10.1016/j.ast.2025.110363_bib0043) 2024; 196
Li (10.1016/j.ast.2025.110363_bib0041) 2024; 348
Haghighat (10.1016/j.ast.2025.110363_bib0047) 2021; 379
Yang (10.1016/j.ast.2025.110363_bib0071) 2024; 653
Zang (10.1016/j.ast.2025.110363_bib0026) 2025; 227
Xu (10.1016/j.ast.2025.110363_bib0008) 2025; 159
Zhang (10.1016/j.ast.2025.110363_bib0042) 2025; 212
Zhang (10.1016/j.ast.2025.110363_bib0055) 2024; 84
Chang (10.1016/j.ast.2025.110363_bib0059) 2025; 142
Zang (10.1016/j.ast.2025.110363_bib0009) 2024
Yang (10.1016/j.ast.2025.110363_bib0025) 2024; 306
Zhang (10.1016/j.ast.2025.110363_bib0062) 2024; 216
Hu (10.1016/j.ast.2025.110363_bib0003) 2024; 153
Zhang (10.1016/j.ast.2025.110363_bib0019) 2025; 438
Ji (10.1016/j.ast.2025.110363_bib0007) 2025
Jagtap (10.1016/j.ast.2025.110363_bib0044) 2022; 466
Zhao (10.1016/j.ast.2025.110363_bib0069) 2025; 224
Tounsi (10.1016/j.ast.2025.110363_bib0012) 2024
Hu (10.1016/j.ast.2025.110363_bib0049) 2024; 205
Li (10.1016/j.ast.2025.110363_bib0063) 2025
Shabani (10.1016/j.ast.2025.110363_bib0004) 2024; 155
Xiong (10.1016/j.ast.2025.110363_bib0023) 2023; 197
Li (10.1016/j.ast.2025.110363_bib0040) 2025; 65
Guo (10.1016/j.ast.2025.110363_bib0036) 2025; 37
Kabasi (10.1016/j.ast.2025.110363_bib0051) 2023; 182
Lin (10.1016/j.ast.2025.110363_bib0068) 2024; 220
Chen (10.1016/j.ast.2025.110363_bib0056) 2024; 196
Cao (10.1016/j.ast.2025.110363_bib0035) 2024
Zhang (10.1016/j.ast.2025.110363_bib0029) 2024; 60
Keshun (10.1016/j.ast.2025.110363_bib0053) 2025; 253
Lakhdar (10.1016/j.ast.2025.110363_bib0013) 2024; 235
Li (10.1016/j.ast.2025.110363_bib0072) 2025; 226
Liao (10.1016/j.ast.2025.110363_bib0038) 2023; 275
Li (10.1016/j.ast.2025.110363_bib0050) 2021; 383
Varun (10.1016/j.ast.2025.110363_bib0014) 2022; 45
Fallah (10.1016/j.ast.2025.110363_bib0058) 2024; 40
Li (10.1016/j.ast.2025.110363_bib0005) 2025; 358
Meftah (10.1016/j.ast.2025.110363_bib0010) 2024; 306
Zuo (10.1016/j.ast.2025.110363_bib0033) 2025; 159
Sun (10.1016/j.ast.2025.110363_bib0067) 2024; 131
Wang (10.1016/j.ast.2025.110363_bib0006) 2024; 155
Bai (10.1016/j.ast.2025.110363_bib0048) 2023; 71
Gao (10.1016/j.ast.2025.110363_bib0028) 2025; 438
Chouhan (10.1016/j.ast.2025.110363_bib0001) 2025; 360
Wang (10.1016/j.ast.2025.110363_bib0031) 2022; 121
Chen (10.1016/j.ast.2025.110363_bib0052) 2025; 436
Li (10.1016/j.ast.2025.110363_bib0061) 2024; 208
Belabed (10.1016/j.ast.2025.110363_bib0011) 2024; 36
Li (10.1016/j.ast.2025.110363_bib0074) 2025; 284
Zhao (10.1016/j.ast.2025.110363_bib0064) 2025; 139
Qi (10.1016/j.ast.2025.110363_bib0002) 2025; 159
Belabed (10.1016/j.ast.2025.110363_bib0015) 2024; 52
Liu (10.1016/j.ast.2025.110363_bib0024) 2025; 353
Zhang (10.1016/j.ast.2025.110363_bib0017) 2025; 357
Mu (10.1016/j.ast.2025.110363_bib0066) 2025; 141
Fang (10.1016/j.ast.2025.110363_bib0030) 2025
He (10.1016/j.ast.2025.110363_bib0039) 2023; 98
Wang (10.1016/j.ast.2025.110363_bib0070) 2024; 131
Yang (10.1016/j.ast.2025.110363_bib0022) 2024; 244
Raissi (10.1016/j.ast.2025.110363_bib0045) 2020; 367
Liu (10.1016/j.ast.2025.110363_bib0016) 2024; 280
Li (10.1016/j.ast.2025.110363_bib0065) 2025; 226
Chen (10.1016/j.ast.2025.110363_bib0032) 2025; 160
Qiao (10.1016/j.ast.2025.110363_bib0073) 2023; 200
Yang (10.1016/j.ast.2025.110363_bib0021) 2024; 218
Yang (10.1016/j.ast.2025.110363_bib0034) 2025; 64
Li (10.1016/j.ast.2025.110363_bib0020) 2024; 11
Liu (10.1016/j.ast.2025.110363_bib0018) 2023; 183
References_xml – year: 2024
  ident: bib0012
  article-title: A finite element approach for forced dynamical responses of porous FG nanocomposite beams resting on viscoelastic foundations
  publication-title: Int. J. Struct. Stab. Dyn.
– volume: 357
  year: 2025
  ident: bib0017
  article-title: Integrated design of intelligent structures for composite laminates with embedded MFCs: theoretical modeling and experimental study
  publication-title: Compos. Struct.
– volume: 280
  year: 2024
  ident: bib0016
  article-title: Vibration of bolted composite cylindrical-cylindrical flanged shells considering contact characteristics
  publication-title: Int. J. Mech. Sci.
– volume: 253
  year: 2025
  ident: bib0053
  article-title: A sound-vibration physical-information fusion constraint-guided deep learning method for rolling bearing fault diagnosis
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2025
  ident: bib0007
  article-title: A few-shot deep learning framework for predicting high-velocity impact response of ultra-high molecular weight polyethylene fiber-reinforced composites
  publication-title: Aerosp. Sci. Technol.
– volume: 98
  year: 2023
  ident: bib0039
  article-title: MFLP-PINN: a physics-informed neural network for multiaxial fatigue life prediction
  publication-title: Eur. J. Mech. - A/Solids
– volume: 155
  year: 2024
  ident: bib0004
  article-title: Enhanced LaRC05 failure criteria for investigating low-velocity impact on fiber-reinforced composites: an experimental and computational study
  publication-title: Aerosp. Sci. Technol.
– volume: 121
  year: 2022
  ident: bib0031
  article-title: Framework of nacelle inverse design method based on improved generative adversarial networks
  publication-title: Aerosp. Sci. Technol.
– volume: 360
  year: 2025
  ident: bib0001
  article-title: Material degradation based finite element modelling for fibre-reinforced composites in hygrothermal environment
  publication-title: Compos. Struct.
– volume: 37
  year: 2025
  ident: bib0036
  article-title: Vibration prediction model and vibration characteristics of mining riser used in deep-sea gas hydrate extraction based on deep-learning
  publication-title: Phys. Fluids
– year: 2025
  ident: bib0030
  article-title: Nonlinear bending of sandwich plates with deep learning inverse-designed 3D auxetic lattice core
  publication-title: Aerosp. Sci. Technol.
– volume: 348
  year: 2024
  ident: bib0041
  article-title: Physics-constrained deep learning approach for solving inverse problems in composite laminated plates
  publication-title: Compos. Struct.
– volume: 353
  year: 2025
  ident: bib0024
  article-title: Fatigue life prognosis of composite structures using a transferable deep reinforcement learning-based approach
  publication-title: Compos. Struct.
– volume: 196
  year: 2024
  ident: bib0056
  article-title: AT-PINN: advanced time-marching physics-informed neural network for structural vibration analysis
  publication-title: Thin-Walled Struct.
– volume: 357
  year: 2025
  ident: bib0027
  article-title: Rapid thermo-mechanical performance prediction and multi-objective optimization of tri-directional functionally graded material considering complex geometry and arbitrary graded paths
  publication-title: Compos. Struct.
– volume: 200
  year: 2023
  ident: bib0073
  article-title: Fault detection in wind turbine generators using a me-ta-learning-based convolutional neural network
  publication-title: Mech. Syst. Signal. Process.
– volume: 438
  year: 2025
  ident: bib0028
  article-title: Advanced deep learning framework for multi-scale prediction of mechanical properties from microstructural features in polycrystalline materials
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 202
  year: 2024
  ident: bib0057
  article-title: Utilizing optimal physics-informed neural networks for dynamical analysis of nanocomposite one-variable edge plates
  publication-title: Thin-Walled Struct.
– volume: 358
  year: 2025
  ident: bib0005
  article-title: Stochastic vibration behaviors of functionally graded graphene platelets reinforced composite joined conical-cylindrical-conical shell with variable taper under moving random loads
  publication-title: Compos. Struct.
– volume: 208
  year: 2024
  ident: bib0061
  article-title: Transformer-based meta learning method for bearing fault identification under multiple small sample conditions
  publication-title: Mech. Syst. Signal. Process.
– volume: 197
  year: 2023
  ident: bib0023
  article-title: Controlled physics-informed data generation for deep learning-based remaining useful life prediction under unseen operation conditions
  publication-title: Mech. Syst. Signal. Process.
– volume: 367
  start-page: 1026
  year: 2020
  end-page: 1030
  ident: bib0045
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science (1979)
– volume: 306
  year: 2024
  ident: bib0025
  article-title: A deep learning approach for low-cycle fatigue life prediction under thermal–mechanical loading based on a novel neural network model
  publication-title: Eng. Fract. Mech.
– volume: 160
  year: 2025
  ident: bib0032
  article-title: Enhancing air traffic complexity assessment through deep metric learning: a CNN-based approach
  publication-title: Aerosp. Sci. Technol.
– volume: 224
  year: 2025
  ident: bib0069
  article-title: The rigid-flexible coupling vibration of composite box structure in new energy hydrogen-electricity aircraft with complex circumstance: theoretical formulation and experiment
  publication-title: Mech. Syst. Signal. Process.
– volume: 64
  year: 2025
  ident: bib0034
  article-title: Deep learning-enabled turbulence model optimization of solid motor
  publication-title: Adv. Eng. Inform.
– volume: 244
  year: 2024
  ident: bib0022
  article-title: Targeted transfer learning through distribution barycenter medium for intelligent fault diagnosis of machines with data decentralization
  publication-title: Expert. Syst. Appl.
– year: 2024
  ident: bib0035
  article-title: A deep learning model for online prediction of in-process dynamic characteristics of thin-walled complex blade machining
  publication-title: J. Intell. Manuf.
– volume: 226
  year: 2025
  ident: bib0065
  article-title: A meta-learning method based on meta-feature enhancement for bearing fault identification under few-sample conditions
  publication-title: Mech. Syst. Signal. Process.
– volume: 275
  year: 2023
  ident: bib0038
  article-title: Attention-based LSTM (AttLSTM) neural network for seismic Response modeling of bridges
  publication-title: Comput. Struct.
– volume: 147
  year: 2025
  ident: bib0054
  article-title: Quantitative method for structural health evaluation under multiple performance metrics via multi-physics guided neural network
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 1
  year: 2024
  end-page: 23
  ident: bib0009
  article-title: Vibration control for laminated composite spherical-cylindrical-combined shells: theory and experiment
  publication-title: AIAa J.
– volume: 240
  year: 2025
  ident: bib0060
  article-title: Few-shot bearing fault diagnosis by semi-supervised meta-learning with graph convolutional neural network under variable working conditions
  publication-title: Measurement
– volume: 438
  year: 2025
  ident: bib0019
  article-title: Based on purely physical information in deep learning optimizes soliton system parameter identification problem
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 182
  year: 2023
  ident: bib0051
  article-title: Physics-informed neural networks for the form-finding of tensile membranes by solving the Euler–Lagrange equation of minimal surfaces
  publication-title: Thin-Walled Struct.
– volume: 84
  year: 2024
  ident: bib0055
  article-title: Integrating physics-informed machine learning with resonance effect for structural dynamic performance modeling
  publication-title: J. Build. Eng.
– volume: 45
  start-page: 621
  year: 2022
  end-page: 640
  ident: bib0014
  article-title: Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM
  publication-title: Steel Compos. Struct.
– volume: 220
  year: 2024
  ident: bib0068
  article-title: An information fusion-based meta transfer learning method for few-shot fault diagnosis under varying operating conditions
  publication-title: Mech. Syst. Signal. Process.
– volume: 183
  year: 2023
  ident: bib0018
  article-title: Nonlinear vibration analysis of carbon fiber-reinforced composites with frequency-dependence and strain-dependence: experimental and theoretical studies
  publication-title: Thin-Walled Struct.
– volume: 142
  year: 2025
  ident: bib0059
  article-title: Few-shot remaining useful life prediction based on bayesian meta-learning with predictive uncertainty calibration
  publication-title: Eng. Appl. Artif. Intell.
– volume: 52
  start-page: 9144
  year: 2024
  end-page: 9177
  ident: bib0015
  article-title: Accurate free and forced vibration behavior prediction of functionally graded sandwich beams with variable cross-section: a finite element assessment
  publication-title: Mech. Based Des. Struct. Mach.
– volume: 155
  year: 2024
  ident: bib0006
  article-title: Dynamic characteristics and vibration control of composite laminate wall panels in electric aircraft using NiTi shape memory alloys
  publication-title: Aerosp. Sci. Technol.
– year: 2025
  ident: bib0063
  article-title: Memory-augmented prototypical meta-learning method for bearing fault identification under few-sample conditions
  publication-title: Neurocomputing
– volume: 159
  year: 2025
  ident: bib0033
  article-title: Flow3DNet: a deep learning framework for efficient simulation of three-dimensional wing flow fields
  publication-title: Aerosp. Sci. Technol.
– volume: 150
  year: 2024
  ident: bib0046
  article-title: Hypersonic inlet flow field reconstruction dominated by shock wave and boundary layer based on small sample physics-informed neural networks
  publication-title: Aerosp. Sci. Technol.
– volume: 284
  year: 2025
  ident: bib0074
  article-title: Transformer-enhanced meta-learning for few-shot fault di-agnosis of electric submersible pump
  publication-title: Expert. Syst. Appl.
– volume: 129
  year: 2022
  ident: bib0037
  article-title: Prediction of nonlinear structural response under wind loads using deep learning techniques
  publication-title: Appl. Soft. Comput.
– volume: 65
  year: 2025
  ident: bib0040
  article-title: Moving load induced dynamic response analysis of bridge based on physics-informed neural network
  publication-title: Adv. Eng. Inform.
– volume: 131
  year: 2024
  ident: bib0070
  article-title: Meta-fourier neural operators for multi-task modeling of film cooling in gas turbine endwalls
  publication-title: Eng. Appl. Artif. Intell.
– volume: 212
  year: 2025
  ident: bib0042
  article-title: Multi-frequency superposed vortex-induced vibration modeling based on multiple fourier features physics-informed neural network
  publication-title: Thin-Walled Struct.
– volume: 227
  year: 2025
  ident: bib0026
  article-title: Predicting mechanical properties of RX4E electric aircraft wing composite panels using deep learning
  publication-title: Mech. Syst. Signal. Process.
– volume: 141
  year: 2025
  ident: bib0066
  article-title: Adaptive model-agnostic meta-learning network for cross-machine fault diagnosis with limited samples
  publication-title: Eng. Appl. Artif. Intell.
– volume: 216
  year: 2024
  ident: bib0062
  article-title: Meta-learning-based approach for tool condition monitoring in multi-condition small sample scenarios
  publication-title: Mech. Syst. Signal. Process.
– volume: 11
  start-page: 2068
  year: 2024
  end-page: 2081
  ident: bib0020
  article-title: Dynamic vision-based machinery fault diagnosis with cross-modality feature alignment
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 218
  year: 2024
  ident: bib0021
  article-title: Dynamic modeling of gear compound faults and stiffness sensitivity analysis against arbitrary spatial configuration of defect
  publication-title: Mech. Syst. Signal. Process.
– volume: 205
  year: 2024
  ident: bib0049
  article-title: Physics-informed Neural Networks (PINN) for computational solid mechanics: numerical frameworks and applications
  publication-title: Thin-Walled Struct.
– volume: 653
  year: 2024
  ident: bib0071
  article-title: Few-shot remaining useful life prediction based on meta-learning with deep sparse kernel network
  publication-title: Inf. Sci.
– volume: 159
  year: 2025
  ident: bib0002
  article-title: Ballistic protection and damage mechanism of ceramic composite armor under two-dimensional pre-stressed constraints by molten metal casting
  publication-title: Aerosp. Sci. Technol.
– volume: 383
  year: 2021
  ident: bib0050
  article-title: A physics-guided neural network framework for elastic plates: comparison of governing equations-based and energy-based approaches
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 379
  year: 2021
  ident: bib0047
  article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 153
  year: 2024
  ident: bib0003
  article-title: A novel integrated modeling strategy for predicting damage mechanisms and energy dissipation of composite stiffened structures under low-velocity impact and compression
  publication-title: Aerosp. Sci. Technol.
– volume: 436
  year: 2025
  ident: bib0052
  article-title: AT-PINN-HC: a refined time-sequential method incorporating hard-constraint strategies for predicting structural behavior under dynamic loads
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 40
  start-page: 437
  year: 2024
  end-page: 454
  ident: bib0058
  article-title: Physics-informed neural network for bending and free vibration analysis of three-dimensional functionally graded porous beam resting on elastic foundation
  publication-title: Eng. Comput.
– volume: 159
  year: 2025
  ident: bib0008
  article-title: A novel ROM-based FSI model of composite blisk with blades-disk coupling for flutter analysis
  publication-title: Aerosp. Sci. Technol.
– volume: 306
  year: 2024
  ident: bib0010
  article-title: Simplified homogenization technique for nonlinear finite element analysis of in-plane loaded masonry walls
  publication-title: Eng. Struct.
– volume: 235
  start-page: 3657
  year: 2024
  end-page: 3686
  ident: bib0013
  article-title: Free vibration and bending analysis of porous bi-directional FGM sandwich shell using a TSDT p-version finite element method
  publication-title: Acta Mech.
– volume: 466
  year: 2022
  ident: bib0044
  article-title: Physics-informed neural networks for inverse problems in supersonic flows
  publication-title: J. Comput. Phys.
– volume: 60
  year: 2024
  ident: bib0029
  article-title: Differentiable automatic structural optimization using graph deep learning
  publication-title: Adv. Eng. Inform.
– volume: 196
  year: 2024
  ident: bib0043
  article-title: AT-PINN: advanced time-marching physics-informed neural network for structural vibration analysis
  publication-title: Thin-Walled Struct.
– volume: 71
  start-page: 543
  year: 2023
  end-page: 562
  ident: bib0048
  article-title: A physics-informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics
  publication-title: Comput. Mech.
– volume: 139
  year: 2025
  ident: bib0064
  article-title: A fault diagnosis framework using unlabeled data based on automatic clustering with meta-learning
  publication-title: Eng. Appl. Artif. Intell.
– volume: 131
  start-page: 1815
  year: 2024
  end-page: 1832
  ident: bib0067
  article-title: Investigation on a chatter detection method based on meta learning for machining multiple types of workpieces
  publication-title: J. Manuf. Process.
– volume: 36
  start-page: 183
  year: 2024
  end-page: 204
  ident: bib0011
  article-title: On the elastic stability and free vibration responses of functionally graded porous beams resting on Winkler Pasternak foundations via finite element computation
  publication-title: Geomech. Eng.
– volume: 226
  year: 2025
  ident: bib0072
  article-title: A meta-learning method based on meta-feature en-hancement for bearing fault identification under few-sample conditions
  publication-title: Mech. Syst. Signal. Process.
– volume: 45
  start-page: 621
  year: 2022
  ident: 10.1016/j.ast.2025.110363_bib0014
  article-title: Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM
  publication-title: Steel Compos. Struct.
– volume: 139
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0064
  article-title: A fault diagnosis framework using unlabeled data based on automatic clustering with meta-learning
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.109584
– volume: 383
  year: 2021
  ident: 10.1016/j.ast.2025.110363_bib0050
  article-title: A physics-guided neural network framework for elastic plates: comparison of governing equations-based and energy-based approaches
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113933
– volume: 208
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0061
  article-title: Transformer-based meta learning method for bearing fault identification under multiple small sample conditions
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2023.110967
– volume: 379
  year: 2021
  ident: 10.1016/j.ast.2025.110363_bib0047
  article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113741
– volume: 438
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0028
  article-title: Advanced deep learning framework for multi-scale prediction of mechanical properties from microstructural features in polycrystalline materials
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2025.117844
– volume: 224
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0069
  article-title: The rigid-flexible coupling vibration of composite box structure in new energy hydrogen-electricity aircraft with complex circumstance: theoretical formulation and experiment
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2024.112044
– volume: 438
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0019
  article-title: Based on purely physical information in deep learning optimizes soliton system parameter identification problem
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2025.117852
– volume: 64
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0034
  article-title: Deep learning-enabled turbulence model optimization of solid motor
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2024.103072
– year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0063
  article-title: Memory-augmented prototypical meta-learning method for bearing fault identification under few-sample conditions
  publication-title: Neurocomputing
– volume: 141
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0066
  article-title: Adaptive model-agnostic meta-learning network for cross-machine fault diagnosis with limited samples
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.109748
– volume: 227
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0026
  article-title: Predicting mechanical properties of RX4E electric aircraft wing composite panels using deep learning
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2025.112398
– volume: 121
  year: 2022
  ident: 10.1016/j.ast.2025.110363_bib0031
  article-title: Framework of nacelle inverse design method based on improved generative adversarial networks
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2022.107365
– year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0030
  article-title: Nonlinear bending of sandwich plates with deep learning inverse-designed 3D auxetic lattice core
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2025.110148
– volume: 240
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0060
  article-title: Few-shot bearing fault diagnosis by semi-supervised meta-learning with graph convolutional neural network under variable working conditions
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.115402
– volume: 98
  year: 2023
  ident: 10.1016/j.ast.2025.110363_bib0039
  article-title: MFLP-PINN: a physics-informed neural network for multiaxial fatigue life prediction
  publication-title: Eur. J. Mech. - A/Solids
  doi: 10.1016/j.euromechsol.2022.104889
– volume: 220
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0068
  article-title: An information fusion-based meta transfer learning method for few-shot fault diagnosis under varying operating conditions
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2024.111652
– start-page: 1
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0009
  article-title: Vibration control for laminated composite spherical-cylindrical-combined shells: theory and experiment
  publication-title: AIAa J.
– volume: 284
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0074
  article-title: Transformer-enhanced meta-learning for few-shot fault di-agnosis of electric submersible pump
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2025.127851
– volume: 84
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0055
  article-title: Integrating physics-informed machine learning with resonance effect for structural dynamic performance modeling
  publication-title: J. Build. Eng.
– volume: 275
  year: 2023
  ident: 10.1016/j.ast.2025.110363_bib0038
  article-title: Attention-based LSTM (AttLSTM) neural network for seismic Response modeling of bridges
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2022.106915
– volume: 466
  year: 2022
  ident: 10.1016/j.ast.2025.110363_bib0044
  article-title: Physics-informed neural networks for inverse problems in supersonic flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111402
– volume: 40
  start-page: 437
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0058
  article-title: Physics-informed neural network for bending and free vibration analysis of three-dimensional functionally graded porous beam resting on elastic foundation
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-023-01799-7
– volume: 159
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0008
  article-title: A novel ROM-based FSI model of composite blisk with blades-disk coupling for flutter analysis
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2025.109961
– year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0012
  article-title: A finite element approach for forced dynamical responses of porous FG nanocomposite beams resting on viscoelastic foundations
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455426500781
– volume: 160
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0032
  article-title: Enhancing air traffic complexity assessment through deep metric learning: a CNN-based approach
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2025.110090
– volume: 197
  year: 2023
  ident: 10.1016/j.ast.2025.110363_bib0023
  article-title: Controlled physics-informed data generation for deep learning-based remaining useful life prediction under unseen operation conditions
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2023.110359
– volume: 147
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0054
  article-title: Quantitative method for structural health evaluation under multiple performance metrics via multi-physics guided neural network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2025.110383
– volume: 159
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0002
  article-title: Ballistic protection and damage mechanism of ceramic composite armor under two-dimensional pre-stressed constraints by molten metal casting
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2025.110021
– volume: 52
  start-page: 9144
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0015
  article-title: Accurate free and forced vibration behavior prediction of functionally graded sandwich beams with variable cross-section: a finite element assessment
  publication-title: Mech. Based Des. Struct. Mach.
  doi: 10.1080/15397734.2024.2337914
– volume: 131
  start-page: 1815
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0067
  article-title: Investigation on a chatter detection method based on meta learning for machining multiple types of workpieces
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2024.09.091
– volume: 244
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0022
  article-title: Targeted transfer learning through distribution barycenter medium for intelligent fault diagnosis of machines with data decentralization
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2023.122997
– volume: 131
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0070
  article-title: Meta-fourier neural operators for multi-task modeling of film cooling in gas turbine endwalls
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.107858
– volume: 183
  year: 2023
  ident: 10.1016/j.ast.2025.110363_bib0018
  article-title: Nonlinear vibration analysis of carbon fiber-reinforced composites with frequency-dependence and strain-dependence: experimental and theoretical studies
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2022.110369
– volume: 202
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0057
  article-title: Utilizing optimal physics-informed neural networks for dynamical analysis of nanocomposite one-variable edge plates
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2024.111928
– volume: 205
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0049
  article-title: Physics-informed Neural Networks (PINN) for computational solid mechanics: numerical frameworks and applications
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2024.112495
– volume: 235
  start-page: 3657
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0013
  article-title: Free vibration and bending analysis of porous bi-directional FGM sandwich shell using a TSDT p-version finite element method
  publication-title: Acta Mech.
  doi: 10.1007/s00707-024-03909-y
– volume: 71
  start-page: 543
  year: 2023
  ident: 10.1016/j.ast.2025.110363_bib0048
  article-title: A physics-informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-022-02252-0
– volume: 216
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0062
  article-title: Meta-learning-based approach for tool condition monitoring in multi-condition small sample scenarios
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2024.111444
– volume: 159
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0033
  article-title: Flow3DNet: a deep learning framework for efficient simulation of three-dimensional wing flow fields
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2025.109991
– volume: 129
  year: 2022
  ident: 10.1016/j.ast.2025.110363_bib0037
  article-title: Prediction of nonlinear structural response under wind loads using deep learning techniques
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2022.109424
– volume: 357
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0017
  article-title: Integrated design of intelligent structures for composite laminates with embedded MFCs: theoretical modeling and experimental study
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2025.118913
– volume: 60
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0029
  article-title: Differentiable automatic structural optimization using graph deep learning
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2024.102363
– volume: 358
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0005
  article-title: Stochastic vibration behaviors of functionally graded graphene platelets reinforced composite joined conical-cylindrical-conical shell with variable taper under moving random loads
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2025.118970
– volume: 150
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0046
  article-title: Hypersonic inlet flow field reconstruction dominated by shock wave and boundary layer based on small sample physics-informed neural networks
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2024.109205
– volume: 11
  start-page: 2068
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0020
  article-title: Dynamic vision-based machinery fault diagnosis with cross-modality feature alignment
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2024.124470
– volume: 182
  year: 2023
  ident: 10.1016/j.ast.2025.110363_bib0051
  article-title: Physics-informed neural networks for the form-finding of tensile membranes by solving the Euler–Lagrange equation of minimal surfaces
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2022.110309
– volume: 226
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0065
  article-title: A meta-learning method based on meta-feature enhancement for bearing fault identification under few-sample conditions
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2025.112370
– volume: 653
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0071
  article-title: Few-shot remaining useful life prediction based on meta-learning with deep sparse kernel network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119795
– volume: 153
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0003
  article-title: A novel integrated modeling strategy for predicting damage mechanisms and energy dissipation of composite stiffened structures under low-velocity impact and compression
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2024.109454
– volume: 196
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0043
  article-title: AT-PINN: advanced time-marching physics-informed neural network for structural vibration analysis
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2023.111423
– volume: 306
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0010
  article-title: Simplified homogenization technique for nonlinear finite element analysis of in-plane loaded masonry walls
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2024.117822
– volume: 280
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0016
  article-title: Vibration of bolted composite cylindrical-cylindrical flanged shells considering contact characteristics
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2024.109545
– volume: 142
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0059
  article-title: Few-shot remaining useful life prediction based on bayesian meta-learning with predictive uncertainty calibration
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.109980
– volume: 360
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0001
  article-title: Material degradation based finite element modelling for fibre-reinforced composites in hygrothermal environment
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2025.119049
– volume: 367
  start-page: 1026
  year: 2020
  ident: 10.1016/j.ast.2025.110363_bib0045
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science (1979)
– volume: 200
  year: 2023
  ident: 10.1016/j.ast.2025.110363_bib0073
  article-title: Fault detection in wind turbine generators using a me-ta-learning-based convolutional neural network
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2023.110528
– year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0035
  article-title: A deep learning model for online prediction of in-process dynamic characteristics of thin-walled complex blade machining
  publication-title: J. Intell. Manuf.
– volume: 218
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0021
  article-title: Dynamic modeling of gear compound faults and stiffness sensitivity analysis against arbitrary spatial configuration of defect
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2024.111564
– volume: 253
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0053
  article-title: A sound-vibration physical-information fusion constraint-guided deep learning method for rolling bearing fault diagnosis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2024.110556
– volume: 436
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0052
  article-title: AT-PINN-HC: a refined time-sequential method incorporating hard-constraint strategies for predicting structural behavior under dynamic loads
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2024.117691
– volume: 353
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0024
  article-title: Fatigue life prognosis of composite structures using a transferable deep reinforcement learning-based approach
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2024.118727
– year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0007
  article-title: A few-shot deep learning framework for predicting high-velocity impact response of ultra-high molecular weight polyethylene fiber-reinforced composites
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2025.110152
– volume: 155
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0006
  article-title: Dynamic characteristics and vibration control of composite laminate wall panels in electric aircraft using NiTi shape memory alloys
  publication-title: Aerosp. Sci. Technol.
– volume: 65
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0040
  article-title: Moving load induced dynamic response analysis of bridge based on physics-informed neural network
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2025.103215
– volume: 357
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0027
  article-title: Rapid thermo-mechanical performance prediction and multi-objective optimization of tri-directional functionally graded material considering complex geometry and arbitrary graded paths
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2025.118929
– volume: 155
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0004
  article-title: Enhanced LaRC05 failure criteria for investigating low-velocity impact on fiber-reinforced composites: an experimental and computational study
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2024.109554
– volume: 196
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0056
  article-title: AT-PINN: advanced time-marching physics-informed neural network for structural vibration analysis
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2023.111423
– volume: 306
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0025
  article-title: A deep learning approach for low-cycle fatigue life prediction under thermal–mechanical loading based on a novel neural network model
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2024.110239
– volume: 36
  start-page: 183
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0011
  article-title: On the elastic stability and free vibration responses of functionally graded porous beams resting on Winkler Pasternak foundations via finite element computation
  publication-title: Geomech. Eng.
– volume: 37
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0036
  article-title: Vibration prediction model and vibration characteristics of mining riser used in deep-sea gas hydrate extraction based on deep-learning
  publication-title: Phys. Fluids
  doi: 10.1063/5.0272267
– volume: 348
  year: 2024
  ident: 10.1016/j.ast.2025.110363_bib0041
  article-title: Physics-constrained deep learning approach for solving inverse problems in composite laminated plates
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2024.118514
– volume: 212
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0042
  article-title: Multi-frequency superposed vortex-induced vibration modeling based on multiple fourier features physics-informed neural network
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2025.113159
– volume: 226
  year: 2025
  ident: 10.1016/j.ast.2025.110363_bib0072
  article-title: A meta-learning method based on meta-feature en-hancement for bearing fault identification under few-sample conditions
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2025.112370
SSID ssj0002942
Score 2.4133818
Snippet •A physics-enhanced Meta-learning Framework is proposed to predict dynamic characteristics of composite plate with defects.•Attention meta-learning mechanism...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110363
SubjectTerms Composite plates with defects
Deep Learning
Dynamics Analysis
Few-shot
Physics-enhanced meta-learning framework (PMF)
Title Uncertain dynamics characteristic forecasting in composite plates with multi-defects of electric aircraft via physics-augmented meta-learning
URI https://dx.doi.org/10.1016/j.ast.2025.110363
Volume 164
WOSCitedRecordID wos001513288700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1270-9638
  databaseCode: AIEXJ
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002942
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbLpof2UPqk6QsdeuqiYMuyZR2XktIGEgqbgNuLsR5ONxRv2LWX_IlCf3JHtuTY2QaaQi9mEWvZaD5Go8_fzCD0TvLECKEDkha0JCxKDBGxbfdSBgUVMg1ZKNtmE_zkJM0y8WUy-eVzYbY_eFWlV1fi8r-aGsbA2DZ19g7m7ieFAfgNRocrmB2uf2X4MzBj-5l_prtu8xub3TuoymyVhUYVm9qls1hVuZVuGdtS2tKwLTfbKg2JNr3co2uYY8u7LtdqXZT1bLssHDOyIUVz3pb31LYndUFcM4rzYew7N7AjwxHdzHwuUave3OH2s6Z1hM2qJ7Udp300gPLCSYmzhnxtrod7_vvbd5fj5hgNGveSLUez-VSbYzg-WKc5XwwcNOUBsU5j5MG7Qug7u0FHTFwcwIoe2AfZnIfI-dNxke2FnddOCxFhwCJbCWGP8likU7Q3_3yYHfW7OxVtQ6b-PfyX8lYzeONBf451BvHL6SP00B088LwDzGM0MdUT9GBQjvIp-tlDB3vo4DF08AA6GP7WQwd30MEWOngEHbwqsYcO9tDBAB28Ax08gs4zdPbx8PTDJ-LadRAFQXJNuNZKhCaMpEkMRKUyMAmnhuqE8ShUhgkjNC-FkJHRUcw0MzItpaAJh7Baqeg5mlaryrxAmCoqmeaxChPJyigQhU5ECWbWItFwRt9H7_3C5pddVZbcyxUvcliF3Foh76ywj5hf-tzhuwsXc8DJ7be9_LfbXqH715h-jab1ujFv0D21rZeb9VuHpt_7eqRv
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertain+dynamics+characteristic+forecasting+in+composite+plates+with+multi-defects+of+electric+aircraft+via+physics-augmented+meta-learning&rft.jtitle=Aerospace+science+and+technology&rft.au=Xu%2C+Duo&rft.au=Zang%2C+Jian&rft.au=Song%2C+Xu-Yuan&rft.au=Zhang%2C+Zhen&rft.date=2025-09-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.volume=164&rft_id=info:doi/10.1016%2Fj.ast.2025.110363&rft.externalDocID=S1270963825004341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon