Uncertain dynamics characteristic forecasting in composite plates with multi-defects of electric aircraft via physics-augmented meta-learning
•A physics-enhanced Meta-learning Framework is proposed to predict dynamic characteristics of composite plate with defects.•Attention meta-learning mechanism is used for cross task meta knowledge weighted extraction.•The effectiveness of the PMF has been verified through comparison with physics-data...
Uloženo v:
| Vydáno v: | Aerospace science and technology Ročník 164; s. 110363 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Masson SAS
01.09.2025
|
| Témata: | |
| ISSN: | 1270-9638 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A physics-enhanced Meta-learning Framework is proposed to predict dynamic characteristics of composite plate with defects.•Attention meta-learning mechanism is used for cross task meta knowledge weighted extraction.•The effectiveness of the PMF has been verified through comparison with physics-data driven models.•Physics mechanisms transfers prior solutions as new input features to the training of model.•Extremum stiffness equations are embedded as physical constraints into loss function of the model.
The dynamics characteristic forecasting of composite plates with defects faces fundamental barriers stemming from multiscale material heterogeneity, stochastic manufacturing defects, and the gap between idealized theoretical models and real-world engineering scenarios. To address these limitations, this study introduces a physics-enhanced meta-learning framework (PMF) that synergizes cross-task meta-knowledge with attention-weighted transfer and stiffness-bounded physical constraints. A similarity-driven attention mechanism enables adaptive transfer of cross-task meta-knowledge to defective plate structures, derived through meta-learning on theoretical-experimental hybrid datasets. Furthermore, the extremal stiffness equations (max/zero stiffness to intact/perforated plate) are incorporated into the framework as physical boundary constraints. This integration allows adaptive prediction across the entire stiffness spectrum, thereby generalizing dynamics modeling for arbitrary defect-induced stiffness distributions. Experimental validation demonstrates that this approach achieves higher-fidelity accuracy in predicting nonlinear dynamics responses and defect-driven modal under few-shot conditions compared to physics-data driven models and purely data-driven models, while reducing computational costs. The PMF addresses the issues of inaccurate prediction and high costs of traditional models under complex conditions such as experimental uncertainties, limited datasets, and significant sample variations, especially in solving defect-induced modal transitions and nonlinear dynamics responses. The PMF bridges the gap between idealized models and real-world engineering conditions, providing a new intelligent modelling tool with both physical interpretability and data-driven adaptability for engineering fields such as the structural health monitoring of aviation composite materials. |
|---|---|
| AbstractList | •A physics-enhanced Meta-learning Framework is proposed to predict dynamic characteristics of composite plate with defects.•Attention meta-learning mechanism is used for cross task meta knowledge weighted extraction.•The effectiveness of the PMF has been verified through comparison with physics-data driven models.•Physics mechanisms transfers prior solutions as new input features to the training of model.•Extremum stiffness equations are embedded as physical constraints into loss function of the model.
The dynamics characteristic forecasting of composite plates with defects faces fundamental barriers stemming from multiscale material heterogeneity, stochastic manufacturing defects, and the gap between idealized theoretical models and real-world engineering scenarios. To address these limitations, this study introduces a physics-enhanced meta-learning framework (PMF) that synergizes cross-task meta-knowledge with attention-weighted transfer and stiffness-bounded physical constraints. A similarity-driven attention mechanism enables adaptive transfer of cross-task meta-knowledge to defective plate structures, derived through meta-learning on theoretical-experimental hybrid datasets. Furthermore, the extremal stiffness equations (max/zero stiffness to intact/perforated plate) are incorporated into the framework as physical boundary constraints. This integration allows adaptive prediction across the entire stiffness spectrum, thereby generalizing dynamics modeling for arbitrary defect-induced stiffness distributions. Experimental validation demonstrates that this approach achieves higher-fidelity accuracy in predicting nonlinear dynamics responses and defect-driven modal under few-shot conditions compared to physics-data driven models and purely data-driven models, while reducing computational costs. The PMF addresses the issues of inaccurate prediction and high costs of traditional models under complex conditions such as experimental uncertainties, limited datasets, and significant sample variations, especially in solving defect-induced modal transitions and nonlinear dynamics responses. The PMF bridges the gap between idealized models and real-world engineering conditions, providing a new intelligent modelling tool with both physical interpretability and data-driven adaptability for engineering fields such as the structural health monitoring of aviation composite materials. |
| ArticleNumber | 110363 |
| Author | Xu, Duo Zhang, Ye-Wei Song, Xu-Yuan Chen, Li-Qun Zang, Jian Zhang, Zhen |
| Author_xml | – sequence: 1 givenname: Duo surname: Xu fullname: Xu, Duo organization: College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, PR China – sequence: 2 givenname: Jian surname: Zang fullname: Zang, Jian email: zangjian106@163.com organization: College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, PR China – sequence: 3 givenname: Xu-Yuan surname: Song fullname: Song, Xu-Yuan organization: College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, PR China – sequence: 4 givenname: Zhen surname: Zhang fullname: Zhang, Zhen organization: College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, PR China – sequence: 5 givenname: Ye-Wei orcidid: 0000-0003-1748-3849 surname: Zhang fullname: Zhang, Ye-Wei email: zhangyewei1218@126.com organization: College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, PR China – sequence: 6 givenname: Li-Qun orcidid: 0000-0002-3694-0833 surname: Chen fullname: Chen, Li-Qun organization: Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200444, PR China |
| BookMark | eNp9kEtOwzAQhr0oEm3hAOx8gQQ_EqcWK1TxkiqxoWvLsSetq8SJbLeoh-DOuCprVjOL-f6Z-RZo5kcPCD1QUlJCxeOh1DGVjLC6pJRwwWdoTllDCin46hYtYjwQQpis2Bz9bL2BkLTz2J69HpyJ2Ox10CZBcDE5g7sxgMmJzu9wHjPjMI3RJcBTrxNE_O3SHg_HPrnCQgcmRTx2GPrchYxrF0zQXcInp_G0P8e8otDH3QA-gcUDJF30oIPP-XfoptN9hPu_ukTb15ev9Xux-Xz7WD9vCsNqmorGWiMpUN6CANrULQHRMGBWVA2nBioJ0jadlC0Hy-vKVtCuulYy0QhaG8OXiF5zTRhjDNCpKbhBh7OiRF0cqoPKH6uLQ3V1mJmnKwP5sJODoKJxkO1Zl_0kZUf3D_0Lzl2Clg |
| Cites_doi | 10.1016/j.engappai.2024.109584 10.1016/j.cma.2021.113933 10.1016/j.ymssp.2023.110967 10.1016/j.cma.2021.113741 10.1016/j.cma.2025.117844 10.1016/j.ymssp.2024.112044 10.1016/j.cma.2025.117852 10.1016/j.aei.2024.103072 10.1016/j.engappai.2024.109748 10.1016/j.ymssp.2025.112398 10.1016/j.ast.2022.107365 10.1016/j.ast.2025.110148 10.1016/j.measurement.2024.115402 10.1016/j.euromechsol.2022.104889 10.1016/j.ymssp.2024.111652 10.1016/j.eswa.2025.127851 10.1016/j.compstruc.2022.106915 10.1016/j.jcp.2022.111402 10.1007/s00366-023-01799-7 10.1016/j.ast.2025.109961 10.1142/S0219455426500781 10.1016/j.ast.2025.110090 10.1016/j.ymssp.2023.110359 10.1016/j.engappai.2025.110383 10.1016/j.ast.2025.110021 10.1080/15397734.2024.2337914 10.1016/j.jmapro.2024.09.091 10.1016/j.eswa.2023.122997 10.1016/j.engappai.2024.107858 10.1016/j.tws.2022.110369 10.1016/j.tws.2024.111928 10.1016/j.tws.2024.112495 10.1007/s00707-024-03909-y 10.1007/s00466-022-02252-0 10.1016/j.ymssp.2024.111444 10.1016/j.ast.2025.109991 10.1016/j.asoc.2022.109424 10.1016/j.compstruct.2025.118913 10.1016/j.aei.2024.102363 10.1016/j.compstruct.2025.118970 10.1016/j.ast.2024.109205 10.1109/JAS.2024.124470 10.1016/j.tws.2022.110309 10.1016/j.ymssp.2025.112370 10.1016/j.ins.2023.119795 10.1016/j.ast.2024.109454 10.1016/j.tws.2023.111423 10.1016/j.engstruct.2024.117822 10.1016/j.ijmecsci.2024.109545 10.1016/j.engappai.2024.109980 10.1016/j.compstruct.2025.119049 10.1016/j.ymssp.2023.110528 10.1016/j.ymssp.2024.111564 10.1016/j.ress.2024.110556 10.1016/j.cma.2024.117691 10.1016/j.compstruct.2024.118727 10.1016/j.ast.2025.110152 10.1016/j.aei.2025.103215 10.1016/j.compstruct.2025.118929 10.1016/j.ast.2024.109554 10.1016/j.engfracmech.2024.110239 10.1063/5.0272267 10.1016/j.compstruct.2024.118514 10.1016/j.tws.2025.113159 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Masson SAS |
| Copyright_xml | – notice: 2025 Elsevier Masson SAS |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ast.2025.110363 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ast_2025_110363 S1270963825004341 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHJVU AHPGS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSZ T5K T9H VH1 XPP ZMT ~G- 9DU AAYXX ACLOT CITATION EFLBG ~HD |
| ID | FETCH-LOGICAL-c251t-7ddc91e13be6e175b0e672e2d64731ce49e9d7f99b3ed354d4eb8fb9267615cc3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001513288700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1270-9638 |
| IngestDate | Sat Nov 29 07:46:24 EST 2025 Sat Aug 09 17:31:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Composite plates with defects Physics-enhanced meta-learning framework (PMF) Deep Learning Few-shot Dynamics Analysis |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-7ddc91e13be6e175b0e672e2d64731ce49e9d7f99b3ed354d4eb8fb9267615cc3 |
| ORCID | 0000-0002-3694-0833 0000-0003-1748-3849 |
| ParticipantIDs | crossref_primary_10_1016_j_ast_2025_110363 elsevier_sciencedirect_doi_10_1016_j_ast_2025_110363 |
| PublicationCentury | 2000 |
| PublicationDate | September 2025 2025-09-00 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Aerospace science and technology |
| PublicationYear | 2025 |
| Publisher | Elsevier Masson SAS |
| Publisher_xml | – name: Elsevier Masson SAS |
| References | Cao, Huang, Zhang, Wu, Zhang, Ding (bib0035) 2024 Li, Wang, Yang, Qin (bib0005) 2025; 358 Preetha Hareendran, Alipour (bib0037) 2022; 129 Wang, Lou, Li, Yang (bib0070) 2024; 131 Gao, Zhu, Wang, Shu, Liu, Miao, Yang (bib0028) 2025; 438 Sun, Jin, Zhuo, Ding, Guo, Han (bib0067) 2024; 131 Yang, Li, Lei, Yang, Liu, Gao (bib0021) 2024; 218 Qiao, Zhang, Wang (bib0073) 2023; 200 Jagtap, Mao, Adams, Karniadakis (bib0044) 2022; 466 Meftah, Aldosari, Tounsi, Cuong-Le, Khedher, Alluqmani (bib0010) 2024; 306 Li, Zhu, Hu, Xing, Xiang (bib0072) 2025; 226 Li, Zhu, Hu, Xing, Xiang (bib0065) 2025; 226 Zhang, Yan, Zhang, Yang, Zhan (bib0042) 2025; 212 Bai, Rabczuk, Gupta, Alzubaidi, Gu (bib0048) 2023; 71 Yang, Yu, Lou, Cui, Li (bib0034) 2025; 64 Tan, Tien, Dzung, Ha, Dong, Ninh (bib0057) 2024; 202 Fallah, Aghdam (bib0058) 2024; 40 Zhao, Jiao, Xu, Chen, Zio (bib0064) 2025; 139 Zhang, Liu, Yue, Liang, Wang (bib0062) 2024; 216 Xu, Hou, Hou, Li, Ren, Duraihem, Mahrous Awwad, Saeed (bib0008) 2025; 159 Zuo, Ye, Yuan, Zhang (bib0033) 2025; 159 Liu, Peng (bib0060) 2025; 240 Mu, Jiang, Wang, Dong (bib0066) 2025; 141 Li, Wang, Gao, Zhang (bib0074) 2025; 284 Haghighat, Raissi, Moure, Gomez, Juanes (bib0047) 2021; 379 Zhang, Tao, Wang, Yang, Fan (bib0029) 2024; 60 Li, Xing, Xiang, Chen, Hu (bib0063) 2025 Liao, Lin, Zhang, Wu (bib0038) 2023; 275 Chen, Lai, Yang (bib0043) 2024; 196 Ji, Zhang, Wang, Qin, Yue, Li, Li, Meng, Wang, Zhang, Lu (bib0007) 2025 Liu, Sun, Liu, Ma, Du, Li (bib0016) 2024; 280 Liu, Chen, Xu (bib0024) 2025; 353 Kabasi, Marbaniang, Ghosh (bib0051) 2023; 182 Li, He, Ren, Shao (bib0040) 2025; 65 Qi, Wang, Xu (bib0002) 2025; 159 Raissi, Yazdani, Karniadakis (bib0045) 2020; 367 Wang, Zang, Yang, Zhang, Song, Zhang, Chen (bib0006) 2024; 155 Chang, Lin (bib0059) 2025; 142 Li, Bazant, Zhu (bib0050) 2021; 383 Chouhan, Kumar Sahu, Punera (bib0001) 2025; 360 Belabed, Abdeldjebbar, Abdelmoumen Anis, Abdelouahed, Yaylacı (bib0015) 2024; 52 Lakhdar, Chorfi, Belalia, Khedher, Alluqmani, Tounsi, Yaylacı (bib0013) 2024; 235 Liu, Guo, Di, Zheng (bib0054) 2025; 147 Li, Su, Xiang, Yao, Hu (bib0061) 2024; 208 Guo, Li, Li, Song, Xu, Yang (bib0036) 2025; 37 Lin, Kong, Han, Wang, Dong, Liu, Chu (bib0068) 2024; 220 Zang, Zhang, Yang, Zhang, Song, Zhang, Chen (bib0009) 2024 Varun, Ankit, Abdelouahed (bib0014) 2022; 45 Hu, Xu, Chen, Huang, Cai, Qiu, He (bib0003) 2024; 153 Chen, Zhou, Wu, Fu, Xue (bib0032) 2025; 160 Zhang, Liu, Xing, Zhang, Yan, Liu (bib0019) 2025; 438 He, Zhao, Yan (bib0039) 2023; 98 Hu, Qi, Chao (bib0049) 2024; 205 Belabed, Tounsi, Al-Osta, Tounsi, Minh (bib0011) 2024; 36 Zang, Xu, Yang, Song, Zhang, Zhang, Chen (bib0026) 2025; 227 Zhang, Lei, Chan, Dong (bib0055) 2024; 84 Liu, Sun, Yan, Du, Liu, Li (bib0018) 2023; 183 Yang, Wang, Luo (bib0071) 2024; 653 Yang, Lei, Li, Li (bib0022) 2024; 244 Keshun, Puzhou, Peng, Yingkui (bib0053) 2025; 253 Shabani, Li, Laliberte, Qi (bib0004) 2024; 155 Guo, Deng, Ma, Tian, Le, Zhang (bib0046) 2024; 150 Gu, Wen, Chen (bib0027) 2025; 357 Tounsi, Belabed, Bounouara, Balubaid, Mahmoud, Bousahla, Tounsi (bib0012) 2024 Fang, Shen, Wang (bib0030) 2025 Xiong, Fink, Zhou, Ma (bib0023) 2023; 197 Chen, Lai, Yang, Ni, Yang, Cheung (bib0052) 2025; 436 Chen, Lai, Yang (bib0056) 2024; 196 Zhang, Sun, Zhang, Ma, Du, Xu, Li (bib0017) 2025; 357 Li, Wan, Wang, Hu (bib0041) 2024; 348 Zhao, Song, Han, Yang, Zhang (bib0069) 2025; 224 Yang, Zhang, Wu, Zhang, Zhang, Liu, Wang (bib0025) 2024; 306 Wang, Wang, Wang, Cao, Sun, Li, Yang (bib0031) 2022; 121 Li, Yu, Lei, Li, Yang (bib0020) 2024; 11 Liu (10.1016/j.ast.2025.110363_bib0060) 2025; 240 Tan (10.1016/j.ast.2025.110363_bib0057) 2024; 202 Gu (10.1016/j.ast.2025.110363_bib0027) 2025; 357 Liu (10.1016/j.ast.2025.110363_bib0054) 2025; 147 Guo (10.1016/j.ast.2025.110363_bib0046) 2024; 150 Preetha Hareendran (10.1016/j.ast.2025.110363_bib0037) 2022; 129 Chen (10.1016/j.ast.2025.110363_bib0043) 2024; 196 Li (10.1016/j.ast.2025.110363_bib0041) 2024; 348 Haghighat (10.1016/j.ast.2025.110363_bib0047) 2021; 379 Yang (10.1016/j.ast.2025.110363_bib0071) 2024; 653 Zang (10.1016/j.ast.2025.110363_bib0026) 2025; 227 Xu (10.1016/j.ast.2025.110363_bib0008) 2025; 159 Zhang (10.1016/j.ast.2025.110363_bib0042) 2025; 212 Zhang (10.1016/j.ast.2025.110363_bib0055) 2024; 84 Chang (10.1016/j.ast.2025.110363_bib0059) 2025; 142 Zang (10.1016/j.ast.2025.110363_bib0009) 2024 Yang (10.1016/j.ast.2025.110363_bib0025) 2024; 306 Zhang (10.1016/j.ast.2025.110363_bib0062) 2024; 216 Hu (10.1016/j.ast.2025.110363_bib0003) 2024; 153 Zhang (10.1016/j.ast.2025.110363_bib0019) 2025; 438 Ji (10.1016/j.ast.2025.110363_bib0007) 2025 Jagtap (10.1016/j.ast.2025.110363_bib0044) 2022; 466 Zhao (10.1016/j.ast.2025.110363_bib0069) 2025; 224 Tounsi (10.1016/j.ast.2025.110363_bib0012) 2024 Hu (10.1016/j.ast.2025.110363_bib0049) 2024; 205 Li (10.1016/j.ast.2025.110363_bib0063) 2025 Shabani (10.1016/j.ast.2025.110363_bib0004) 2024; 155 Xiong (10.1016/j.ast.2025.110363_bib0023) 2023; 197 Li (10.1016/j.ast.2025.110363_bib0040) 2025; 65 Guo (10.1016/j.ast.2025.110363_bib0036) 2025; 37 Kabasi (10.1016/j.ast.2025.110363_bib0051) 2023; 182 Lin (10.1016/j.ast.2025.110363_bib0068) 2024; 220 Chen (10.1016/j.ast.2025.110363_bib0056) 2024; 196 Cao (10.1016/j.ast.2025.110363_bib0035) 2024 Zhang (10.1016/j.ast.2025.110363_bib0029) 2024; 60 Keshun (10.1016/j.ast.2025.110363_bib0053) 2025; 253 Lakhdar (10.1016/j.ast.2025.110363_bib0013) 2024; 235 Li (10.1016/j.ast.2025.110363_bib0072) 2025; 226 Liao (10.1016/j.ast.2025.110363_bib0038) 2023; 275 Li (10.1016/j.ast.2025.110363_bib0050) 2021; 383 Varun (10.1016/j.ast.2025.110363_bib0014) 2022; 45 Fallah (10.1016/j.ast.2025.110363_bib0058) 2024; 40 Li (10.1016/j.ast.2025.110363_bib0005) 2025; 358 Meftah (10.1016/j.ast.2025.110363_bib0010) 2024; 306 Zuo (10.1016/j.ast.2025.110363_bib0033) 2025; 159 Sun (10.1016/j.ast.2025.110363_bib0067) 2024; 131 Wang (10.1016/j.ast.2025.110363_bib0006) 2024; 155 Bai (10.1016/j.ast.2025.110363_bib0048) 2023; 71 Gao (10.1016/j.ast.2025.110363_bib0028) 2025; 438 Chouhan (10.1016/j.ast.2025.110363_bib0001) 2025; 360 Wang (10.1016/j.ast.2025.110363_bib0031) 2022; 121 Chen (10.1016/j.ast.2025.110363_bib0052) 2025; 436 Li (10.1016/j.ast.2025.110363_bib0061) 2024; 208 Belabed (10.1016/j.ast.2025.110363_bib0011) 2024; 36 Li (10.1016/j.ast.2025.110363_bib0074) 2025; 284 Zhao (10.1016/j.ast.2025.110363_bib0064) 2025; 139 Qi (10.1016/j.ast.2025.110363_bib0002) 2025; 159 Belabed (10.1016/j.ast.2025.110363_bib0015) 2024; 52 Liu (10.1016/j.ast.2025.110363_bib0024) 2025; 353 Zhang (10.1016/j.ast.2025.110363_bib0017) 2025; 357 Mu (10.1016/j.ast.2025.110363_bib0066) 2025; 141 Fang (10.1016/j.ast.2025.110363_bib0030) 2025 He (10.1016/j.ast.2025.110363_bib0039) 2023; 98 Wang (10.1016/j.ast.2025.110363_bib0070) 2024; 131 Yang (10.1016/j.ast.2025.110363_bib0022) 2024; 244 Raissi (10.1016/j.ast.2025.110363_bib0045) 2020; 367 Liu (10.1016/j.ast.2025.110363_bib0016) 2024; 280 Li (10.1016/j.ast.2025.110363_bib0065) 2025; 226 Chen (10.1016/j.ast.2025.110363_bib0032) 2025; 160 Qiao (10.1016/j.ast.2025.110363_bib0073) 2023; 200 Yang (10.1016/j.ast.2025.110363_bib0021) 2024; 218 Yang (10.1016/j.ast.2025.110363_bib0034) 2025; 64 Li (10.1016/j.ast.2025.110363_bib0020) 2024; 11 Liu (10.1016/j.ast.2025.110363_bib0018) 2023; 183 |
| References_xml | – year: 2024 ident: bib0012 article-title: A finite element approach for forced dynamical responses of porous FG nanocomposite beams resting on viscoelastic foundations publication-title: Int. J. Struct. Stab. Dyn. – volume: 357 year: 2025 ident: bib0017 article-title: Integrated design of intelligent structures for composite laminates with embedded MFCs: theoretical modeling and experimental study publication-title: Compos. Struct. – volume: 280 year: 2024 ident: bib0016 article-title: Vibration of bolted composite cylindrical-cylindrical flanged shells considering contact characteristics publication-title: Int. J. Mech. Sci. – volume: 253 year: 2025 ident: bib0053 article-title: A sound-vibration physical-information fusion constraint-guided deep learning method for rolling bearing fault diagnosis publication-title: Reliab. Eng. Syst. Saf. – year: 2025 ident: bib0007 article-title: A few-shot deep learning framework for predicting high-velocity impact response of ultra-high molecular weight polyethylene fiber-reinforced composites publication-title: Aerosp. Sci. Technol. – volume: 98 year: 2023 ident: bib0039 article-title: MFLP-PINN: a physics-informed neural network for multiaxial fatigue life prediction publication-title: Eur. J. Mech. - A/Solids – volume: 155 year: 2024 ident: bib0004 article-title: Enhanced LaRC05 failure criteria for investigating low-velocity impact on fiber-reinforced composites: an experimental and computational study publication-title: Aerosp. Sci. Technol. – volume: 121 year: 2022 ident: bib0031 article-title: Framework of nacelle inverse design method based on improved generative adversarial networks publication-title: Aerosp. Sci. Technol. – volume: 360 year: 2025 ident: bib0001 article-title: Material degradation based finite element modelling for fibre-reinforced composites in hygrothermal environment publication-title: Compos. Struct. – volume: 37 year: 2025 ident: bib0036 article-title: Vibration prediction model and vibration characteristics of mining riser used in deep-sea gas hydrate extraction based on deep-learning publication-title: Phys. Fluids – year: 2025 ident: bib0030 article-title: Nonlinear bending of sandwich plates with deep learning inverse-designed 3D auxetic lattice core publication-title: Aerosp. Sci. Technol. – volume: 348 year: 2024 ident: bib0041 article-title: Physics-constrained deep learning approach for solving inverse problems in composite laminated plates publication-title: Compos. Struct. – volume: 353 year: 2025 ident: bib0024 article-title: Fatigue life prognosis of composite structures using a transferable deep reinforcement learning-based approach publication-title: Compos. Struct. – volume: 196 year: 2024 ident: bib0056 article-title: AT-PINN: advanced time-marching physics-informed neural network for structural vibration analysis publication-title: Thin-Walled Struct. – volume: 357 year: 2025 ident: bib0027 article-title: Rapid thermo-mechanical performance prediction and multi-objective optimization of tri-directional functionally graded material considering complex geometry and arbitrary graded paths publication-title: Compos. Struct. – volume: 200 year: 2023 ident: bib0073 article-title: Fault detection in wind turbine generators using a me-ta-learning-based convolutional neural network publication-title: Mech. Syst. Signal. Process. – volume: 438 year: 2025 ident: bib0028 article-title: Advanced deep learning framework for multi-scale prediction of mechanical properties from microstructural features in polycrystalline materials publication-title: Comput. Methods Appl. Mech. Eng. – volume: 202 year: 2024 ident: bib0057 article-title: Utilizing optimal physics-informed neural networks for dynamical analysis of nanocomposite one-variable edge plates publication-title: Thin-Walled Struct. – volume: 358 year: 2025 ident: bib0005 article-title: Stochastic vibration behaviors of functionally graded graphene platelets reinforced composite joined conical-cylindrical-conical shell with variable taper under moving random loads publication-title: Compos. Struct. – volume: 208 year: 2024 ident: bib0061 article-title: Transformer-based meta learning method for bearing fault identification under multiple small sample conditions publication-title: Mech. Syst. Signal. Process. – volume: 197 year: 2023 ident: bib0023 article-title: Controlled physics-informed data generation for deep learning-based remaining useful life prediction under unseen operation conditions publication-title: Mech. Syst. Signal. Process. – volume: 367 start-page: 1026 year: 2020 end-page: 1030 ident: bib0045 article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations publication-title: Science (1979) – volume: 306 year: 2024 ident: bib0025 article-title: A deep learning approach for low-cycle fatigue life prediction under thermal–mechanical loading based on a novel neural network model publication-title: Eng. Fract. Mech. – volume: 160 year: 2025 ident: bib0032 article-title: Enhancing air traffic complexity assessment through deep metric learning: a CNN-based approach publication-title: Aerosp. Sci. Technol. – volume: 224 year: 2025 ident: bib0069 article-title: The rigid-flexible coupling vibration of composite box structure in new energy hydrogen-electricity aircraft with complex circumstance: theoretical formulation and experiment publication-title: Mech. Syst. Signal. Process. – volume: 64 year: 2025 ident: bib0034 article-title: Deep learning-enabled turbulence model optimization of solid motor publication-title: Adv. Eng. Inform. – volume: 244 year: 2024 ident: bib0022 article-title: Targeted transfer learning through distribution barycenter medium for intelligent fault diagnosis of machines with data decentralization publication-title: Expert. Syst. Appl. – year: 2024 ident: bib0035 article-title: A deep learning model for online prediction of in-process dynamic characteristics of thin-walled complex blade machining publication-title: J. Intell. Manuf. – volume: 226 year: 2025 ident: bib0065 article-title: A meta-learning method based on meta-feature enhancement for bearing fault identification under few-sample conditions publication-title: Mech. Syst. Signal. Process. – volume: 275 year: 2023 ident: bib0038 article-title: Attention-based LSTM (AttLSTM) neural network for seismic Response modeling of bridges publication-title: Comput. Struct. – volume: 147 year: 2025 ident: bib0054 article-title: Quantitative method for structural health evaluation under multiple performance metrics via multi-physics guided neural network publication-title: Eng. Appl. Artif. Intell. – start-page: 1 year: 2024 end-page: 23 ident: bib0009 article-title: Vibration control for laminated composite spherical-cylindrical-combined shells: theory and experiment publication-title: AIAa J. – volume: 240 year: 2025 ident: bib0060 article-title: Few-shot bearing fault diagnosis by semi-supervised meta-learning with graph convolutional neural network under variable working conditions publication-title: Measurement – volume: 438 year: 2025 ident: bib0019 article-title: Based on purely physical information in deep learning optimizes soliton system parameter identification problem publication-title: Comput. Methods Appl. Mech. Eng. – volume: 182 year: 2023 ident: bib0051 article-title: Physics-informed neural networks for the form-finding of tensile membranes by solving the Euler–Lagrange equation of minimal surfaces publication-title: Thin-Walled Struct. – volume: 84 year: 2024 ident: bib0055 article-title: Integrating physics-informed machine learning with resonance effect for structural dynamic performance modeling publication-title: J. Build. Eng. – volume: 45 start-page: 621 year: 2022 end-page: 640 ident: bib0014 article-title: Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM publication-title: Steel Compos. Struct. – volume: 220 year: 2024 ident: bib0068 article-title: An information fusion-based meta transfer learning method for few-shot fault diagnosis under varying operating conditions publication-title: Mech. Syst. Signal. Process. – volume: 183 year: 2023 ident: bib0018 article-title: Nonlinear vibration analysis of carbon fiber-reinforced composites with frequency-dependence and strain-dependence: experimental and theoretical studies publication-title: Thin-Walled Struct. – volume: 142 year: 2025 ident: bib0059 article-title: Few-shot remaining useful life prediction based on bayesian meta-learning with predictive uncertainty calibration publication-title: Eng. Appl. Artif. Intell. – volume: 52 start-page: 9144 year: 2024 end-page: 9177 ident: bib0015 article-title: Accurate free and forced vibration behavior prediction of functionally graded sandwich beams with variable cross-section: a finite element assessment publication-title: Mech. Based Des. Struct. Mach. – volume: 155 year: 2024 ident: bib0006 article-title: Dynamic characteristics and vibration control of composite laminate wall panels in electric aircraft using NiTi shape memory alloys publication-title: Aerosp. Sci. Technol. – year: 2025 ident: bib0063 article-title: Memory-augmented prototypical meta-learning method for bearing fault identification under few-sample conditions publication-title: Neurocomputing – volume: 159 year: 2025 ident: bib0033 article-title: Flow3DNet: a deep learning framework for efficient simulation of three-dimensional wing flow fields publication-title: Aerosp. Sci. Technol. – volume: 150 year: 2024 ident: bib0046 article-title: Hypersonic inlet flow field reconstruction dominated by shock wave and boundary layer based on small sample physics-informed neural networks publication-title: Aerosp. Sci. Technol. – volume: 284 year: 2025 ident: bib0074 article-title: Transformer-enhanced meta-learning for few-shot fault di-agnosis of electric submersible pump publication-title: Expert. Syst. Appl. – volume: 129 year: 2022 ident: bib0037 article-title: Prediction of nonlinear structural response under wind loads using deep learning techniques publication-title: Appl. Soft. Comput. – volume: 65 year: 2025 ident: bib0040 article-title: Moving load induced dynamic response analysis of bridge based on physics-informed neural network publication-title: Adv. Eng. Inform. – volume: 131 year: 2024 ident: bib0070 article-title: Meta-fourier neural operators for multi-task modeling of film cooling in gas turbine endwalls publication-title: Eng. Appl. Artif. Intell. – volume: 212 year: 2025 ident: bib0042 article-title: Multi-frequency superposed vortex-induced vibration modeling based on multiple fourier features physics-informed neural network publication-title: Thin-Walled Struct. – volume: 227 year: 2025 ident: bib0026 article-title: Predicting mechanical properties of RX4E electric aircraft wing composite panels using deep learning publication-title: Mech. Syst. Signal. Process. – volume: 141 year: 2025 ident: bib0066 article-title: Adaptive model-agnostic meta-learning network for cross-machine fault diagnosis with limited samples publication-title: Eng. Appl. Artif. Intell. – volume: 216 year: 2024 ident: bib0062 article-title: Meta-learning-based approach for tool condition monitoring in multi-condition small sample scenarios publication-title: Mech. Syst. Signal. Process. – volume: 11 start-page: 2068 year: 2024 end-page: 2081 ident: bib0020 article-title: Dynamic vision-based machinery fault diagnosis with cross-modality feature alignment publication-title: IEEE/CAA J. Autom. Sin. – volume: 218 year: 2024 ident: bib0021 article-title: Dynamic modeling of gear compound faults and stiffness sensitivity analysis against arbitrary spatial configuration of defect publication-title: Mech. Syst. Signal. Process. – volume: 205 year: 2024 ident: bib0049 article-title: Physics-informed Neural Networks (PINN) for computational solid mechanics: numerical frameworks and applications publication-title: Thin-Walled Struct. – volume: 653 year: 2024 ident: bib0071 article-title: Few-shot remaining useful life prediction based on meta-learning with deep sparse kernel network publication-title: Inf. Sci. – volume: 159 year: 2025 ident: bib0002 article-title: Ballistic protection and damage mechanism of ceramic composite armor under two-dimensional pre-stressed constraints by molten metal casting publication-title: Aerosp. Sci. Technol. – volume: 383 year: 2021 ident: bib0050 article-title: A physics-guided neural network framework for elastic plates: comparison of governing equations-based and energy-based approaches publication-title: Comput. Methods Appl. Mech. Eng. – volume: 379 year: 2021 ident: bib0047 article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics publication-title: Comput. Methods Appl. Mech. Eng. – volume: 153 year: 2024 ident: bib0003 article-title: A novel integrated modeling strategy for predicting damage mechanisms and energy dissipation of composite stiffened structures under low-velocity impact and compression publication-title: Aerosp. Sci. Technol. – volume: 436 year: 2025 ident: bib0052 article-title: AT-PINN-HC: a refined time-sequential method incorporating hard-constraint strategies for predicting structural behavior under dynamic loads publication-title: Comput. Methods Appl. Mech. Eng. – volume: 40 start-page: 437 year: 2024 end-page: 454 ident: bib0058 article-title: Physics-informed neural network for bending and free vibration analysis of three-dimensional functionally graded porous beam resting on elastic foundation publication-title: Eng. Comput. – volume: 159 year: 2025 ident: bib0008 article-title: A novel ROM-based FSI model of composite blisk with blades-disk coupling for flutter analysis publication-title: Aerosp. Sci. Technol. – volume: 306 year: 2024 ident: bib0010 article-title: Simplified homogenization technique for nonlinear finite element analysis of in-plane loaded masonry walls publication-title: Eng. Struct. – volume: 235 start-page: 3657 year: 2024 end-page: 3686 ident: bib0013 article-title: Free vibration and bending analysis of porous bi-directional FGM sandwich shell using a TSDT p-version finite element method publication-title: Acta Mech. – volume: 466 year: 2022 ident: bib0044 article-title: Physics-informed neural networks for inverse problems in supersonic flows publication-title: J. Comput. Phys. – volume: 60 year: 2024 ident: bib0029 article-title: Differentiable automatic structural optimization using graph deep learning publication-title: Adv. Eng. Inform. – volume: 196 year: 2024 ident: bib0043 article-title: AT-PINN: advanced time-marching physics-informed neural network for structural vibration analysis publication-title: Thin-Walled Struct. – volume: 71 start-page: 543 year: 2023 end-page: 562 ident: bib0048 article-title: A physics-informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics publication-title: Comput. Mech. – volume: 139 year: 2025 ident: bib0064 article-title: A fault diagnosis framework using unlabeled data based on automatic clustering with meta-learning publication-title: Eng. Appl. Artif. Intell. – volume: 131 start-page: 1815 year: 2024 end-page: 1832 ident: bib0067 article-title: Investigation on a chatter detection method based on meta learning for machining multiple types of workpieces publication-title: J. Manuf. Process. – volume: 36 start-page: 183 year: 2024 end-page: 204 ident: bib0011 article-title: On the elastic stability and free vibration responses of functionally graded porous beams resting on Winkler Pasternak foundations via finite element computation publication-title: Geomech. Eng. – volume: 226 year: 2025 ident: bib0072 article-title: A meta-learning method based on meta-feature en-hancement for bearing fault identification under few-sample conditions publication-title: Mech. Syst. Signal. Process. – volume: 45 start-page: 621 year: 2022 ident: 10.1016/j.ast.2025.110363_bib0014 article-title: Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM publication-title: Steel Compos. Struct. – volume: 139 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0064 article-title: A fault diagnosis framework using unlabeled data based on automatic clustering with meta-learning publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.109584 – volume: 383 year: 2021 ident: 10.1016/j.ast.2025.110363_bib0050 article-title: A physics-guided neural network framework for elastic plates: comparison of governing equations-based and energy-based approaches publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113933 – volume: 208 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0061 article-title: Transformer-based meta learning method for bearing fault identification under multiple small sample conditions publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2023.110967 – volume: 379 year: 2021 ident: 10.1016/j.ast.2025.110363_bib0047 article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113741 – volume: 438 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0028 article-title: Advanced deep learning framework for multi-scale prediction of mechanical properties from microstructural features in polycrystalline materials publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2025.117844 – volume: 224 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0069 article-title: The rigid-flexible coupling vibration of composite box structure in new energy hydrogen-electricity aircraft with complex circumstance: theoretical formulation and experiment publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2024.112044 – volume: 438 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0019 article-title: Based on purely physical information in deep learning optimizes soliton system parameter identification problem publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2025.117852 – volume: 64 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0034 article-title: Deep learning-enabled turbulence model optimization of solid motor publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2024.103072 – year: 2025 ident: 10.1016/j.ast.2025.110363_bib0063 article-title: Memory-augmented prototypical meta-learning method for bearing fault identification under few-sample conditions publication-title: Neurocomputing – volume: 141 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0066 article-title: Adaptive model-agnostic meta-learning network for cross-machine fault diagnosis with limited samples publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.109748 – volume: 227 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0026 article-title: Predicting mechanical properties of RX4E electric aircraft wing composite panels using deep learning publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2025.112398 – volume: 121 year: 2022 ident: 10.1016/j.ast.2025.110363_bib0031 article-title: Framework of nacelle inverse design method based on improved generative adversarial networks publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.107365 – year: 2025 ident: 10.1016/j.ast.2025.110363_bib0030 article-title: Nonlinear bending of sandwich plates with deep learning inverse-designed 3D auxetic lattice core publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2025.110148 – volume: 240 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0060 article-title: Few-shot bearing fault diagnosis by semi-supervised meta-learning with graph convolutional neural network under variable working conditions publication-title: Measurement doi: 10.1016/j.measurement.2024.115402 – volume: 98 year: 2023 ident: 10.1016/j.ast.2025.110363_bib0039 article-title: MFLP-PINN: a physics-informed neural network for multiaxial fatigue life prediction publication-title: Eur. J. Mech. - A/Solids doi: 10.1016/j.euromechsol.2022.104889 – volume: 220 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0068 article-title: An information fusion-based meta transfer learning method for few-shot fault diagnosis under varying operating conditions publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2024.111652 – start-page: 1 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0009 article-title: Vibration control for laminated composite spherical-cylindrical-combined shells: theory and experiment publication-title: AIAa J. – volume: 284 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0074 article-title: Transformer-enhanced meta-learning for few-shot fault di-agnosis of electric submersible pump publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2025.127851 – volume: 84 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0055 article-title: Integrating physics-informed machine learning with resonance effect for structural dynamic performance modeling publication-title: J. Build. Eng. – volume: 275 year: 2023 ident: 10.1016/j.ast.2025.110363_bib0038 article-title: Attention-based LSTM (AttLSTM) neural network for seismic Response modeling of bridges publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2022.106915 – volume: 466 year: 2022 ident: 10.1016/j.ast.2025.110363_bib0044 article-title: Physics-informed neural networks for inverse problems in supersonic flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111402 – volume: 40 start-page: 437 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0058 article-title: Physics-informed neural network for bending and free vibration analysis of three-dimensional functionally graded porous beam resting on elastic foundation publication-title: Eng. Comput. doi: 10.1007/s00366-023-01799-7 – volume: 159 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0008 article-title: A novel ROM-based FSI model of composite blisk with blades-disk coupling for flutter analysis publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2025.109961 – year: 2024 ident: 10.1016/j.ast.2025.110363_bib0012 article-title: A finite element approach for forced dynamical responses of porous FG nanocomposite beams resting on viscoelastic foundations publication-title: Int. J. Struct. Stab. Dyn. doi: 10.1142/S0219455426500781 – volume: 160 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0032 article-title: Enhancing air traffic complexity assessment through deep metric learning: a CNN-based approach publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2025.110090 – volume: 197 year: 2023 ident: 10.1016/j.ast.2025.110363_bib0023 article-title: Controlled physics-informed data generation for deep learning-based remaining useful life prediction under unseen operation conditions publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2023.110359 – volume: 147 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0054 article-title: Quantitative method for structural health evaluation under multiple performance metrics via multi-physics guided neural network publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2025.110383 – volume: 159 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0002 article-title: Ballistic protection and damage mechanism of ceramic composite armor under two-dimensional pre-stressed constraints by molten metal casting publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2025.110021 – volume: 52 start-page: 9144 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0015 article-title: Accurate free and forced vibration behavior prediction of functionally graded sandwich beams with variable cross-section: a finite element assessment publication-title: Mech. Based Des. Struct. Mach. doi: 10.1080/15397734.2024.2337914 – volume: 131 start-page: 1815 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0067 article-title: Investigation on a chatter detection method based on meta learning for machining multiple types of workpieces publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2024.09.091 – volume: 244 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0022 article-title: Targeted transfer learning through distribution barycenter medium for intelligent fault diagnosis of machines with data decentralization publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2023.122997 – volume: 131 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0070 article-title: Meta-fourier neural operators for multi-task modeling of film cooling in gas turbine endwalls publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.107858 – volume: 183 year: 2023 ident: 10.1016/j.ast.2025.110363_bib0018 article-title: Nonlinear vibration analysis of carbon fiber-reinforced composites with frequency-dependence and strain-dependence: experimental and theoretical studies publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2022.110369 – volume: 202 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0057 article-title: Utilizing optimal physics-informed neural networks for dynamical analysis of nanocomposite one-variable edge plates publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2024.111928 – volume: 205 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0049 article-title: Physics-informed Neural Networks (PINN) for computational solid mechanics: numerical frameworks and applications publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2024.112495 – volume: 235 start-page: 3657 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0013 article-title: Free vibration and bending analysis of porous bi-directional FGM sandwich shell using a TSDT p-version finite element method publication-title: Acta Mech. doi: 10.1007/s00707-024-03909-y – volume: 71 start-page: 543 year: 2023 ident: 10.1016/j.ast.2025.110363_bib0048 article-title: A physics-informed neural network technique based on a modified loss function for computational 2D and 3D solid mechanics publication-title: Comput. Mech. doi: 10.1007/s00466-022-02252-0 – volume: 216 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0062 article-title: Meta-learning-based approach for tool condition monitoring in multi-condition small sample scenarios publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2024.111444 – volume: 159 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0033 article-title: Flow3DNet: a deep learning framework for efficient simulation of three-dimensional wing flow fields publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2025.109991 – volume: 129 year: 2022 ident: 10.1016/j.ast.2025.110363_bib0037 article-title: Prediction of nonlinear structural response under wind loads using deep learning techniques publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2022.109424 – volume: 357 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0017 article-title: Integrated design of intelligent structures for composite laminates with embedded MFCs: theoretical modeling and experimental study publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2025.118913 – volume: 60 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0029 article-title: Differentiable automatic structural optimization using graph deep learning publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2024.102363 – volume: 358 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0005 article-title: Stochastic vibration behaviors of functionally graded graphene platelets reinforced composite joined conical-cylindrical-conical shell with variable taper under moving random loads publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2025.118970 – volume: 150 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0046 article-title: Hypersonic inlet flow field reconstruction dominated by shock wave and boundary layer based on small sample physics-informed neural networks publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.109205 – volume: 11 start-page: 2068 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0020 article-title: Dynamic vision-based machinery fault diagnosis with cross-modality feature alignment publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2024.124470 – volume: 182 year: 2023 ident: 10.1016/j.ast.2025.110363_bib0051 article-title: Physics-informed neural networks for the form-finding of tensile membranes by solving the Euler–Lagrange equation of minimal surfaces publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2022.110309 – volume: 226 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0065 article-title: A meta-learning method based on meta-feature enhancement for bearing fault identification under few-sample conditions publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2025.112370 – volume: 653 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0071 article-title: Few-shot remaining useful life prediction based on meta-learning with deep sparse kernel network publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119795 – volume: 153 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0003 article-title: A novel integrated modeling strategy for predicting damage mechanisms and energy dissipation of composite stiffened structures under low-velocity impact and compression publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.109454 – volume: 196 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0043 article-title: AT-PINN: advanced time-marching physics-informed neural network for structural vibration analysis publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2023.111423 – volume: 306 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0010 article-title: Simplified homogenization technique for nonlinear finite element analysis of in-plane loaded masonry walls publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2024.117822 – volume: 280 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0016 article-title: Vibration of bolted composite cylindrical-cylindrical flanged shells considering contact characteristics publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2024.109545 – volume: 142 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0059 article-title: Few-shot remaining useful life prediction based on bayesian meta-learning with predictive uncertainty calibration publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.109980 – volume: 360 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0001 article-title: Material degradation based finite element modelling for fibre-reinforced composites in hygrothermal environment publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2025.119049 – volume: 367 start-page: 1026 year: 2020 ident: 10.1016/j.ast.2025.110363_bib0045 article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations publication-title: Science (1979) – volume: 200 year: 2023 ident: 10.1016/j.ast.2025.110363_bib0073 article-title: Fault detection in wind turbine generators using a me-ta-learning-based convolutional neural network publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2023.110528 – year: 2024 ident: 10.1016/j.ast.2025.110363_bib0035 article-title: A deep learning model for online prediction of in-process dynamic characteristics of thin-walled complex blade machining publication-title: J. Intell. Manuf. – volume: 218 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0021 article-title: Dynamic modeling of gear compound faults and stiffness sensitivity analysis against arbitrary spatial configuration of defect publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2024.111564 – volume: 253 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0053 article-title: A sound-vibration physical-information fusion constraint-guided deep learning method for rolling bearing fault diagnosis publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2024.110556 – volume: 436 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0052 article-title: AT-PINN-HC: a refined time-sequential method incorporating hard-constraint strategies for predicting structural behavior under dynamic loads publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2024.117691 – volume: 353 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0024 article-title: Fatigue life prognosis of composite structures using a transferable deep reinforcement learning-based approach publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2024.118727 – year: 2025 ident: 10.1016/j.ast.2025.110363_bib0007 article-title: A few-shot deep learning framework for predicting high-velocity impact response of ultra-high molecular weight polyethylene fiber-reinforced composites publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2025.110152 – volume: 155 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0006 article-title: Dynamic characteristics and vibration control of composite laminate wall panels in electric aircraft using NiTi shape memory alloys publication-title: Aerosp. Sci. Technol. – volume: 65 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0040 article-title: Moving load induced dynamic response analysis of bridge based on physics-informed neural network publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2025.103215 – volume: 357 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0027 article-title: Rapid thermo-mechanical performance prediction and multi-objective optimization of tri-directional functionally graded material considering complex geometry and arbitrary graded paths publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2025.118929 – volume: 155 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0004 article-title: Enhanced LaRC05 failure criteria for investigating low-velocity impact on fiber-reinforced composites: an experimental and computational study publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2024.109554 – volume: 196 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0056 article-title: AT-PINN: advanced time-marching physics-informed neural network for structural vibration analysis publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2023.111423 – volume: 306 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0025 article-title: A deep learning approach for low-cycle fatigue life prediction under thermal–mechanical loading based on a novel neural network model publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2024.110239 – volume: 36 start-page: 183 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0011 article-title: On the elastic stability and free vibration responses of functionally graded porous beams resting on Winkler Pasternak foundations via finite element computation publication-title: Geomech. Eng. – volume: 37 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0036 article-title: Vibration prediction model and vibration characteristics of mining riser used in deep-sea gas hydrate extraction based on deep-learning publication-title: Phys. Fluids doi: 10.1063/5.0272267 – volume: 348 year: 2024 ident: 10.1016/j.ast.2025.110363_bib0041 article-title: Physics-constrained deep learning approach for solving inverse problems in composite laminated plates publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2024.118514 – volume: 212 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0042 article-title: Multi-frequency superposed vortex-induced vibration modeling based on multiple fourier features physics-informed neural network publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2025.113159 – volume: 226 year: 2025 ident: 10.1016/j.ast.2025.110363_bib0072 article-title: A meta-learning method based on meta-feature en-hancement for bearing fault identification under few-sample conditions publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2025.112370 |
| SSID | ssj0002942 |
| Score | 2.4133818 |
| Snippet | •A physics-enhanced Meta-learning Framework is proposed to predict dynamic characteristics of composite plate with defects.•Attention meta-learning mechanism... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 110363 |
| SubjectTerms | Composite plates with defects Deep Learning Dynamics Analysis Few-shot Physics-enhanced meta-learning framework (PMF) |
| Title | Uncertain dynamics characteristic forecasting in composite plates with multi-defects of electric aircraft via physics-augmented meta-learning |
| URI | https://dx.doi.org/10.1016/j.ast.2025.110363 |
| Volume | 164 |
| WOSCitedRecordID | wos001513288700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1270-9638 databaseCode: AIEXJ dateStart: 19970101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002942 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbLpof2UPqk6QsdeuqiYMuyZR2XktIGEgqbgNuLsR5ONxRv2LWX_IlCf3JHtuTY2QaaQi9mEWvZaD5Go8_fzCD0TvLECKEDkha0JCxKDBGxbfdSBgUVMg1ZKNtmE_zkJM0y8WUy-eVzYbY_eFWlV1fi8r-aGsbA2DZ19g7m7ieFAfgNRocrmB2uf2X4MzBj-5l_prtu8xub3TuoymyVhUYVm9qls1hVuZVuGdtS2tKwLTfbKg2JNr3co2uYY8u7LtdqXZT1bLssHDOyIUVz3pb31LYndUFcM4rzYew7N7AjwxHdzHwuUave3OH2s6Z1hM2qJ7Udp300gPLCSYmzhnxtrod7_vvbd5fj5hgNGveSLUez-VSbYzg-WKc5XwwcNOUBsU5j5MG7Qug7u0FHTFwcwIoe2AfZnIfI-dNxke2FnddOCxFhwCJbCWGP8likU7Q3_3yYHfW7OxVtQ6b-PfyX8lYzeONBf451BvHL6SP00B088LwDzGM0MdUT9GBQjvIp-tlDB3vo4DF08AA6GP7WQwd30MEWOngEHbwqsYcO9tDBAB28Ax08gs4zdPbx8PTDJ-LadRAFQXJNuNZKhCaMpEkMRKUyMAmnhuqE8ShUhgkjNC-FkJHRUcw0MzItpaAJh7Baqeg5mlaryrxAmCoqmeaxChPJyigQhU5ECWbWItFwRt9H7_3C5pddVZbcyxUvcliF3Foh76ywj5hf-tzhuwsXc8DJ7be9_LfbXqH715h-jab1ujFv0D21rZeb9VuHpt_7eqRv |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertain+dynamics+characteristic+forecasting+in+composite+plates+with+multi-defects+of+electric+aircraft+via+physics-augmented+meta-learning&rft.jtitle=Aerospace+science+and+technology&rft.au=Xu%2C+Duo&rft.au=Zang%2C+Jian&rft.au=Song%2C+Xu-Yuan&rft.au=Zhang%2C+Zhen&rft.date=2025-09-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.volume=164&rft_id=info:doi/10.1016%2Fj.ast.2025.110363&rft.externalDocID=S1270963825004341 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon |