Investigating the brain network characteristics of multimodal emotion recognition and its classification applications based on functional connectivity patterns

•The differences in multimodal affective cognitive brain networks were further discovered.•Computer algorithms provide a more sufficient theoretical basis for cognitive task decoding.•Model fine-tuning and feature selection enriched the relevant results and inspired future research.•Different angles...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomedical signal processing and control Ročník 96; s. 106635
Hlavní autoři: Gu, Jin, Luo, Xiaoqi, Gong, Xinhao, Su, Chenxu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2024
Témata:
ISSN:1746-8094
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The differences in multimodal affective cognitive brain networks were further discovered.•Computer algorithms provide a more sufficient theoretical basis for cognitive task decoding.•Model fine-tuning and feature selection enriched the relevant results and inspired future research.•Different angles results were combined and analyzed by different algorithms to improve the confidence of the results. Emotion information can be expressed in multiple modal stimuli, and the brain can recognize multi-modal emotions efficiently and accurately. Recent researches have thoroughly analyzed the activity characteristics of relevant brain regions under different modal emotion information based on functional magnetic resonance imaging (fMRI). However, considering the functional integration characteristics of the brain in cognitive activities, further research on the brain network in the process of multi-modal emotion recognition should be carried out, which can reveal the brain’s multi-modal emotion cognition mechanism more comprehensively. In this study, functional connectivity (FC) analysis was performed on the fMRI data from multimodal emotion recognition tasks. The correlation coefficients of brain regions were calculated and statistically analyzed to study the characteristics of FC patterns in multimodal emotion recognition processing. Moreover, the emotional information was decoded with different machine learning classification algorithms based on the FC patterns. The results showed that the modal and valence of emotion can lead to structural similarities and connection strength differences in connection strength of brain region connections in the brain network, and this property can successfully support the decoding of emotional information, and the decoding accuracy is higher than the previous decoding accuracy based on brain region activation patterns. This study explores the cognitive mechanism of multi-modal emotion recognition from a new perspective of brain functional integration, and compensates for the lack of brain signal decoding methods based on FC features and machine learning methods.
AbstractList •The differences in multimodal affective cognitive brain networks were further discovered.•Computer algorithms provide a more sufficient theoretical basis for cognitive task decoding.•Model fine-tuning and feature selection enriched the relevant results and inspired future research.•Different angles results were combined and analyzed by different algorithms to improve the confidence of the results. Emotion information can be expressed in multiple modal stimuli, and the brain can recognize multi-modal emotions efficiently and accurately. Recent researches have thoroughly analyzed the activity characteristics of relevant brain regions under different modal emotion information based on functional magnetic resonance imaging (fMRI). However, considering the functional integration characteristics of the brain in cognitive activities, further research on the brain network in the process of multi-modal emotion recognition should be carried out, which can reveal the brain’s multi-modal emotion cognition mechanism more comprehensively. In this study, functional connectivity (FC) analysis was performed on the fMRI data from multimodal emotion recognition tasks. The correlation coefficients of brain regions were calculated and statistically analyzed to study the characteristics of FC patterns in multimodal emotion recognition processing. Moreover, the emotional information was decoded with different machine learning classification algorithms based on the FC patterns. The results showed that the modal and valence of emotion can lead to structural similarities and connection strength differences in connection strength of brain region connections in the brain network, and this property can successfully support the decoding of emotional information, and the decoding accuracy is higher than the previous decoding accuracy based on brain region activation patterns. This study explores the cognitive mechanism of multi-modal emotion recognition from a new perspective of brain functional integration, and compensates for the lack of brain signal decoding methods based on FC features and machine learning methods.
ArticleNumber 106635
Author Gu, Jin
Gong, Xinhao
Luo, Xiaoqi
Su, Chenxu
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0000-0003-1147-6170
  surname: Gu
  fullname: Gu, Jin
  email: gujin@swjtu.edu.cn
  organization: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China
– sequence: 2
  givenname: Xiaoqi
  surname: Luo
  fullname: Luo, Xiaoqi
  organization: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China
– sequence: 3
  givenname: Xinhao
  surname: Gong
  fullname: Gong, Xinhao
  organization: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China
– sequence: 4
  givenname: Chenxu
  surname: Su
  fullname: Su, Chenxu
  organization: School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu, China
BookMark eNp9kE1uAjEMhbOgUoH2Al3lAtDxTOYHqZsK9QcJqZt2HXmcDIQOySgJVJymV20oXXfl5yc_2_ombGSd1YzdQTaHDKr73bwNA83zLBfJqKqiHLEx1KKaNdlCXLNJCLssE00NYsy-V_aoQzQbjMZueNxq3no0llsdv5z_5LRFjxS1N2mKAncd3x_6aPZOYc_13kXjLPea3MaaX41WcRMDpx5DMJ0hvNjD0P_pwFsMWvHkdgdLZyvtImetTs3RxBMfMKabNtywqw77oG__6pR9PD-9L19n67eX1fJxPaO8hDirG6FEQ1AvoMBCQQ6Luso7QlIgqjIHqqlTLRbQEOWkSo2iVaKGhWgBSiymLL_sJe9C8LqTgzd79CcJmTxjlTt5xirPWOUFawo9XEI6fXY02stARlvSyiQgUSpn_ov_ABO9izM
Cites_doi 10.15837/ijccc.2019.4.3433
10.1109/TNSRE.2020.3037326
10.1007/s00406-021-01354-9
10.1007/s11682-021-00567-9
10.1002/hbm.26482
10.1007/s11042-020-10030-4
10.1523/JNEUROSCI.4059-14.2015
10.1109/ICACI52617.2021.9435906
10.1523/JNEUROSCI.2161-10.2010
10.1212/WNL.0000000000201495
10.1016/j.neuron.2019.04.023
10.3390/s21144913
10.1523/JNEUROSCI.0217-11.2011
10.1093/cercor/bhac534
10.1007/s10072-020-04794-8
10.3390/brainsci10100703
10.1016/j.neuroimage.2019.116199
10.1016/j.neuron.2022.05.015
10.3389/fpsyg.2023.1188634
10.1073/pnas.1900390116
10.1093/cercor/bhv086
10.1016/j.neuroscience.2021.06.002
10.1073/pnas.0811168106
10.1007/s11682-019-00135-2
10.1007/s00429-022-02582-y
10.1088/1741-2552/ac49a7
10.1016/j.neuroimage.2017.01.002
10.3389/fnhum.2022.960784
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2024.106635
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2024_106635
S1746809424006931
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c251t-784d48c17913a3d1219762fcacd146521c7cfdba318cc2cd5ea4bd47194b115a3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346404400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1746-8094
IngestDate Sat Nov 29 02:51:27 EST 2025
Sat Aug 17 15:43:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Functional connectivity
fMRI
Multimodal emotion recognition
Brain signal classification
Emotion valence
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-784d48c17913a3d1219762fcacd146521c7cfdba318cc2cd5ea4bd47194b115a3
ORCID 0000-0003-1147-6170
ParticipantIDs crossref_primary_10_1016_j_bspc_2024_106635
elsevier_sciencedirect_doi_10_1016_j_bspc_2024_106635
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Zhang, Jiang, Zhou, Xu, Zou (b0045) 2022; 16
Döllinger, Högman, Laukka, Bänziger, Makower, Fischer, Hau (b0035) 2023; 14
Gu, Cao, Liu (b0080) 2019; 203
Peelen, Atkinson, Vuilleumier (b0010) 2010; 30
Tao, Lu (b0160) 2020
Honey, Sporns, Cammoun, Gigandet, Thiran, Meuli, Hagmann (b0050) 2009; 106
Saarimäki, Gotsopoulos, Jääskeläinen, Lampinen, Vuilleumier, Hari, Sams, Nummenmaa (b0120) 2016; 26
Kim, Schultz, Rohe, Wallraven, Lee, Bülthoff (b0005) 2015; 35
Wu, Zheng, Li, Lu (b0130) 2022; 19
Xie, Sidulova, Park (b0020) 2021; 21
Lu, Chen, Cui, Guo, Pang, Luo, Yu, Chen, Gao, Sheng, Tang, Zeng, Jiang, Gao, He, Chen (b0125) 2023; 33
Paquelet, Carrion, Lacefield, Zhou, Hen, Miller (b0155) 2022; 110
Assari, Boyce, Bazargan (b0100) 2020; 10
Gu, Liu, Li, Wang, Wang (b0140) 2020; 14
Guinamard, Clément, Goemaere, Mary, Riquet, Dellacherie (b0095) 2022; 16
Huan, Shu, Bao, Liang, Chen, Chi (b0025) 2021; 80
Cao, Liang, Yoshida, Guan (b0070) 2019; 14
Kunz, Chen, Lautenbacher, Vachon-Presseau, Rainville (b0085) 2011; 31
Yi, Leonard, Chang (b0090) 2019; 102
Fritze, Sambataro, Kubera, Brandt, Meyer-Lindenberg, Wolf, Hirjak (b0105) 2022; 272
J. Shen, J. Zheng, X. Wang, MMTrans-MT: A Framework for multimodal emotion recognition using multitask learning, in: 2021 13th International Conference on Advanced Computational Intelligence (ICACI), pp. 52–59, doi: 10.1109/ICACI52617.2021.9435906.
Cheng, Xue, Dong, Hu, Zhou, Li, Huang, Lu, Yuan, Yu (b0110) 2022; 16
Li, Xu, Wang, Fang, Ji (b0075) 2020; 28
Norman, Polyn, Detre, Haxby (b0065) 2006; 10
Yu, Yin, Kaiser, Xu, Guo, Liu, Li, Fan (b0115) 2023; 100
Kim, Shinkareva, Wedell (b0015) 2017; 148
Fan, Sun, Lang, Hu, Hameed, Wei, Zhuang, Cai, Liu, Mao, Feng, Pan (b0055) 2021; 42
Yan, Chen, Li, Castellanos, Bai, Bo, Cao, Chen, Chen, Chen, Cheng, Cheng, Cui, Duan, Fang, Gong, Guo, Hou, Hu, Zang (b0060) 2019; 116
Grundei, Schmidt, Blankenburg (b0135) 2023; 44
Xu, Dong, Li, Wang, Guo, Wei, Dang (b0040) 2021; 469
Habig, Krämer, Lautenschläger, Walter, Best (b0145) 2022; 228
S. Zheng, Introduction to Cognitive Neuroscience, Peking University Press, 2010.
Xiao, Wang, Hosseinzadeh Kassani, Zhang, Bai, Stephen, Wilson, Calhoun, Wang (b0165) 2019
10.1016/j.bspc.2024.106635_b0150
10.1016/j.bspc.2024.106635_b0030
Cheng (10.1016/j.bspc.2024.106635_b0110) 2022; 16
Habig (10.1016/j.bspc.2024.106635_b0145) 2022; 228
Honey (10.1016/j.bspc.2024.106635_b0050) 2009; 106
Grundei (10.1016/j.bspc.2024.106635_b0135) 2023; 44
Gu (10.1016/j.bspc.2024.106635_b0080) 2019; 203
Cao (10.1016/j.bspc.2024.106635_b0070) 2019; 14
Norman (10.1016/j.bspc.2024.106635_b0065) 2006; 10
Yan (10.1016/j.bspc.2024.106635_b0060) 2019; 116
Huan (10.1016/j.bspc.2024.106635_b0025) 2021; 80
Saarimäki (10.1016/j.bspc.2024.106635_b0120) 2016; 26
Peelen (10.1016/j.bspc.2024.106635_b0010) 2010; 30
Li (10.1016/j.bspc.2024.106635_b0045) 2022; 16
Gu (10.1016/j.bspc.2024.106635_b0140) 2020; 14
Kunz (10.1016/j.bspc.2024.106635_b0085) 2011; 31
Fritze (10.1016/j.bspc.2024.106635_b0105) 2022; 272
Döllinger (10.1016/j.bspc.2024.106635_b0035) 2023; 14
Kim (10.1016/j.bspc.2024.106635_b0015) 2017; 148
Xu (10.1016/j.bspc.2024.106635_b0040) 2021; 469
Li (10.1016/j.bspc.2024.106635_b0075) 2020; 28
Yu (10.1016/j.bspc.2024.106635_b0115) 2023; 100
Kim (10.1016/j.bspc.2024.106635_b0005) 2015; 35
Xie (10.1016/j.bspc.2024.106635_b0020) 2021; 21
Fan (10.1016/j.bspc.2024.106635_b0055) 2021; 42
Guinamard (10.1016/j.bspc.2024.106635_b0095) 2022; 16
Xiao (10.1016/j.bspc.2024.106635_b0165) 2019
Yi (10.1016/j.bspc.2024.106635_b0090) 2019; 102
Assari (10.1016/j.bspc.2024.106635_b0100) 2020; 10
Wu (10.1016/j.bspc.2024.106635_b0130) 2022; 19
Lu (10.1016/j.bspc.2024.106635_b0125) 2023; 33
Tao (10.1016/j.bspc.2024.106635_b0160) 2020
Paquelet (10.1016/j.bspc.2024.106635_b0155) 2022; 110
References_xml – volume: 203
  year: 2019
  ident: b0080
  article-title: Modality-general representations of valences perceived from visual and auditory modalities
  publication-title: Neuroimage
– volume: 14
  start-page: 1908
  year: 2020
  end-page: 1920
  ident: b0140
  article-title: Cross-modal representations in early visual and auditory cortices revealed by multi-voxel pattern analysis
  publication-title: Brain Imaging Behav.
– volume: 102
  start-page: 1096
  year: 2019
  end-page: 1110
  ident: b0090
  article-title: The encoding of speech sounds in the superior temporal gyrus
  publication-title: Neuron
– volume: 228
  start-page: 433
  year: 2022
  end-page: 447
  ident: b0145
  article-title: Processing of sensory, painful and vestibular stimuli in the thalamus
  publication-title: Brain Struct. Funct.
– volume: 148
  start-page: 42
  year: 2017
  end-page: 54
  ident: b0015
  article-title: Representations of modality-general valence for videos and music derived from fMRI data
  publication-title: Neuroimage
– volume: 16
  start-page: 930
  year: 2022
  end-page: 938
  ident: b0110
  article-title: Abnormal functional connectivity of the salience network in insomnia
  publication-title: Brain Imaging Behav.
– reference: S. Zheng, Introduction to Cognitive Neuroscience, Peking University Press, 2010.
– volume: 14
  year: 2023
  ident: b0035
  article-title: Trainee psychotherapists’ emotion recognition accuracy improves after training: emotion recognition training as a tool for psychotherapy education
  publication-title: Front. Psychol.
– volume: 116
  start-page: 9078
  year: 2019
  end-page: 9083
  ident: b0060
  article-title: Reduced default mode network functional connectivity in patients with recurrent major depressive disorder
  publication-title: Proc. Natl. Acad. Sci.
– volume: 21
  year: 2021
  ident: b0020
  article-title: Robust multimodal emotion recognition from conversation with transformer-based crossmodality fusion
  publication-title: Sensors
– volume: 14
  start-page: 475
  year: 2019
  end-page: 488
  ident: b0070
  article-title: Facial expression decoding based on fMRI brain signal
  publication-title: Int. J. Comput. Commun. Control.
– volume: 16
  year: 2022
  ident: b0095
  article-title: Musical abilities in children with developmental cerebellar anomalies
  publication-title: Front. Syst. Neurosci.
– start-page: 1
  year: 2020
  end-page: 8
  ident: b0160
  article-title: Emotion recognition under sleep deprivation using a multimodal residual LSTM network
  publication-title: 2020 International Joint Conference on Neural Networks (IJCNN)
– volume: 19
  year: 2022
  ident: b0130
  article-title: Investigating EEG-based functional connectivity patterns for multimodal emotion recognition
  publication-title: J. Neural Eng.
– volume: 469
  start-page: 46
  year: 2021
  end-page: 58
  ident: b0040
  article-title: Weighted RSA: an improved framework on the perception of audio-visual affective speech in left insula and superior temporal gyrus
  publication-title: Neuroscience
– volume: 28
  start-page: 2615
  year: 2020
  end-page: 2626
  ident: b0075
  article-title: A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 110
  start-page: 2664
  year: 2022
  end-page: 2679.e8
  ident: b0155
  article-title: Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors
  publication-title: Neuron
– volume: 272
  start-page: 1097
  year: 2022
  end-page: 1108
  ident: b0105
  article-title: Characterizing the sensorimotor domain in schizophrenia spectrum disorders
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– volume: 30
  start-page: 10127
  year: 2010
  end-page: 10134
  ident: b0010
  article-title: Supramodal representations of perceived emotions in the human brain
  publication-title: J. Neurosci.
– volume: 80
  start-page: 8213
  year: 2021
  end-page: 8240
  ident: b0025
  article-title: Video multimodal emotion recognition based on Bi-GRU and attention fusion
  publication-title: Multimed. Tools Appl.
– volume: 44
  start-page: 5871
  year: 2023
  end-page: 5891
  ident: b0135
  article-title: A multimodal cortical network of sensory expectation violation revealed by fMRI
  publication-title: Hum. Brain Mapp.
– volume: 10
  start-page: 1364
  year: 2006
  end-page: 6613
  ident: b0065
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends Cogn. Sci.
– start-page: 1
  year: 2019
  ident: b0165
  article-title: Multi-hypergraph learning based brain functional connectivity analysis in fMRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 106
  start-page: 2035
  year: 2009
  end-page: 2040
  ident: b0050
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proc. Natl. Acad. Sci.
– volume: 31
  start-page: 8730
  year: 2011
  end-page: 8738
  ident: b0085
  article-title: Cerebral regulation of facial expressions of pain
  publication-title: J. Neurosci.
– volume: 26
  start-page: 2563
  year: 2016
  end-page: 2573
  ident: b0120
  article-title: Discrete neural signatures of basic emotions
  publication-title: Cereb. Cortex
– volume: 16
  year: 2022
  ident: b0045
  article-title: Source localization and functional network analysis in emotion cognitive reappraisal with EEG-fMRI integration
  publication-title: Front. Hum. Neurosci.
– volume: 35
  start-page: 5655
  year: 2015
  end-page: 5663
  ident: b0005
  article-title: Abstract representations of associated emotions in the human brain
  publication-title: J. Neurosci.
– volume: 10
  year: 2020
  ident: b0100
  article-title: Nucleus accumbens functional connectivity with the frontoparietal network predicts subsequent change in body mass index for American children
  publication-title: Brain Sci.
– volume: 42
  start-page: 2353
  year: 2021
  end-page: 2361
  ident: b0055
  article-title: Diagnosis and surgical treatment of non-lesional temporal lobe epilepsy with unilateral amygdala enlargement
  publication-title: Neurol. Sci.
– volume: 33
  year: 2023
  ident: b0125
  article-title: Shared and distinct patterns of dynamic functional connectivity variability of thalamo-cortical circuit in bipolar depression and major depressive disorder
  publication-title: Cereb. Cortex
– reference: J. Shen, J. Zheng, X. Wang, MMTrans-MT: A Framework for multimodal emotion recognition using multitask learning, in: 2021 13th International Conference on Advanced Computational Intelligence (ICACI), pp. 52–59, doi: 10.1109/ICACI52617.2021.9435906.
– volume: 100
  start-page: e616
  year: 2023
  end-page: e626
  ident: b0115
  article-title: Pathway-specific mediation effect between structure, function, and motor impairment after subcortical stroke
  publication-title: Neurology
– volume: 14
  start-page: 475
  year: 2019
  ident: 10.1016/j.bspc.2024.106635_b0070
  article-title: Facial expression decoding based on fMRI brain signal
  publication-title: Int. J. Comput. Commun. Control.
  doi: 10.15837/ijccc.2019.4.3433
– volume: 28
  start-page: 2615
  issue: 12
  year: 2020
  ident: 10.1016/j.bspc.2024.106635_b0075
  article-title: A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3037326
– volume: 272
  start-page: 1097
  issue: 6
  year: 2022
  ident: 10.1016/j.bspc.2024.106635_b0105
  article-title: Characterizing the sensorimotor domain in schizophrenia spectrum disorders
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  doi: 10.1007/s00406-021-01354-9
– volume: 16
  start-page: 930
  issue: 2
  year: 2022
  ident: 10.1016/j.bspc.2024.106635_b0110
  article-title: Abnormal functional connectivity of the salience network in insomnia
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-021-00567-9
– volume: 44
  start-page: 5871
  issue: 17
  year: 2023
  ident: 10.1016/j.bspc.2024.106635_b0135
  article-title: A multimodal cortical network of sensory expectation violation revealed by fMRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.26482
– volume: 80
  start-page: 8213
  issue: 6
  year: 2021
  ident: 10.1016/j.bspc.2024.106635_b0025
  article-title: Video multimodal emotion recognition based on Bi-GRU and attention fusion
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-10030-4
– volume: 35
  start-page: 5655
  issue: 14
  year: 2015
  ident: 10.1016/j.bspc.2024.106635_b0005
  article-title: Abstract representations of associated emotions in the human brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4059-14.2015
– ident: 10.1016/j.bspc.2024.106635_b0030
  doi: 10.1109/ICACI52617.2021.9435906
– volume: 30
  start-page: 10127
  issue: 30
  year: 2010
  ident: 10.1016/j.bspc.2024.106635_b0010
  article-title: Supramodal representations of perceived emotions in the human brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2161-10.2010
– volume: 100
  start-page: e616
  issue: 6
  year: 2023
  ident: 10.1016/j.bspc.2024.106635_b0115
  article-title: Pathway-specific mediation effect between structure, function, and motor impairment after subcortical stroke
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000201495
– volume: 102
  start-page: 1096
  issue: 6
  year: 2019
  ident: 10.1016/j.bspc.2024.106635_b0090
  article-title: The encoding of speech sounds in the superior temporal gyrus
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.04.023
– volume: 21
  issue: 14
  year: 2021
  ident: 10.1016/j.bspc.2024.106635_b0020
  article-title: Robust multimodal emotion recognition from conversation with transformer-based crossmodality fusion
  publication-title: Sensors
  doi: 10.3390/s21144913
– volume: 31
  start-page: 8730
  issue: 24
  year: 2011
  ident: 10.1016/j.bspc.2024.106635_b0085
  article-title: Cerebral regulation of facial expressions of pain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0217-11.2011
– volume: 33
  year: 2023
  ident: 10.1016/j.bspc.2024.106635_b0125
  article-title: Shared and distinct patterns of dynamic functional connectivity variability of thalamo-cortical circuit in bipolar depression and major depressive disorder
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhac534
– volume: 42
  start-page: 2353
  issue: 6
  year: 2021
  ident: 10.1016/j.bspc.2024.106635_b0055
  article-title: Diagnosis and surgical treatment of non-lesional temporal lobe epilepsy with unilateral amygdala enlargement
  publication-title: Neurol. Sci.
  doi: 10.1007/s10072-020-04794-8
– volume: 10
  issue: 10
  year: 2020
  ident: 10.1016/j.bspc.2024.106635_b0100
  article-title: Nucleus accumbens functional connectivity with the frontoparietal network predicts subsequent change in body mass index for American children
  publication-title: Brain Sci.
  doi: 10.3390/brainsci10100703
– volume: 203
  year: 2019
  ident: 10.1016/j.bspc.2024.106635_b0080
  article-title: Modality-general representations of valences perceived from visual and auditory modalities
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116199
– volume: 110
  start-page: 2664
  issue: 16
  year: 2022
  ident: 10.1016/j.bspc.2024.106635_b0155
  article-title: Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors
  publication-title: Neuron
  doi: 10.1016/j.neuron.2022.05.015
– volume: 14
  year: 2023
  ident: 10.1016/j.bspc.2024.106635_b0035
  article-title: Trainee psychotherapists’ emotion recognition accuracy improves after training: emotion recognition training as a tool for psychotherapy education
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2023.1188634
– volume: 116
  start-page: 9078
  issue: 18
  year: 2019
  ident: 10.1016/j.bspc.2024.106635_b0060
  article-title: Reduced default mode network functional connectivity in patients with recurrent major depressive disorder
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1900390116
– volume: 16
  year: 2022
  ident: 10.1016/j.bspc.2024.106635_b0095
  article-title: Musical abilities in children with developmental cerebellar anomalies
  publication-title: Front. Syst. Neurosci.
– start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2024.106635_b0160
  article-title: Emotion recognition under sleep deprivation using a multimodal residual LSTM network
– volume: 26
  start-page: 2563
  issue: 6
  year: 2016
  ident: 10.1016/j.bspc.2024.106635_b0120
  article-title: Discrete neural signatures of basic emotions
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhv086
– volume: 469
  start-page: 46
  year: 2021
  ident: 10.1016/j.bspc.2024.106635_b0040
  article-title: Weighted RSA: an improved framework on the perception of audio-visual affective speech in left insula and superior temporal gyrus
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2021.06.002
– volume: 106
  start-page: 2035
  issue: 6
  year: 2009
  ident: 10.1016/j.bspc.2024.106635_b0050
  article-title: Predicting human resting-state functional connectivity from structural connectivity
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0811168106
– volume: 14
  start-page: 1908
  issue: 5
  year: 2020
  ident: 10.1016/j.bspc.2024.106635_b0140
  article-title: Cross-modal representations in early visual and auditory cortices revealed by multi-voxel pattern analysis
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-019-00135-2
– volume: 228
  start-page: 433
  issue: 2
  year: 2022
  ident: 10.1016/j.bspc.2024.106635_b0145
  article-title: Processing of sensory, painful and vestibular stimuli in the thalamus
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-022-02582-y
– volume: 19
  year: 2022
  ident: 10.1016/j.bspc.2024.106635_b0130
  article-title: Investigating EEG-based functional connectivity patterns for multimodal emotion recognition
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac49a7
– ident: 10.1016/j.bspc.2024.106635_b0150
– volume: 10
  start-page: 1364
  issue: 424–430
  year: 2006
  ident: 10.1016/j.bspc.2024.106635_b0065
  article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data
  publication-title: Trends Cogn. Sci.
– volume: 148
  start-page: 42
  year: 2017
  ident: 10.1016/j.bspc.2024.106635_b0015
  article-title: Representations of modality-general valence for videos and music derived from fMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.01.002
– start-page: 1
  year: 2019
  ident: 10.1016/j.bspc.2024.106635_b0165
  article-title: Multi-hypergraph learning based brain functional connectivity analysis in fMRI data
  publication-title: IEEE Trans. Med. Imaging
– volume: 16
  year: 2022
  ident: 10.1016/j.bspc.2024.106635_b0045
  article-title: Source localization and functional network analysis in emotion cognitive reappraisal with EEG-fMRI integration
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2022.960784
SSID ssj0048714
Score 2.3544858
Snippet •The differences in multimodal affective cognitive brain networks were further discovered.•Computer algorithms provide a more sufficient theoretical basis for...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 106635
SubjectTerms Brain signal classification
Emotion valence
fMRI
Functional connectivity
Multimodal emotion recognition
Title Investigating the brain network characteristics of multimodal emotion recognition and its classification applications based on functional connectivity patterns
URI https://dx.doi.org/10.1016/j.bspc.2024.106635
Volume 96
WOSCitedRecordID wos001346404400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1746-8094
  databaseCode: AIEXJ
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0048714
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE9RXtoDtyiVbK-79rFCRYBQxaFIvln7MrgC27RJlX_DP-lv68w-7E1UED1wsaKVvbEyX3ZmZ775lpC3Wa5TruD_LTQXS6ZMg-sgCkHKspFJLhpjG4U_85OToqrKL7PZVeiFufzBu67YbMrhv5oaxsDY2Dp7C3OPk8IAfAajwxXMDtd_MnyknOE7oSQeA7HoHOEbW323JJqxwI6swp-9BnMZd6zPYiQWebYy1hcURtpILXKgiWvfC_SGGisP6Ch9flEhiUb54ykGK-Tpc4Ohimx7_11jZvsNHxlc30LonPRE-pEktLagayca0dpmeqtW9L_a8S7PMq7a7rvop6qXYxeYbrOOUx0pG0lzYXXmDNWT3anIYfku4_U3sRHUja7BZSnODuTFgNKVKTuYbt7W4d7xjyNrMRDizmqco8Y5ajfHHbKX8rws5mTv6ONx9SnEArAbtOry44v7ti3HMNx9k5tDoyjcOX1IHvh9Cj1y-HpEZqZ7TO5H6pVPyO8tpFFAGrVIox5pdAdptG_ohDTqkUYjpFGwOQWk0W2k0Rhp1CKNwuiENBojjQakPSVf3x-fvvuw9Od9LBVE2aslL5hmhULB3ExkOgFnCq66UUJp8OcQZyquGi0FuCGlUqVzI5jUEF2VTMLGRmTPyLzrO_Oc0MM80ULl4LxSzRQ7LGRWmIanhVRNIkSyTxbhp64HJ-tS_9m8-yQP1qh9YOoCzhrA9ZfnXtzqW16SexPoX5H56nxtXpO76nLVXpy_8ci6BiQ5vDc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+brain+network+characteristics+of+multimodal+emotion+recognition+and+its+classification+applications+based+on+functional+connectivity+patterns&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Gu%2C+Jin&rft.au=Luo%2C+Xiaoqi&rft.au=Gong%2C+Xinhao&rft.au=Su%2C+Chenxu&rft.date=2024-10-01&rft.issn=1746-8094&rft.volume=96&rft.spage=106635&rft_id=info:doi/10.1016%2Fj.bspc.2024.106635&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2024_106635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon