Prediction of gas–solid erosion wear of bionic surfaces based on machine learning and unimodal intelligent optimization algorithm

•A new smooth and bionic surface erosion test dataset is established.•Visualization and analysis of the optimal use environment for each bionic surface.•A new gas–solid erosion wear prediction model (IHHO-SVR) was established. Solid particle erosion wear is an inevitable phenomenon in industrial pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering failure analysis Jg. 163; S. 108453
Hauptverfasser: Yu, Haiyue, Liu, Haonan, Zhang, Shuaijun, Zhang, Junqiu, Han, Zhiwu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.09.2024
Schlagworte:
ISSN:1350-6307
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A new smooth and bionic surface erosion test dataset is established.•Visualization and analysis of the optimal use environment for each bionic surface.•A new gas–solid erosion wear prediction model (IHHO-SVR) was established. Solid particle erosion wear is an inevitable phenomenon in industrial production, with erosion removal mass serving as a crucial metric for assessing the wear rate per unit area on the impacted surface. Developing predictive models to estimate the degree of mass removal is crucial for effectively controlling, evaluating, and preventing severe damage resulting from solid particle erosion wear. In this study, we constructed a comprehensive dataset comprising smooth and bionic surfaces, encompassing inner, outer, and planar surfaces. The dataset was used in a multifactorial erosion experiment, considering adjustable erosion angles, solid particle incident gas velocities, and solid particle diameter sizes. Through visualization and analysis of the obtained dataset, we identified optimal scenarios for bionic surface erosion resistance, offering insights for structural design against bionic erosion resistance. Furthermore, we compared machine learning algorithms to address the prediction problem, resulting in the selection of the best-performing regression algorithm, SVR (Support Vector Regression). Additionally, we compared the performance of other advanced intelligent optimization algorithms using unimodal benchmark functions, finding that HHO (Harris Hawks Optimization) emerged as the optimal choice for unimodal optimization. Building on HHO, we developed the IHHO (Improved Harris Hawks Optimization)-SVR model, using experimental data from erosion tests as the training dataset. This model can predict gas–solid two-phase flow erosion patterns, encompassing various wall types, solid particle sizes, solid incident gas velocities, and impact angles. Due to its robustness and rapid prediction capabilities, the model is expected to serve as a cost-effective tool for predicting erosion removal mass in gas–solid two-phase flow scenarios.
AbstractList •A new smooth and bionic surface erosion test dataset is established.•Visualization and analysis of the optimal use environment for each bionic surface.•A new gas–solid erosion wear prediction model (IHHO-SVR) was established. Solid particle erosion wear is an inevitable phenomenon in industrial production, with erosion removal mass serving as a crucial metric for assessing the wear rate per unit area on the impacted surface. Developing predictive models to estimate the degree of mass removal is crucial for effectively controlling, evaluating, and preventing severe damage resulting from solid particle erosion wear. In this study, we constructed a comprehensive dataset comprising smooth and bionic surfaces, encompassing inner, outer, and planar surfaces. The dataset was used in a multifactorial erosion experiment, considering adjustable erosion angles, solid particle incident gas velocities, and solid particle diameter sizes. Through visualization and analysis of the obtained dataset, we identified optimal scenarios for bionic surface erosion resistance, offering insights for structural design against bionic erosion resistance. Furthermore, we compared machine learning algorithms to address the prediction problem, resulting in the selection of the best-performing regression algorithm, SVR (Support Vector Regression). Additionally, we compared the performance of other advanced intelligent optimization algorithms using unimodal benchmark functions, finding that HHO (Harris Hawks Optimization) emerged as the optimal choice for unimodal optimization. Building on HHO, we developed the IHHO (Improved Harris Hawks Optimization)-SVR model, using experimental data from erosion tests as the training dataset. This model can predict gas–solid two-phase flow erosion patterns, encompassing various wall types, solid particle sizes, solid incident gas velocities, and impact angles. Due to its robustness and rapid prediction capabilities, the model is expected to serve as a cost-effective tool for predicting erosion removal mass in gas–solid two-phase flow scenarios.
ArticleNumber 108453
Author Han, Zhiwu
Zhang, Shuaijun
Zhang, Junqiu
Yu, Haiyue
Liu, Haonan
Author_xml – sequence: 1
  givenname: Haiyue
  orcidid: 0000-0002-3543-5886
  surname: Yu
  fullname: Yu, Haiyue
  email: y293541687@126.com
  organization: School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
– sequence: 2
  givenname: Haonan
  surname: Liu
  fullname: Liu, Haonan
  organization: School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
– sequence: 3
  givenname: Shuaijun
  surname: Zhang
  fullname: Zhang, Shuaijun
  organization: State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Junqiu
  surname: Zhang
  fullname: Zhang, Junqiu
  email: junqiuzhang@jlu.edu.cn
  organization: Key Laboratory of Bionic Engineering of Ministry of Education, Jilin University, Changchun 130022, China
– sequence: 5
  givenname: Zhiwu
  surname: Han
  fullname: Han, Zhiwu
  organization: Key Laboratory of Bionic Engineering of Ministry of Education, Jilin University, Changchun 130022, China
BookMark eNqNkMtuVDEMhrMoUm-8Q_oAMyTnOmeF0IhLpUplUdaRx3FOPcpJqiQFwQqJR-ANeZJmOiwQq64s279_6__OxUmIgYS40mqtlR7e7NcUZgfsIYBfN6rp6nzT9e2JONNtr1ZDq8ZTcZ7zXik1NpM-E78-J7KMhWOQ0ckZ8p-fv3P0bCWlmA_jbwTpsNvVhlHmx-QAKcsdZLKyChbAew4kfRUGDrOEYOVj4CVa8JJDIe95plBkfCi88A94fgd-jonL_XIpXjnwmV7_rRfiy4f3d9tPq5vbj9fbdzcrbHpdVgPqTWOHzdhrpQg6Nw6Ds2rorEKFWk9NB9hjM7lxnIA6RDV2067ZwLAj17fthZiOvliT5UTOPCReIH03WpkDQbM3_xA0B4LmSLDevv3vFrk85yip6l_ksD06UI34lSmZjEwBK_5EWIyN_AKXJ5Rinao
CitedBy_id crossref_primary_10_1016_j_engfailanal_2025_109724
crossref_primary_10_1002_cpe_70270
crossref_primary_10_3390_lubricants13020068
Cites_doi 10.1016/S0360-1285(02)00022-9
10.1016/j.triboint.2023.108226
10.1016/j.wear.2017.01.076
10.1016/j.powtec.2016.02.030
10.1016/j.advengsoft.2015.01.010
10.1016/j.future.2019.02.028
10.1016/j.powtec.2021.04.072
10.1016/j.advengsoft.2013.12.007
10.1016/j.wear.2022.204441
10.1016/j.jngse.2020.103716
10.1016/j.jngse.2014.10.001
10.1016/j.powtec.2023.118421
10.1016/j.powtec.2022.117653
10.1016/j.petrol.2022.111042
10.1016/j.wear.2014.10.012
10.1016/j.neucom.2019.09.074
10.1016/j.advengsoft.2016.01.008
10.1016/j.powtec.2020.01.067
10.1016/j.powtec.2018.07.055
10.1016/j.wear.2014.10.010
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engfailanal.2024.108453
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_engfailanal_2024_108453
S1350630724004990
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WUQ
XPP
XSW
ZMT
ZY4
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c251t-6c182d6875100ea4f766fd064d0c0c11924ac5c29f779ae4cc0749b28a6bef533
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001244415900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1350-6307
IngestDate Sat Nov 29 05:57:44 EST 2025
Tue Nov 18 21:07:22 EST 2025
Sat Feb 08 15:52:18 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Bionic surface
Data visual analysis
Support vector regression
Erosion wear
Improved Harris Hawks optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-6c182d6875100ea4f766fd064d0c0c11924ac5c29f779ae4cc0749b28a6bef533
ORCID 0000-0002-3543-5886
ParticipantIDs crossref_primary_10_1016_j_engfailanal_2024_108453
crossref_citationtrail_10_1016_j_engfailanal_2024_108453
elsevier_sciencedirect_doi_10_1016_j_engfailanal_2024_108453
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Engineering failure analysis
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gietzen, Karimi, Goel (b0055) 2022
Liu, Yao, Zhang (b0060) 2015
Xia, Su, Wu, Ding (b0020) 2021; 55
Mirjalili, Lewis (b0130) 2016; 95
Zhen, Chen, Wan, Yan, Sun (b0025) 2022; 43
Parsi, Najmi, Najafifard, Hassani, McLaury, Shirazi (b0010) 2014
Mehmet, Murat (b0120) 2015; 137
Wood (b0005) 2017
Wang, Chen, Wang (b0085) 2022; 218
Parsi, Najmi, Najafifard (b0070) 2014
Peng, Cao (b0050) 2016; 294
Altay, Gurgenc, Ulas (b0075) 2018
Yu, Shao, Zhang (b0100) 2023
Yu, Shao, Zhang (b0095) 2022
Mirjalili (b0145) 2015; 83
Lyczkowski, Bouillard (b0105) 2002; 28
Wang, Zhang, Zhu (b0040) 2023
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b0135) 2019; 97
Zhang, Xu (b0090) 2021; 388
Dong, Zhang (b0035) 2003; 21
Zahedi, Parvandeh, Asgharpour (b0080) 2018
Jian, Shen (b0140) 2020; 8
Nguyen, Nguyen, Lim (b0015) 2014
Mirjalili, Mirjalili, Lewis (b0125) 2014; 69
Arabnejad, Mansouri (b0065) 2015
Peng, Zhang, Liu (b0110) 2021; 85
Peng, Cao, Ma (b0045) 2023; 421
Xue, Zhang, Cheng (b0115) 2020; 376
Cao, Li, Fan, Peng, Xie (b0030) 2020; 364
Mehmet (10.1016/j.engfailanal.2024.108453_b0120) 2015; 137
Peng (10.1016/j.engfailanal.2024.108453_b0110) 2021; 85
Zahedi (10.1016/j.engfailanal.2024.108453_b0080) 2018
Zhang (10.1016/j.engfailanal.2024.108453_b0090) 2021; 388
Lyczkowski (10.1016/j.engfailanal.2024.108453_b0105) 2002; 28
Heidari (10.1016/j.engfailanal.2024.108453_b0135) 2019; 97
Mirjalili (10.1016/j.engfailanal.2024.108453_b0130) 2016; 95
Wang (10.1016/j.engfailanal.2024.108453_b0040) 2023
Xue (10.1016/j.engfailanal.2024.108453_b0115) 2020; 376
Yu (10.1016/j.engfailanal.2024.108453_b0095) 2022
Peng (10.1016/j.engfailanal.2024.108453_b0045) 2023; 421
Mirjalili (10.1016/j.engfailanal.2024.108453_b0125) 2014; 69
Jian (10.1016/j.engfailanal.2024.108453_b0140) 2020; 8
Parsi (10.1016/j.engfailanal.2024.108453_b0010) 2014
Yu (10.1016/j.engfailanal.2024.108453_b0100) 2023
Xia (10.1016/j.engfailanal.2024.108453_b0020) 2021; 55
Cao (10.1016/j.engfailanal.2024.108453_b0030) 2020; 364
Altay (10.1016/j.engfailanal.2024.108453_b0075) 2018
Zhen (10.1016/j.engfailanal.2024.108453_b0025) 2022; 43
Mirjalili (10.1016/j.engfailanal.2024.108453_b0145) 2015; 83
Nguyen (10.1016/j.engfailanal.2024.108453_b0015) 2014
Parsi (10.1016/j.engfailanal.2024.108453_b0070) 2014
Wood (10.1016/j.engfailanal.2024.108453_b0005) 2017
Arabnejad (10.1016/j.engfailanal.2024.108453_b0065) 2015
Liu (10.1016/j.engfailanal.2024.108453_b0060) 2015
Wang (10.1016/j.engfailanal.2024.108453_b0085) 2022; 218
Dong (10.1016/j.engfailanal.2024.108453_b0035) 2003; 21
Peng (10.1016/j.engfailanal.2024.108453_b0050) 2016; 294
Gietzen (10.1016/j.engfailanal.2024.108453_b0055) 2022
References_xml – year: 2022
  ident: b0055
  article-title: Experimental investigation of low velocity and high temperature solid particle impact erosion wear
  publication-title: Wear
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b0135
  article-title: Harris Hawks optimization: algorithm and applications
  publication-title: Fut. Gener. Comput. Syst.-Int. J. Escience
– year: 2023
  ident: b0100
  article-title: A new erosive wear resistance strategy for curved surfaces based on combined bionics
  publication-title: Tribol. Int.
– volume: 8
  year: 2020
  ident: b0140
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
– start-page: 893
  year: 2017
  end-page: 910
  ident: b0005
  article-title: Marine wear and tribocorrosion
  publication-title: Wear
– start-page: 850
  year: 2014
  end-page: 873
  ident: b0010
  article-title: A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications
  publication-title: J. Nat. Gas Sci. Eng.
– start-page: 850
  year: 2014
  end-page: 873
  ident: b0070
  article-title: A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 294
  start-page: 266
  year: 2016
  end-page: 279
  ident: b0050
  article-title: Numerical simulation of solid particle erosion in pipe bends for liquid–solid flow
  publication-title: Powder Technol.
– volume: 137
  year: 2015
  ident: b0120
  article-title: Support vector regression and computational fluid dynamics modeling of newtonian and non-newtonian fluids in annulus with pipe rotation
  publication-title: J. Energy Res. Technol.
– volume: 218
  year: 2022
  ident: b0085
  article-title: Solid particle erosion prediction in elbows based on machine learning and swarm intelligence algorithm
  publication-title: J. Pet. Sci. Eng.
– start-page: 87
  year: 2014
  end-page: 93
  ident: b0015
  article-title: Effect of impact angle and testing time on erosion of stainless steel at higher velocities
  publication-title: Wear
– volume: 421
  year: 2023
  ident: b0045
  article-title: Sand erosion prediction models for two-phase flow pipe bends and their application in gas-liquid-solid multiphase flow erosion
  publication-title: Powder Technol.
– volume: 85
  year: 2021
  ident: b0110
  article-title: A new hybrid algorithm model for prediction of internal corrosion rate of multiphase pipeline
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: b0145
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Softw.
– year: 2018
  ident: b0075
  article-title: Prediction of wear loss quantities of ferro-alloy coating using different machine learning algorithms
  publication-title: Friction
– volume: 28
  start-page: 543
  year: 2002
  end-page: 602
  ident: b0105
  article-title: State-of-the-art review of erosion modeling in fluid/solids systems
  publication-title: Prog. Energy Combust. Sci.
– volume: 364
  start-page: 785
  year: 2020
  end-page: 794
  ident: b0030
  article-title: Effect of superficial air and water velocities on the erosion of horizontal elbow in slug flow
  publication-title: Powder Technol.
– volume: 21
  start-page: 307
  year: 2003
  end-page: 312
  ident: b0035
  article-title: Developments of reserch on the solid particle erosion of materials
  publication-title: J. Mater. Sci. Eng
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0130
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 43
  start-page: 257
  year: 2022
  end-page: 263
  ident: b0025
  article-title: Numerical research on erosion and wear of wind turbine blades in sand-carrying wind
  publication-title: Acta Energiae Solaris Sinica
– start-page: 41
  year: 2015
  end-page: 50
  ident: b0060
  article-title: Sliding wear and solid-particle erosion resistance of a novel high-tungsten Stellite alloy
  publication-title: Wear
– start-page: 1090
  year: 2015
  end-page: 1097
  ident: b0065
  article-title: A combined CFD/experimental methodology for erosion prediction
  publication-title: Wear
– start-page: 983
  year: 2018
  end-page: 992
  ident: b0080
  article-title: Random forest regression prediction of solid particle Erosion in elbows
  publication-title: Powder Technol.
– volume: 388
  start-page: 517
  year: 2021
  end-page: 525
  ident: b0090
  article-title: Solid particle erosion rate predictions through LSBoost
  publication-title: Powder Technol.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0125
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– year: 2022
  ident: b0095
  article-title: An innovative strategy of anti-erosion: combining bionic morphology and bionic arrangement
  publication-title: Powder Technol.
– volume: 55
  year: 2021
  ident: b0020
  article-title: Influence of solids motion on ultrasonic horn tip erosion in solid–liquid two-phase flows
  publication-title: Wear
– year: 2023
  ident: b0040
  article-title: Prediction of erosion life of coal water slurry pipeline based on grey prediction model
  publication-title: Chem. Ind. Eng. Prog.
– volume: 376
  start-page: 95
  year: 2020
  end-page: 102
  ident: b0115
  article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression
  publication-title: Neurocomputing
– volume: 55
  year: 2021
  ident: 10.1016/j.engfailanal.2024.108453_b0020
  article-title: Influence of solids motion on ultrasonic horn tip erosion in solid–liquid two-phase flows
  publication-title: Wear
– volume: 28
  start-page: 543
  issue: 6
  year: 2002
  ident: 10.1016/j.engfailanal.2024.108453_b0105
  article-title: State-of-the-art review of erosion modeling in fluid/solids systems
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/S0360-1285(02)00022-9
– year: 2023
  ident: 10.1016/j.engfailanal.2024.108453_b0100
  article-title: A new erosive wear resistance strategy for curved surfaces based on combined bionics
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2023.108226
– start-page: 893
  year: 2017
  ident: 10.1016/j.engfailanal.2024.108453_b0005
  article-title: Marine wear and tribocorrosion
  publication-title: Wear
  doi: 10.1016/j.wear.2017.01.076
– volume: 294
  start-page: 266
  year: 2016
  ident: 10.1016/j.engfailanal.2024.108453_b0050
  article-title: Numerical simulation of solid particle erosion in pipe bends for liquid–solid flow
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.02.030
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.engfailanal.2024.108453_b0145
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 137
  issue: 3
  year: 2015
  ident: 10.1016/j.engfailanal.2024.108453_b0120
  article-title: Support vector regression and computational fluid dynamics modeling of newtonian and non-newtonian fluids in annulus with pipe rotation
  publication-title: J. Energy Res. Technol.
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.engfailanal.2024.108453_b0135
  article-title: Harris Hawks optimization: algorithm and applications
  publication-title: Fut. Gener. Comput. Syst.-Int. J. Escience
  doi: 10.1016/j.future.2019.02.028
– year: 2018
  ident: 10.1016/j.engfailanal.2024.108453_b0075
  article-title: Prediction of wear loss quantities of ferro-alloy coating using different machine learning algorithms
  publication-title: Friction
– volume: 388
  start-page: 517
  year: 2021
  ident: 10.1016/j.engfailanal.2024.108453_b0090
  article-title: Solid particle erosion rate predictions through LSBoost
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.04.072
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.engfailanal.2024.108453_b0125
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– year: 2023
  ident: 10.1016/j.engfailanal.2024.108453_b0040
  article-title: Prediction of erosion life of coal water slurry pipeline based on grey prediction model
  publication-title: Chem. Ind. Eng. Prog.
– year: 2022
  ident: 10.1016/j.engfailanal.2024.108453_b0055
  article-title: Experimental investigation of low velocity and high temperature solid particle impact erosion wear
  publication-title: Wear
  doi: 10.1016/j.wear.2022.204441
– volume: 85
  year: 2021
  ident: 10.1016/j.engfailanal.2024.108453_b0110
  article-title: A new hybrid algorithm model for prediction of internal corrosion rate of multiphase pipeline
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2020.103716
– start-page: 850
  year: 2014
  ident: 10.1016/j.engfailanal.2024.108453_b0070
  article-title: A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2014.10.001
– volume: 421
  year: 2023
  ident: 10.1016/j.engfailanal.2024.108453_b0045
  article-title: Sand erosion prediction models for two-phase flow pipe bends and their application in gas-liquid-solid multiphase flow erosion
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2023.118421
– start-page: 1090
  year: 2015
  ident: 10.1016/j.engfailanal.2024.108453_b0065
  article-title: A combined CFD/experimental methodology for erosion prediction
  publication-title: Wear
– year: 2022
  ident: 10.1016/j.engfailanal.2024.108453_b0095
  article-title: An innovative strategy of anti-erosion: combining bionic morphology and bionic arrangement
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2022.117653
– volume: 218
  year: 2022
  ident: 10.1016/j.engfailanal.2024.108453_b0085
  article-title: Solid particle erosion prediction in elbows based on machine learning and swarm intelligence algorithm
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2022.111042
– start-page: 41
  year: 2015
  ident: 10.1016/j.engfailanal.2024.108453_b0060
  article-title: Sliding wear and solid-particle erosion resistance of a novel high-tungsten Stellite alloy
  publication-title: Wear
  doi: 10.1016/j.wear.2014.10.012
– volume: 376
  start-page: 95
  year: 2020
  ident: 10.1016/j.engfailanal.2024.108453_b0115
  article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.074
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.engfailanal.2024.108453_b0130
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 364
  start-page: 785
  year: 2020
  ident: 10.1016/j.engfailanal.2024.108453_b0030
  article-title: Effect of superficial air and water velocities on the erosion of horizontal elbow in slug flow
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.01.067
– start-page: 983
  year: 2018
  ident: 10.1016/j.engfailanal.2024.108453_b0080
  article-title: Random forest regression prediction of solid particle Erosion in elbows
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.07.055
– start-page: 850
  year: 2014
  ident: 10.1016/j.engfailanal.2024.108453_b0010
  article-title: A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2014.10.001
– start-page: 87
  year: 2014
  ident: 10.1016/j.engfailanal.2024.108453_b0015
  article-title: Effect of impact angle and testing time on erosion of stainless steel at higher velocities
  publication-title: Wear
  doi: 10.1016/j.wear.2014.10.010
– volume: 43
  start-page: 257
  issue: 07
  year: 2022
  ident: 10.1016/j.engfailanal.2024.108453_b0025
  article-title: Numerical research on erosion and wear of wind turbine blades in sand-carrying wind
  publication-title: Acta Energiae Solaris Sinica
– volume: 8
  issue: 1
  year: 2020
  ident: 10.1016/j.engfailanal.2024.108453_b0140
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
– volume: 21
  start-page: 307
  issue: 2
  year: 2003
  ident: 10.1016/j.engfailanal.2024.108453_b0035
  article-title: Developments of reserch on the solid particle erosion of materials
  publication-title: J. Mater. Sci. Eng
SSID ssj0007291
Score 2.3950546
Snippet •A new smooth and bionic surface erosion test dataset is established.•Visualization and analysis of the optimal use environment for each bionic surface.•A new...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108453
SubjectTerms Bionic surface
Data visual analysis
Erosion wear
Improved Harris Hawks optimization
Support vector regression
Title Prediction of gas–solid erosion wear of bionic surfaces based on machine learning and unimodal intelligent optimization algorithm
URI https://dx.doi.org/10.1016/j.engfailanal.2024.108453
Volume 163
WOSCitedRecordID wos001244415900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1350-6307
  databaseCode: AIEXJ
  dateStart: 19950301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007291
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA7jrIg-iFdcb0TwbejQadNLwJdFVnSRZR9WmLeSJulsh5nO2pnu5U3wJ_hX_EX-Ek-aS7uusqvgSylJkzQ9X88lOTkHodeFn4tAUuoJTiKPTHzfo4LBf1UIQQKQgHGsk00k-_vpdEoPBoPv9izMySKpqvTsjB7_V1JDGRBbHZ39C3K7TqEA7oHocAWyw_VahD-o1d6LVQRnbG39GUIYtxQjCXJRVZ6qED7wRF62SXDWTV207llKrgm1h7Bs_SylTSyhzzI2FRBXtJE6bCzPzWgFfGdpDnSO2GK2qsvN0fLCon8X9nBUsHKhty10PBTHeJpWDrLyvHFo-1iaQjAYHIy7Re6jhpXz5nLFXlN9Lpv-ikZAnMuWZcJhBCZtqLPhOi5t-KDmsxM_JTrI8CURoFcj5mNZzdR81FzGapRx1-Zi2O1fxKFzUrT-b_Os11Wmusp0VzfQVpBENB2irZ0Pu9M9pwGAwaINfTOPW-hV51f4h_f6vV7U03UO76G7xkjBOxpc99FAVg_QnR4NH6KvHczwqsAAsx9fvrUAwwZgWAFM1WmAYQsw3AIMwwMGYNgCDAPAsAUY7gEM9wGGHcAeoU_vdg_fvvdMQg-Pgxq98WIO1qyIwUQGniAZKZI4LgQoxcLnPp-otQDGIx7QIkkok4RzUHBpHqQszmUBhsljNKxWlXyCME0ZlUEexZxLEgpQksHySYuY5EHIJiTZRqn9nBk30e5V0pVFdiVZt1Hgmh7rkC_XafTG0iwzuqvWSTPA5dXNn_7LmM_Q7e73eY6Gm7qRL9BNfrIp1_VLA8qftH_IOg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+gas%E2%80%93solid+erosion+wear+of+bionic+surfaces+based+on+machine+learning+and+unimodal+intelligent+optimization+algorithm&rft.jtitle=Engineering+failure+analysis&rft.au=Yu%2C+Haiyue&rft.au=Liu%2C+Haonan&rft.au=Zhang%2C+Shuaijun&rft.au=Zhang%2C+Junqiu&rft.date=2024-09-01&rft.issn=1350-6307&rft.volume=163&rft.spage=108453&rft_id=info:doi/10.1016%2Fj.engfailanal.2024.108453&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engfailanal_2024_108453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-6307&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-6307&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-6307&client=summon