Hierarchical structure of 1D spiky-like CoN-CNTs@PANI nanotubes supported on 2D Ti3C2Tx nanosheets for high-performance zinc-ion capacitors

Two-dimensional (2D) layered MXene (e.g., Ti3C2Tx) is a research focus for zinc-ion capacitors (ZICs) electrodes due to its large specific surface area and high conductivity. However, its practical use is constrained by two critical bottlenecks: low theoretical capacitance and severe interlayer stac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemical engineering journal (Lausanne, Switzerland : 1996) Ročník 525; s. 169946
Hlavní autoři: Wu, Wenling, Wang, Haiqiang, Wang, Puze, Cheng, Yang, Fang, Yuan, Guo, Jiang, Zhao, Ting, Zhu, Jianfeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2025
Témata:
ISSN:1385-8947
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Two-dimensional (2D) layered MXene (e.g., Ti3C2Tx) is a research focus for zinc-ion capacitors (ZICs) electrodes due to its large specific surface area and high conductivity. However, its practical use is constrained by two critical bottlenecks: low theoretical capacitance and severe interlayer stacking, which directly reduce Zn2+ transport efficiency and electroactive site accessibility. Constructing hierarchical structures addresses this by providing efficient Zn2+ diffusion pathways, abundant electroactive sites, and excellent structural stability. This work prepared a 1D/2D hierarchical CoN-CNTs@PANI/Ti3C2Tx composite via in-situ polymerization and electrostatic self-assembly. First, 1D CoN-CNTs provide polyaniline (PANI) polymerization sites to suppress its volume expansion and to form conductive channels, while spiky PANI shells offer extra faradaic sites. Second, 1D CoN- CNTs@PANI nanotubes prevent the restacking of 2D Ti3C2Tx nanosheets, and the conductive framework of 2D Ti3C2Tx nanosheets further suppresses PANI volume change to enhance rate capability and cycling lifespan. Third, the 1D/2D structure leverages synergies to accelerate interfacial charge/ion transport and reaction kinetics, critical for high-power ZICs. As a result, the three-electrode tests showed the electrode delivered 861.7 F g−1 at 0.5 A g−1 and retained 91 % capacitance after 5000 cycles at 10 A g−1. The assembled CoN-CNTs@PANI/Ti3C2Tx//Zn ZIC achieved 91.2 Wh kg−1 at 1600 W kg−1, with 86 % capacity retention after 5000 cycles at 2 A g−1. This work establishes an advanced MXene-based hierarchical design strategy for high-performance ZIC electrodes. The 1D/2D hierarchical structure of CoN-CNTs@PANI/Ti3C2Tx has been developed as a cathode for zinc-ion capacitors, providing efficient Zn2+diffusion pathways, abundant electrochemically active sites, and exceptional structural stability, and exhibits outstanding electrochemical performance. [Display omitted] •1D/2D hierarchical structure engineered through electrostatic anchoring of 1D CoN-CNTs@PANI with 2D Ti3C2Tx.•1D spiky-like CoN-CNTs@PANI nanotubes serve as ionic buffer cells and facilitate electrolyte penetration.•1D/2D hierarchical structure of CoN-CNTs@PANI/Ti3C2Tx accelerates ion/charge kinetics via structural synergy.•The CoN-CNTs@PANI/Ti3C2Tx composite delivers excellent zinc storage performance with robust structural stability.
AbstractList Two-dimensional (2D) layered MXene (e.g., Ti3C2Tx) is a research focus for zinc-ion capacitors (ZICs) electrodes due to its large specific surface area and high conductivity. However, its practical use is constrained by two critical bottlenecks: low theoretical capacitance and severe interlayer stacking, which directly reduce Zn2+ transport efficiency and electroactive site accessibility. Constructing hierarchical structures addresses this by providing efficient Zn2+ diffusion pathways, abundant electroactive sites, and excellent structural stability. This work prepared a 1D/2D hierarchical CoN-CNTs@PANI/Ti3C2Tx composite via in-situ polymerization and electrostatic self-assembly. First, 1D CoN-CNTs provide polyaniline (PANI) polymerization sites to suppress its volume expansion and to form conductive channels, while spiky PANI shells offer extra faradaic sites. Second, 1D CoN- CNTs@PANI nanotubes prevent the restacking of 2D Ti3C2Tx nanosheets, and the conductive framework of 2D Ti3C2Tx nanosheets further suppresses PANI volume change to enhance rate capability and cycling lifespan. Third, the 1D/2D structure leverages synergies to accelerate interfacial charge/ion transport and reaction kinetics, critical for high-power ZICs. As a result, the three-electrode tests showed the electrode delivered 861.7 F g−1 at 0.5 A g−1 and retained 91 % capacitance after 5000 cycles at 10 A g−1. The assembled CoN-CNTs@PANI/Ti3C2Tx//Zn ZIC achieved 91.2 Wh kg−1 at 1600 W kg−1, with 86 % capacity retention after 5000 cycles at 2 A g−1. This work establishes an advanced MXene-based hierarchical design strategy for high-performance ZIC electrodes. The 1D/2D hierarchical structure of CoN-CNTs@PANI/Ti3C2Tx has been developed as a cathode for zinc-ion capacitors, providing efficient Zn2+diffusion pathways, abundant electrochemically active sites, and exceptional structural stability, and exhibits outstanding electrochemical performance. [Display omitted] •1D/2D hierarchical structure engineered through electrostatic anchoring of 1D CoN-CNTs@PANI with 2D Ti3C2Tx.•1D spiky-like CoN-CNTs@PANI nanotubes serve as ionic buffer cells and facilitate electrolyte penetration.•1D/2D hierarchical structure of CoN-CNTs@PANI/Ti3C2Tx accelerates ion/charge kinetics via structural synergy.•The CoN-CNTs@PANI/Ti3C2Tx composite delivers excellent zinc storage performance with robust structural stability.
ArticleNumber 169946
Author Wang, Puze
Zhu, Jianfeng
Fang, Yuan
Zhao, Ting
Wang, Haiqiang
Cheng, Yang
Wu, Wenling
Guo, Jiang
Author_xml – sequence: 1
  givenname: Wenling
  surname: Wu
  fullname: Wu, Wenling
  email: wuwenling@sust.edu.cn
  organization: School of Material Science and Engineering, School of Conservation Science & Technology for Cultural Heritage, Shaanxi University of Science and Technology, Xi'an, 710021, China
– sequence: 2
  givenname: Haiqiang
  surname: Wang
  fullname: Wang, Haiqiang
  organization: School of Material Science and Engineering, School of Conservation Science & Technology for Cultural Heritage, Shaanxi University of Science and Technology, Xi'an, 710021, China
– sequence: 3
  givenname: Puze
  surname: Wang
  fullname: Wang, Puze
  organization: School of Material Science and Engineering, School of Conservation Science & Technology for Cultural Heritage, Shaanxi University of Science and Technology, Xi'an, 710021, China
– sequence: 4
  givenname: Yang
  surname: Cheng
  fullname: Cheng, Yang
  organization: School of Material Science and Engineering, School of Conservation Science & Technology for Cultural Heritage, Shaanxi University of Science and Technology, Xi'an, 710021, China
– sequence: 5
  givenname: Yuan
  surname: Fang
  fullname: Fang, Yuan
  organization: School of Material Science and Engineering, School of Conservation Science & Technology for Cultural Heritage, Shaanxi University of Science and Technology, Xi'an, 710021, China
– sequence: 6
  givenname: Jiang
  surname: Guo
  fullname: Guo, Jiang
  organization: School of Material Science and Engineering, School of Conservation Science & Technology for Cultural Heritage, Shaanxi University of Science and Technology, Xi'an, 710021, China
– sequence: 7
  givenname: Ting
  surname: Zhao
  fullname: Zhao, Ting
  organization: School of Material Science and Engineering, School of Conservation Science & Technology for Cultural Heritage, Shaanxi University of Science and Technology, Xi'an, 710021, China
– sequence: 8
  givenname: Jianfeng
  surname: Zhu
  fullname: Zhu, Jianfeng
  organization: School of Material Science and Engineering, School of Conservation Science & Technology for Cultural Heritage, Shaanxi University of Science and Technology, Xi'an, 710021, China
BookMark eNp9kE1OwzAQRr0oEm3hAOx8gRTbSZxYbKhSoJWqwqKsLWcyoe5PHNkpolyBSxMoa1Yzi3mj73sjMmhcg4TccDbhjMvb7QRwOxFMpBMulUrkgAx5nKdRrpLskoxC2DLGpOJqSL7mFr3xsLFg9jR0_gjd0SN1NeUzGlq7O0V7u0NauFVUrNbh_mW6WtDGNK47lhhoOLat8x1W1DVUzOjaxoVYf_xehA1iF2jtPN3Yt03Uou_3g2kA6adtILI9A6Y1YDvnwxW5qM0-4PXfHJPXx4d1MY-Wz0-LYrqMQKS8i6QStcxKEQtAo_KkFiVDmUOqQII0NTNcVJglpaiySqgSRFylWZxmuUiQQR6PCT__Be9C8Fjr1tuD8SfNmf4xqLe6N6h_DOqzwZ65OzPYB3vvnekAFvsilfUIna6c_Yf-BtMofmA
Cites_doi 10.1002/aenm.202100201
10.1002/aenm.202001394
10.1016/j.jallcom.2021.159159
10.1039/D3NA00279A
10.1016/j.pecs.2023.101097
10.1016/j.cej.2024.152372
10.1016/j.cej.2024.153505
10.1016/j.cej.2021.131799
10.1016/j.jallcom.2022.165753
10.1016/j.diamond.2023.110614
10.1016/j.carbon.2023.118695
10.1016/j.ensm.2022.10.005
10.1002/smsc.202400295
10.1002/adfm.202008033
10.1016/j.cej.2021.133250
10.1002/aenm.202003994
10.1007/s40820-023-01065-x
10.1021/acsnano.1c02215
10.1016/j.jmst.2025.03.088
10.1016/j.cej.2024.153730
10.1002/adma.202008140
10.1016/j.cej.2024.151589
10.1002/aenm.202202303
10.1016/j.ijbiomac.2021.04.112
10.1016/j.nanoen.2021.105942
10.1016/j.cej.2020.127502
10.1016/j.carbon.2013.02.036
10.1021/acsami.3c11035
10.1002/adma.202007480
10.1016/j.ensm.2017.12.022
10.1002/smtd.202300714
10.1016/j.carbon.2024.119100
10.1002/cey2.698
10.1002/aenm.202403739
10.3390/ma13122756
10.1002/cey2.501
10.1016/j.est.2022.105008
10.1016/j.nanoen.2023.108290
10.1016/j.compositesb.2019.02.026
10.1002/anie.202411066
10.1039/C9TA00733D
10.1016/j.cej.2024.153149
10.1002/eem2.12454
10.1021/acs.energyfuels.1c04104
10.1021/acs.chemmater.3c00563
10.1021/acs.langmuir.4c01242
10.1002/adfm.202213095
10.1002/adfm.201701264
10.1016/j.electacta.2024.144327
10.1002/smll.202404011
10.1016/j.nanoen.2022.107791
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2025.169946
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2025_169946
S1385894725107894
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
~HD
9DU
AAYXX
ABXDB
AFFNX
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
M41
R2-
ZY4
ID FETCH-LOGICAL-c251t-692f67b232cea984f2b0e68c59c6c6af0a12de74b2d7d29bc23d57357824e0c83
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001614089600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1385-8947
IngestDate Thu Nov 27 00:21:27 EST 2025
Wed Dec 10 14:40:56 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords 1D conductive channels
Electrochemical performance
2D Ti3C2Tx
Zinc-ion capacitors
Hierarchical structure
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-692f67b232cea984f2b0e68c59c6c6af0a12de74b2d7d29bc23d57357824e0c83
ParticipantIDs crossref_primary_10_1016_j_cej_2025_169946
elsevier_sciencedirect_doi_10_1016_j_cej_2025_169946
PublicationCentury 2000
PublicationDate 2025-12-01
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mohanty, Parida (bb0005) 2024; 491
Niu, Luo, Chen, Song, He, Sun, Li, Wang, Jiang (bb0105) 2024; 493
Peng, Xue, Yang, Wang, Du, Yuan, Chen (bb0115) 2025; 74
Yang, Chen, Wang, Ye, Ping, Ning, Zhong, Hu (bb0250) 2022; 431
Luo, Ma, Li, Thabet, Hou, Ibrahim, El-Bahy, Xu, Guo (bb0110) 2022; 52
Zhang, Zhu, Xiong, Gao, Hu, Shi, Chen, Tian, Wu, Huang, Wang (bb0240) 2023; 7
Cai, Fang, Cao, He, Cao (bb0170) 2021; 868
Zhou, Wang, Wan, Liu, Chen, Jiang, Han, Yan, Li, Mei (bb0165) 2023; 6
Liu, Zheng, Ma, Wang, Zhang, Das, Wang, Wu (bb0290) 2022; 12
Liu, Jiang, Hu, Peng, Lai, Wu, Zuo, Zhang, Chen, Dai, Yang, Huang, Zhang, Zhao, Zhang, Wang, Chou (bb0075) 2021; 31
Wu, Zhao, Huang, He, Zhou, Wang, Guo, Luo, Cao, Yue, Lai, Zhang, Ma (bb0120) 2024; 490
Yan, Ren, Maleski, Hatter, Anasori, Urbankowski, Sarycheva, Gogotsi (bb0160) 2017; 27
Zhou, Li, Fu, Li, Chai, Duan, Xu, Wang, Xu (bb0095) 2025; 7
Ding, Xiao, Wang, Lv (bb0185) 2024; 495
Wang, Wang, Tang (bb0275) 2018; 13
Mao, Shi, Zhang, Hou, Wen, Liu, Long, Niu, Liu, Long, Gao (bb0260) 2022; 103
Liu, Chen, Ma, Li, Liu, Zhang, Feng (bb0085) 2024; 494
Li, Li, Xie, Zhou, Rong, Dong (bb0135) 2022; 427
Mohanty, Parida, Parida (bb0220) 2023; 5
Liu, Wu (bb0055) 2023; 109
Shin, Lee, Eun, Jung, Kim, Ng (bb0130) 2024; 4
Wang, Ye, Yang, Zhong, Hu (bb0045) 2021; 85
Alwin, Kočí, Wojcieszak, Zieliński, Edelmannová, Pietrowski (bb0150) 2020; 13
Chen, Ma, Zhang, Kamruzzaman, Zhi, Zapien (bb0280) 2019; 7
Che, Li, Zhou, Zhang, Zeng, Zhao, He, Liu, Lu (bb0225) 2019; 165
Liao, Qiu, Zhang, Yan, Xu, Jones, Chen (bb0040) 2023; 15
Javed, Mateen, Hussain, Ahmad, Mubashir, Khan, Assiri, Eldin, Shah, Han (bb0100) 2022; 53
Li, Li, Yang, Wang, Ma, Liang, Huang, Dong, Huang, Zhi (bb0285) 2020; 10
Liu, Dai, Zhang, Jiang, Peng, Wu, Chen, Wei, Chen, Liu, Wang, Han, Ding, Wang, Li, Yang, Huang (bb0070) 2021; 15
Li, Liu, Zhao, Shen, Zhao, Tan, Zhang, Li, Jiao, Qu (bb0235) 2021; 33
Mohanty, Swain, Parida, Parida (bb0020) 2022; 919
Zhao, Su, Yang, Wei, Wang, Zhang (bb0180) 2013; 58
Wu, Diwu, Li, Wang, Guo, Zhu (bb0145) 2026; 243
Yin, Zhang, Alhebshi, Salah, Alshareef (bb0050) 2021; 11
Chen, Wang, Peng, Hu, Yuan, Chen (bb0190) 2023; 35
Cai, Chen, Xu, Zhang, Liu, Zhang, Tang (bb0140) 2024; 6
Mohanty, Nashim, Parida (bb0210) 2025; n/a
Mohanty, Nashim, Parida, Parida (bb0080) 2024; 40
Yang, Lin, Zabihi, Yang, Zhu (bb0205) 2021; 181
Tang, Yao, Zhu (bb0035) 2021; 11
Wu, Chen, Jiao, Zhou, Cheng, Liu, Yang, Zhang, Zhang (bb0230) 2019; 9
Liu, Yang, Qin (bb0175) 2024; 225
Mohanty, Nashim, Parida (bb0010) 2023
Zhang, Zhu, Tang, Lu, Yang, Wang, Chen, Qu, Wang, Yu, Karnaushenko, Karnaushenko, Huang, Schmidt, Zhang (bb0060) 2023; 59
Chen, Yang, Han, Bo, Yan, Cen, Ostrikov (bb0090) 2022; 36
Lou, Pei, Wu, Lu, Wu, Zhu, Pang, Shen, Wu, Fu, Chen (bb0265) 2021; 413
Javed, Najam, Hussain, Idrees, Ahmad, Imran, Shah, Luque, Han (bb0030) 2023; 13
Ma, Bai, Zhou, Guan, Zhang, Wu, Li, Wang (bb0200) 2024; 496
Huang, Xie, You, Yuan, Xu, Xie, Chen (bb0015) 2023; 33
Hussain, Lamiel, Javed, Ahmad, Sahoo, Chen, Qin, Iqbal, Gu, Li, Chatzichristodoulou, Zhang (bb0065) 2023; 97
Huang, Lin, Hua, Chen, Xu (bb0155) 2024; 141
Zhu, Tai, Liu, Wang, Li, Yang, Ma, Deng, Luo, Zhang (bb0025) 2025; 15
Du, Han, Chen, Peng, Xie, Chen (bb0195) 2024; 63
Yang, Zhao, Gao, Yang, Shi, Zhang, Su, Xu, Du (bb0255) 2024; 218
Mohanty, Mohanty, Parida (bb0215) 2025; 9
Chen, Wei, Peng, Wang, Akinlabi, Guo, Gao, Duan, He, Jia, Xu (bb0270) 2024; 20
Wang, Sun, Wu, Liang, Zhang (bb0245) 2023; 15
Yao, Yuan, Li, He, Wang, Yuan, Niu (bb0125) 2021; 33
Yan (10.1016/j.cej.2025.169946_bb0160) 2017; 27
Shin (10.1016/j.cej.2025.169946_bb0130) 2024; 4
Wu (10.1016/j.cej.2025.169946_bb0230) 2019; 9
Chen (10.1016/j.cej.2025.169946_bb0280) 2019; 7
Li (10.1016/j.cej.2025.169946_bb0285) 2020; 10
Zhu (10.1016/j.cej.2025.169946_bb0025) 2025; 15
Luo (10.1016/j.cej.2025.169946_bb0110) 2022; 52
Mohanty (10.1016/j.cej.2025.169946_bb0020) 2022; 919
Che (10.1016/j.cej.2025.169946_bb0225) 2019; 165
Alwin (10.1016/j.cej.2025.169946_bb0150) 2020; 13
Du (10.1016/j.cej.2025.169946_bb0195) 2024; 63
Tang (10.1016/j.cej.2025.169946_bb0035) 2021; 11
Mohanty (10.1016/j.cej.2025.169946_bb0220) 2023; 5
Li (10.1016/j.cej.2025.169946_bb0235) 2021; 33
Yin (10.1016/j.cej.2025.169946_bb0050) 2021; 11
Mohanty (10.1016/j.cej.2025.169946_bb0080) 2024; 40
Mohanty (10.1016/j.cej.2025.169946_bb0010) 2023
Javed (10.1016/j.cej.2025.169946_bb0100) 2022; 53
Yang (10.1016/j.cej.2025.169946_bb0250) 2022; 431
Mohanty (10.1016/j.cej.2025.169946_bb0210) 2025; n/a
Liu (10.1016/j.cej.2025.169946_bb0075) 2021; 31
Chen (10.1016/j.cej.2025.169946_bb0090) 2022; 36
Liu (10.1016/j.cej.2025.169946_bb0070) 2021; 15
Li (10.1016/j.cej.2025.169946_bb0135) 2022; 427
Zhao (10.1016/j.cej.2025.169946_bb0180) 2013; 58
Liao (10.1016/j.cej.2025.169946_bb0040) 2023; 15
Liu (10.1016/j.cej.2025.169946_bb0055) 2023; 109
Wang (10.1016/j.cej.2025.169946_bb0045) 2021; 85
Liu (10.1016/j.cej.2025.169946_bb0175) 2024; 225
Mao (10.1016/j.cej.2025.169946_bb0260) 2022; 103
Mohanty (10.1016/j.cej.2025.169946_bb0215) 2025; 9
Wang (10.1016/j.cej.2025.169946_bb0275) 2018; 13
Yao (10.1016/j.cej.2025.169946_bb0125) 2021; 33
Niu (10.1016/j.cej.2025.169946_bb0105) 2024; 493
Wu (10.1016/j.cej.2025.169946_bb0145) 2026; 243
Chen (10.1016/j.cej.2025.169946_bb0270) 2024; 20
Lou (10.1016/j.cej.2025.169946_bb0265) 2021; 413
Zhang (10.1016/j.cej.2025.169946_bb0060) 2023; 59
Ma (10.1016/j.cej.2025.169946_bb0200) 2024; 496
Ding (10.1016/j.cej.2025.169946_bb0185) 2024; 495
Zhou (10.1016/j.cej.2025.169946_bb0165) 2023; 6
Chen (10.1016/j.cej.2025.169946_bb0190) 2023; 35
Huang (10.1016/j.cej.2025.169946_bb0155) 2024; 141
Zhang (10.1016/j.cej.2025.169946_bb0240) 2023; 7
Huang (10.1016/j.cej.2025.169946_bb0015) 2023; 33
Zhou (10.1016/j.cej.2025.169946_bb0095) 2025; 7
Cai (10.1016/j.cej.2025.169946_bb0170) 2021; 868
Liu (10.1016/j.cej.2025.169946_bb0085) 2024; 494
Javed (10.1016/j.cej.2025.169946_bb0030) 2023; 13
Yang (10.1016/j.cej.2025.169946_bb0255) 2024; 218
Wang (10.1016/j.cej.2025.169946_bb0245) 2023; 15
Yang (10.1016/j.cej.2025.169946_bb0205) 2021; 181
Hussain (10.1016/j.cej.2025.169946_bb0065) 2023; 97
Liu (10.1016/j.cej.2025.169946_bb0290) 2022; 12
Peng (10.1016/j.cej.2025.169946_bb0115) 2025; 74
Wu (10.1016/j.cej.2025.169946_bb0120) 2024; 490
Cai (10.1016/j.cej.2025.169946_bb0140) 2024; 6
Mohanty (10.1016/j.cej.2025.169946_bb0005) 2024; 491
References_xml – volume: 427
  year: 2022
  ident: bb0135
  article-title: Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 1
  year: 2018
  end-page: 7
  ident: bb0275
  article-title: A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications
  publication-title: Energy Storage Mater.
– volume: 919
  year: 2022
  ident: bb0020
  article-title: Enhanced electrochemical performance of flexible asymmetric supercapacitor based on novel nanostructured activated fullerene anchored zinc cobaltite
  publication-title: J. Alloys Compd.
– volume: 6
  year: 2023
  ident: bb0165
  article-title: Electrostatic self-assembly of Ti3C2Tx MXene/cellulose nanofiber composite films for wearable supercapacitor and joule heater
  publication-title: Energy Environ. Mater.
– volume: 7
  year: 2023
  ident: bb0240
  article-title: Multi-channel hollow carbon nanofibers with graphene-like Shell-structure and ultrahigh surface area for high-performance Zn-ion hybrid capacitors
  publication-title: Small Methods
– volume: 103
  year: 2022
  ident: bb0260
  article-title: High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors
  publication-title: Nano Energy
– volume: 218
  year: 2024
  ident: bb0255
  article-title: Flexible CNT@Porous carbon sponge cathode with large mesopores for high-rate zinc-ion hybrid capacitors
  publication-title: Carbon
– volume: 9
  year: 2019
  ident: bb0230
  article-title: An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles
  publication-title: Adv. Energy Mater.
– volume: 12
  year: 2022
  ident: bb0290
  article-title: All 3D printing shape-conformable zinc ion hybrid capacitors with ultrahigh areal capacitance and improved cycle life
  publication-title: Adv. Energy Mater.
– volume: 36
  start-page: 2390
  year: 2022
  end-page: 2406
  ident: bb0090
  article-title: MXene-based electrodes for supercapacitor energy storage
  publication-title: Energy Fuel
– volume: 10
  year: 2020
  ident: bb0285
  article-title: Vertically aligned Sn4+ preintercalated Ti2CTX MXene sphere with enhanced Zn ion transportation and superior cycle lifespan
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  ident: bb0235
  article-title: Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries
  publication-title: Adv. Mater.
– volume: 141
  year: 2024
  ident: bb0155
  article-title: Effects of thermal program on physicochemical properties and photocatalytic activity of g-C3N4 prepared by dicyandiamide pyrolysis
  publication-title: Diam. Relat. Mater.
– volume: 11
  year: 2021
  ident: bb0035
  article-title: Recent developments and future prospects for zinc-ion hybrid capacitors: a review
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2023
  ident: bb0015
  article-title: Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization
  publication-title: Adv. Funct. Mater.
– volume: 109
  year: 2023
  ident: bb0055
  article-title: Recent advances of cathode materials for zinc-ion hybrid capacitors
  publication-title: Nano Energy
– volume: 58
  start-page: 92
  year: 2013
  end-page: 98
  ident: bb0180
  article-title: Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties
  publication-title: Carbon
– volume: 496
  year: 2024
  ident: bb0200
  article-title: Sulfonated polyaniline/MXene composite electrode with high cycling stability for anti-freezing flexible supercapacitor
  publication-title: Chem. Eng. J.
– volume: 59
  year: 2023
  ident: bb0060
  article-title: A high-voltage Zn-air battery based on an asymmetric electrolyte configuration
  publication-title: Energy Storage Mater.
– volume: 413
  year: 2021
  ident: bb0265
  article-title: Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors
  publication-title: Chem. Eng. J.
– volume: 165
  start-page: 671
  year: 2019
  end-page: 678
  ident: bb0225
  article-title: Porous polyaniline/carbon nanotube composite electrode for supercapacitors with outstanding rate capability and cyclic stability
  publication-title: Compos. Part B Eng.
– volume: 15
  start-page: 48416
  year: 2023
  end-page: 48430
  ident: bb0040
  article-title: 3D hierarchical Ti3C2TX@PANI-reduced graphene oxide heterostructure hydrogel anode and defective reduced graphene oxide hydrogel cathode for high-performance zinc ion capacitors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 181
  start-page: 1063
  year: 2021
  end-page: 1071
  ident: bb0205
  article-title: High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization
  publication-title: Int. J. Biol. Macromol.
– volume: 4
  year: 2024
  ident: bb0130
  article-title: Protic stabilization engenders high energy density and long cycle life in polyaniline–zinc supercapacitors
  publication-title: Small Sci.
– volume: 33
  year: 2021
  ident: bb0125
  article-title: Scalable assembly of flexible ultrathin all-in-one zinc-ion batteries with highly stretchable, editable, and customizable functions
  publication-title: Adv. Mater.
– volume: 13
  year: 2023
  ident: bb0030
  article-title: Fundamentals and scientific challenges in structural design of cathode materials for zinc-ion hybrid supercapacitors
  publication-title: Adv. Energy Mater.
– volume: 35
  start-page: 4089
  year: 2023
  end-page: 4099
  ident: bb0190
  article-title: Zinc-ion capacitors with fast kinetics at a high mass loading
  publication-title: Chem. Mater.
– volume: n/a
  year: 2025
  ident: bb0210
  article-title: All-solid-state deformable hybrid supercapacitor based on porous self-phosphorus-doped bio-carbon as a cathode and MXene-modified doped metal oxide as an anode
  publication-title: Small
– volume: 27
  year: 2017
  ident: bb0160
  article-title: Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance
  publication-title: Adv. Funct. Mater.
– volume: 11
  year: 2021
  ident: bb0050
  article-title: Electrochemical zinc ion capacitors: fundamentals, materials, and systems
  publication-title: Adv. Energy Mater.
– volume: 40
  start-page: 14197
  year: 2024
  end-page: 14213
  ident: bb0080
  article-title: Can doped-MXene-based supercapacitors be the game-changer for future energy landscape? A critical perspective
  publication-title: Langmuir
– volume: 15
  year: 2025
  ident: bb0025
  article-title: Emerging zinc-ion capacitor science: compatible principle, design paradigm, and frontier applications
  publication-title: Adv. Energy Mater.
– volume: 53
  start-page: 827
  year: 2022
  end-page: 872
  ident: bb0100
  article-title: Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices
  publication-title: Energy Storage Mater.
– volume: 15
  start-page: 9065
  year: 2021
  end-page: 9075
  ident: bb0070
  article-title: Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries
  publication-title: ACS Nano
– volume: 63
  year: 2024
  ident: bb0195
  article-title: Micro/Meso-porous double-shell hollow carbon spheres through spatially confined pyrolysis for supercapacitors and zinc-ion capacitor
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 78
  year: 2023
  ident: bb0245
  article-title: Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators
  publication-title: Nano Micro Lett.
– volume: 20
  year: 2024
  ident: bb0270
  article-title: MXene/nitrogen-doped carbon nanosheet scaffold electrode toward high-performance solid-state zinc ion supercapacitor
  publication-title: Small
– volume: 431
  year: 2022
  ident: bb0250
  article-title: Two-step nitrogen and sulfur doping in porous carbon dodecahedra for Zn-ion hybrid supercapacitors with long term stability
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 2756
  year: 2020
  ident: bb0150
  article-title: Influence of high temperature synthesis on the structure of graphitic carbon nitride and its hydrogen generation ability
  publication-title: Materials
– volume: 85
  year: 2021
  ident: bb0045
  article-title: Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives
  publication-title: Nano Energy
– volume: 52
  year: 2022
  ident: bb0110
  article-title: Overview of MXene/conducting polymer composites for supercapacitors
  publication-title: J. Energy Storage
– volume: 74
  year: 2025
  ident: bb0115
  article-title: Advanced carbon materials for efficient zinc ion storage: structures, mechanisms and prospects
  publication-title: Energy Storage Mater.
– volume: 495
  year: 2024
  ident: bb0185
  article-title: Redox-active “structural pillar” molecular doping strategy towards high-performance polyaniline-based flexible supercapacitors
  publication-title: Chem. Eng. J.
– volume: 491
  year: 2024
  ident: bb0005
  article-title: Carbamide-mediated facile sol-gel synthesis of porous flower-like ZnCo2O4 microspheres for high-performance asymmetric coin cell supercapacitors
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 7784
  year: 2019
  end-page: 7790
  ident: bb0280
  article-title: A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres
  publication-title: J. Mater. Chem. A
– volume: 868
  year: 2021
  ident: bb0170
  article-title: MXene-CNT/PANI ternary material with excellent supercapacitive performance driven by synergy
  publication-title: J. Alloys Compd.
– volume: 493
  year: 2024
  ident: bb0105
  article-title: MXene/VS4 self-supporting thin film electrode for zinc-ion flexible supercapacitors
  publication-title: Chem. Eng. J.
– volume: 243
  start-page: 76
  year: 2026
  end-page: 88
  ident: bb0145
  article-title: Hierarchical architecture by band engineering strategy between N-doped bamboo-like CNTs and Ti3C2Tx nanosheets for advanced sodium-ion hybrid capacitors
  publication-title: J. Mater. Sci. Technol.
– volume: 6
  year: 2024
  ident: bb0140
  article-title: Ti3C2Tx MXene/carbon composites for advanced supercapacitors: synthesis, progress, and perspectives
  publication-title: Carbon Energy
– volume: 494
  year: 2024
  ident: bb0085
  article-title: High-load Ti3C2 MXene cathode through surface modification for degradable aqueous zinc-ion micro-supercapacitors with excellent energy density and anti-self-discharge
  publication-title: Chem. Eng. J.
– volume: 9
  year: 2025
  ident: bb0215
  article-title: Self-sacrificial template-induced fabrication of sustainable diode-type micro-junction toward supercapacitors and green H2 evolution
  publication-title: Adv. Sustain. Syst.
– volume: 7
  year: 2025
  ident: bb0095
  article-title: Additive-free Ti3C2Tx MXene/carbon nanotube aqueous inks enable energy density enriched 3D-printed flexible micro-supercapacitors for modular self-powered systems
  publication-title: Carbon Energy
– volume: 31
  year: 2021
  ident: bb0075
  article-title: In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries
  publication-title: Adv. Funct. Mater.
– start-page: 0
  year: 2023
  ident: bb0010
  article-title: Green supercapacitors in portable and wearable electronics
  publication-title: Low-carbon Supercapacitors: Towards Sustainability in Energy Storage Devices
– volume: 490
  year: 2024
  ident: bb0120
  article-title: Self-charging V2CTx/CNT-based zinc ion micro-supercapacitor for wearable electronics
  publication-title: Chem. Eng. J.
– volume: 97
  year: 2023
  ident: bb0065
  article-title: MXene-based heterostructures: current trend and development in electrochemical energy storage devices
  publication-title: Prog. Energy Combust. Sci.
– volume: 225
  year: 2024
  ident: bb0175
  article-title: Polyaniline nanoarrays grown on holey graphene constructed by frozen interfacial polymerization as binder−free and flexible gel electrode for high−performance supercapacitor
  publication-title: Carbon
– volume: 5
  start-page: 4521
  year: 2023
  end-page: 4535
  ident: bb0220
  article-title: Redox mediator-enhanced charge storage in dimensionally tailored nanostructures towards flexible hybrid solid-state supercapacitors
  publication-title: Nanoscale Adv.
– volume: 11
  issue: 21
  year: 2021
  ident: 10.1016/j.cej.2025.169946_bb0050
  article-title: Electrochemical zinc ion capacitors: fundamentals, materials, and systems
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100201
– volume: 10
  issue: 35
  year: 2020
  ident: 10.1016/j.cej.2025.169946_bb0285
  article-title: Vertically aligned Sn4+ preintercalated Ti2CTX MXene sphere with enhanced Zn ion transportation and superior cycle lifespan
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001394
– volume: 868
  year: 2021
  ident: 10.1016/j.cej.2025.169946_bb0170
  article-title: MXene-CNT/PANI ternary material with excellent supercapacitive performance driven by synergy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.159159
– volume: 5
  start-page: 4521
  issue: 17
  year: 2023
  ident: 10.1016/j.cej.2025.169946_bb0220
  article-title: Redox mediator-enhanced charge storage in dimensionally tailored nanostructures towards flexible hybrid solid-state supercapacitors
  publication-title: Nanoscale Adv.
  doi: 10.1039/D3NA00279A
– volume: 97
  year: 2023
  ident: 10.1016/j.cej.2025.169946_bb0065
  article-title: MXene-based heterostructures: current trend and development in electrochemical energy storage devices
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2023.101097
– volume: 493
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0105
  article-title: MXene/VS4 self-supporting thin film electrode for zinc-ion flexible supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.152372
– volume: 495
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0185
  article-title: Redox-active “structural pillar” molecular doping strategy towards high-performance polyaniline-based flexible supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.153505
– volume: 427
  year: 2022
  ident: 10.1016/j.cej.2025.169946_bb0135
  article-title: Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131799
– volume: 12
  issue: 27
  year: 2022
  ident: 10.1016/j.cej.2025.169946_bb0290
  article-title: All 3D printing shape-conformable zinc ion hybrid capacitors with ultrahigh areal capacitance and improved cycle life
  publication-title: Adv. Energy Mater.
– volume: 919
  year: 2022
  ident: 10.1016/j.cej.2025.169946_bb0020
  article-title: Enhanced electrochemical performance of flexible asymmetric supercapacitor based on novel nanostructured activated fullerene anchored zinc cobaltite
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.165753
– start-page: 0
  year: 2023
  ident: 10.1016/j.cej.2025.169946_bb0010
  article-title: Green supercapacitors in portable and wearable electronics
– volume: 141
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0155
  article-title: Effects of thermal program on physicochemical properties and photocatalytic activity of g-C3N4 prepared by dicyandiamide pyrolysis
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2023.110614
– volume: 218
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0255
  article-title: Flexible CNT@Porous carbon sponge cathode with large mesopores for high-rate zinc-ion hybrid capacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.118695
– volume: 53
  start-page: 827
  year: 2022
  ident: 10.1016/j.cej.2025.169946_bb0100
  article-title: Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.10.005
– volume: 4
  issue: 11
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0130
  article-title: Protic stabilization engenders high energy density and long cycle life in polyaniline–zinc supercapacitors
  publication-title: Small Sci.
  doi: 10.1002/smsc.202400295
– volume: 31
  issue: 8
  year: 2021
  ident: 10.1016/j.cej.2025.169946_bb0075
  article-title: In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008033
– volume: 431
  year: 2022
  ident: 10.1016/j.cej.2025.169946_bb0250
  article-title: Two-step nitrogen and sulfur doping in porous carbon dodecahedra for Zn-ion hybrid supercapacitors with long term stability
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133250
– volume: 9
  issue: 47
  year: 2019
  ident: 10.1016/j.cej.2025.169946_bb0230
  article-title: An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80 000 cycles
  publication-title: Adv. Energy Mater.
– volume: 11
  issue: 14
  year: 2021
  ident: 10.1016/j.cej.2025.169946_bb0035
  article-title: Recent developments and future prospects for zinc-ion hybrid capacitors: a review
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003994
– volume: 15
  start-page: 78
  issue: 1
  year: 2023
  ident: 10.1016/j.cej.2025.169946_bb0245
  article-title: Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-023-01065-x
– volume: 15
  start-page: 9065
  issue: 5
  year: 2021
  ident: 10.1016/j.cej.2025.169946_bb0070
  article-title: Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02215
– volume: 243
  start-page: 76
  year: 2026
  ident: 10.1016/j.cej.2025.169946_bb0145
  article-title: Hierarchical architecture by band engineering strategy between N-doped bamboo-like CNTs and Ti3C2Tx nanosheets for advanced sodium-ion hybrid capacitors
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2025.03.088
– volume: 496
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0200
  article-title: Sulfonated polyaniline/MXene composite electrode with high cycling stability for anti-freezing flexible supercapacitor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.153730
– volume: 33
  issue: 10
  year: 2021
  ident: 10.1016/j.cej.2025.169946_bb0125
  article-title: Scalable assembly of flexible ultrathin all-in-one zinc-ion batteries with highly stretchable, editable, and customizable functions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008140
– volume: 490
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0120
  article-title: Self-charging V2CTx/CNT-based zinc ion micro-supercapacitor for wearable electronics
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.151589
– volume: 13
  issue: 3
  year: 2023
  ident: 10.1016/j.cej.2025.169946_bb0030
  article-title: Fundamentals and scientific challenges in structural design of cathode materials for zinc-ion hybrid supercapacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202303
– volume: 181
  start-page: 1063
  year: 2021
  ident: 10.1016/j.cej.2025.169946_bb0205
  article-title: High specific capacitance cotton fiber electrode enhanced with PPy and MXene by in situ hybrid polymerization
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.04.112
– volume: 85
  year: 2021
  ident: 10.1016/j.cej.2025.169946_bb0045
  article-title: Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105942
– volume: 413
  year: 2021
  ident: 10.1016/j.cej.2025.169946_bb0265
  article-title: Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127502
– volume: 58
  start-page: 92
  year: 2013
  ident: 10.1016/j.cej.2025.169946_bb0180
  article-title: Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.02.036
– volume: 15
  start-page: 48416
  issue: 41
  year: 2023
  ident: 10.1016/j.cej.2025.169946_bb0040
  article-title: 3D hierarchical Ti3C2TX@PANI-reduced graphene oxide heterostructure hydrogel anode and defective reduced graphene oxide hydrogel cathode for high-performance zinc ion capacitors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c11035
– volume: 33
  issue: 12
  year: 2021
  ident: 10.1016/j.cej.2025.169946_bb0235
  article-title: Sandwich-like heterostructures of MoS2/graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007480
– volume: 13
  start-page: 1
  year: 2018
  ident: 10.1016/j.cej.2025.169946_bb0275
  article-title: A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.12.022
– volume: 7
  issue: 11
  year: 2023
  ident: 10.1016/j.cej.2025.169946_bb0240
  article-title: Multi-channel hollow carbon nanofibers with graphene-like Shell-structure and ultrahigh surface area for high-performance Zn-ion hybrid capacitors
  publication-title: Small Methods
  doi: 10.1002/smtd.202300714
– volume: 225
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0175
  article-title: Polyaniline nanoarrays grown on holey graphene constructed by frozen interfacial polymerization as binder−free and flexible gel electrode for high−performance supercapacitor
  publication-title: Carbon
  doi: 10.1016/j.carbon.2024.119100
– volume: 7
  issue: 4
  year: 2025
  ident: 10.1016/j.cej.2025.169946_bb0095
  article-title: Additive-free Ti3C2Tx MXene/carbon nanotube aqueous inks enable energy density enriched 3D-printed flexible micro-supercapacitors for modular self-powered systems
  publication-title: Carbon Energy
  doi: 10.1002/cey2.698
– volume: 15
  issue: 4
  year: 2025
  ident: 10.1016/j.cej.2025.169946_bb0025
  article-title: Emerging zinc-ion capacitor science: compatible principle, design paradigm, and frontier applications
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202403739
– volume: 74
  year: 2025
  ident: 10.1016/j.cej.2025.169946_bb0115
  article-title: Advanced carbon materials for efficient zinc ion storage: structures, mechanisms and prospects
  publication-title: Energy Storage Mater.
– volume: 13
  start-page: 2756
  issue: 12
  year: 2020
  ident: 10.1016/j.cej.2025.169946_bb0150
  article-title: Influence of high temperature synthesis on the structure of graphitic carbon nitride and its hydrogen generation ability
  publication-title: Materials
  doi: 10.3390/ma13122756
– volume: 6
  issue: 2
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0140
  article-title: Ti3C2Tx MXene/carbon composites for advanced supercapacitors: synthesis, progress, and perspectives
  publication-title: Carbon Energy
  doi: 10.1002/cey2.501
– volume: 52
  year: 2022
  ident: 10.1016/j.cej.2025.169946_bb0110
  article-title: Overview of MXene/conducting polymer composites for supercapacitors
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.105008
– volume: 109
  year: 2023
  ident: 10.1016/j.cej.2025.169946_bb0055
  article-title: Recent advances of cathode materials for zinc-ion hybrid capacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108290
– volume: 165
  start-page: 671
  year: 2019
  ident: 10.1016/j.cej.2025.169946_bb0225
  article-title: Porous polyaniline/carbon nanotube composite electrode for supercapacitors with outstanding rate capability and cyclic stability
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2019.02.026
– volume: 63
  issue: 50
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0195
  article-title: Micro/Meso-porous double-shell hollow carbon spheres through spatially confined pyrolysis for supercapacitors and zinc-ion capacitor
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202411066
– volume: n/a
  issue: n/a
  year: 2025
  ident: 10.1016/j.cej.2025.169946_bb0210
  article-title: All-solid-state deformable hybrid supercapacitor based on porous self-phosphorus-doped bio-carbon as a cathode and MXene-modified doped metal oxide as an anode
  publication-title: Small
– volume: 7
  start-page: 7784
  issue: 13
  year: 2019
  ident: 10.1016/j.cej.2025.169946_bb0280
  article-title: A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00733D
– volume: 494
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0085
  article-title: High-load Ti3C2 MXene cathode through surface modification for degradable aqueous zinc-ion micro-supercapacitors with excellent energy density and anti-self-discharge
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.153149
– volume: 6
  issue: 6
  year: 2023
  ident: 10.1016/j.cej.2025.169946_bb0165
  article-title: Electrostatic self-assembly of Ti3C2Tx MXene/cellulose nanofiber composite films for wearable supercapacitor and joule heater
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12454
– volume: 59
  year: 2023
  ident: 10.1016/j.cej.2025.169946_bb0060
  article-title: A high-voltage Zn-air battery based on an asymmetric electrolyte configuration
  publication-title: Energy Storage Mater.
– volume: 36
  start-page: 2390
  issue: 5
  year: 2022
  ident: 10.1016/j.cej.2025.169946_bb0090
  article-title: MXene-based electrodes for supercapacitor energy storage
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.1c04104
– volume: 35
  start-page: 4089
  issue: 10
  year: 2023
  ident: 10.1016/j.cej.2025.169946_bb0190
  article-title: Zinc-ion capacitors with fast kinetics at a high mass loading
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.3c00563
– volume: 40
  start-page: 14197
  issue: 28
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0080
  article-title: Can doped-MXene-based supercapacitors be the game-changer for future energy landscape? A critical perspective
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.4c01242
– volume: 9
  issue: 4
  year: 2025
  ident: 10.1016/j.cej.2025.169946_bb0215
  article-title: Self-sacrificial template-induced fabrication of sustainable diode-type micro-junction toward supercapacitors and green H2 evolution
  publication-title: Adv. Sustain. Syst.
– volume: 33
  issue: 14
  year: 2023
  ident: 10.1016/j.cej.2025.169946_bb0015
  article-title: Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202213095
– volume: 27
  issue: 30
  year: 2017
  ident: 10.1016/j.cej.2025.169946_bb0160
  article-title: Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701264
– volume: 491
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0005
  article-title: Carbamide-mediated facile sol-gel synthesis of porous flower-like ZnCo2O4 microspheres for high-performance asymmetric coin cell supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2024.144327
– volume: 20
  issue: 42
  year: 2024
  ident: 10.1016/j.cej.2025.169946_bb0270
  article-title: MXene/nitrogen-doped carbon nanosheet scaffold electrode toward high-performance solid-state zinc ion supercapacitor
  publication-title: Small
  doi: 10.1002/smll.202404011
– volume: 103
  year: 2022
  ident: 10.1016/j.cej.2025.169946_bb0260
  article-title: High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107791
SSID ssj0006919
Score 2.4819021
Snippet Two-dimensional (2D) layered MXene (e.g., Ti3C2Tx) is a research focus for zinc-ion capacitors (ZICs) electrodes due to its large specific surface area and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 169946
SubjectTerms 1D conductive channels
2D Ti3C2Tx
Electrochemical performance
Hierarchical structure
Zinc-ion capacitors
Title Hierarchical structure of 1D spiky-like CoN-CNTs@PANI nanotubes supported on 2D Ti3C2Tx nanosheets for high-performance zinc-ion capacitors
URI https://dx.doi.org/10.1016/j.cej.2025.169946
Volume 525
WOSCitedRecordID wos001614089600035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1385-8947
  databaseCode: AIEXJ
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006919
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ5il4d8gAuVq9R5OL5RtYu6HKJKFFFOkeM42nRXaSDtbulf4K_xoxjHedFlJfbAJYosZ2J5Ptnj8cw3CL2JqeK-qywSK0vCAUUJEnmMkUQwyaSjHDjNlcUmWBD4iwWf9Xq_6lyYywuWZf52y_P_qmpoA2Xr1NlbqLsRCg3wDkqHJ6gdnv-k-Gmqc4rLEidlKsjGXBKAUTic9Is8Pf9BLtJzXa0uIONgXrx1rNkoOO1nIlutN5Eq-sUmL-nOY32TQCegT3tM59uyR3Gm1LrkcOhrpmOSdxIPdmkmiYaThB1YprqOT9f2bbgJVMuB2DBX6MoiQkcIGQ_rp6t0vTOJyJXTgnsdp8WXTRkbqD0x1c5b3gmYdWsq0m8A-mvts82uQTGMxTR-rTtWng_qdqJIzGJt-y7xuWHsrFdzl7qd9XjocW5cnNe2CuO1WA6kWg609EHb909a7r3tsglirOPjliGICLWI0Ii4gw4pczlsE4ej05PFx8Yy8HhZaKYZd33LXsYb7o3j73ZSx_aZP0QPqkMLHhmwPUI9lT1G9ztUlk_Qzy7scAM7vErwcIJb2OEadu816HADOtyADq8yTCe4Ah1uQYcBaHgfdLgGHW5B9xR9_nAyH09JVeiDSDCv18TjNPFYBMa9VIL7TkIjS3m-dLn0pCcSSwxprJgT0ZjFlEeS2rHLNE8TdWCJ8e1n6CBbZeo5woknqA-ncqFs6cAcC6qFRbYvNLMejY7Qu3paw9zwuYQ3KvIIOfXEh5VBagzNEEB082fHt_nHC3SvxfZLdAD6Ua_QXXm5TovvrysE_QZZeqyA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+structure+of+1D+spiky-like+CoN-CNTs%40PANI+nanotubes+supported+on+2D+Ti3C2Tx+nanosheets+for+high-performance+zinc-ion+capacitors&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Wu%2C+Wenling&rft.au=Wang%2C+Haiqiang&rft.au=Wang%2C+Puze&rft.au=Cheng%2C+Yang&rft.date=2025-12-01&rft.issn=1385-8947&rft.volume=525&rft.spage=169946&rft_id=info:doi/10.1016%2Fj.cej.2025.169946&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2025_169946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon