Structural equation modeling for causal effect estimation with machine learning

Causal inference is a crucial framework in a variety of fields, such as economics, healthcare, and social science. In this context, data-driven machine learning models have become more popular for estimating the effects of treatments. One fundamental technique for causal inference is structural equa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics Vol. 475; p. 117020
Main Authors: Ahmad, Sohail, Shah, Kamal, Debbouche, Amar
Format: Journal Article
Language:English
Published: Elsevier B.V 15.03.2026
Subjects:
ISSN:0377-0427
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Causal inference is a crucial framework in a variety of fields, such as economics, healthcare, and social science. In this context, data-driven machine learning models have become more popular for estimating the effects of treatments. One fundamental technique for causal inference is structural equation modeling (SEM), which makes it possible to estimate the relationships between variables. However, conventional SEM methods need help with the complexities of structural causal models (SCM) in real-world data, including latent confounders, nonlinear relationships, and challenges in accurately specifying model structures. These limitations could cause the interpretation or biased causal effects. To address these challenges, we introduce a new proposed method combining the piecewise structural equation modeling (PSEM) with the backdoor criterion, named PSEMBC. The main innovation of PSEMBC is the estimation of causal effects with the use of a linear SCM model, which captures complex relationships and interactions in the data. We demonstrate the value of PSEMBC for precisely and reliably identifying the average treatment effect (ATE) in simulated and real-world datasets utilizing a comparative study with current causal inference approaches.
AbstractList Causal inference is a crucial framework in a variety of fields, such as economics, healthcare, and social science. In this context, data-driven machine learning models have become more popular for estimating the effects of treatments. One fundamental technique for causal inference is structural equation modeling (SEM), which makes it possible to estimate the relationships between variables. However, conventional SEM methods need help with the complexities of structural causal models (SCM) in real-world data, including latent confounders, nonlinear relationships, and challenges in accurately specifying model structures. These limitations could cause the interpretation or biased causal effects. To address these challenges, we introduce a new proposed method combining the piecewise structural equation modeling (PSEM) with the backdoor criterion, named PSEMBC. The main innovation of PSEMBC is the estimation of causal effects with the use of a linear SCM model, which captures complex relationships and interactions in the data. We demonstrate the value of PSEMBC for precisely and reliably identifying the average treatment effect (ATE) in simulated and real-world datasets utilizing a comparative study with current causal inference approaches.
ArticleNumber 117020
Author Debbouche, Amar
Ahmad, Sohail
Shah, Kamal
Author_xml – sequence: 1
  givenname: Sohail
  surname: Ahmad
  fullname: Ahmad, Sohail
  email: asohail@stat.qau.edu.pk
  organization: School of Mathematics and Statistics, Central South University, Changsha Hunan, 410083 China
– sequence: 2
  givenname: Kamal
  surname: Shah
  fullname: Shah, Kamal
  email: kamal@uom.edu.pk
  organization: Department of Mathematics, University of Malakand, Chakdara Dir(L), KPK, 18000, Pakistan
– sequence: 3
  givenname: Amar
  orcidid: 0000-0003-4321-9515
  surname: Debbouche
  fullname: Debbouche, Amar
  email: amar_debbouche@yahoo.fr
  organization: Department of Mathematics, Guelma University, Guelma 24000, Algeria
BookMark eNp9kMtOwzAQRb0oEi3wAez8Awlj17EbsUIVL6lSF3RvOfaYusoDbAfE35MqrFnNYuZc3TkrsuiHHgm5ZVAyYPLuVFrTlRx4VTKmgMOCLGGtVAGCq0uySukEALJmYkn2bzmONo_RtBQ_R5PD0NNucNiG_p36IVJrxnReeo82U0w5dPPVd8hH2hl7DD3SFk3sJ-SaXHjTJrz5m1fk8PR42L4Uu_3z6_ZhV1hesVxIqEF4VqF0IDYI9Vo2otk0FUepfGNQCsacryrpWM2dQsN5LRwwpVDaen1F2Bxr45BSRK8_4tQr_mgG-ixBn_QkQZ8l6FnCxNzPDE69vgJGnWzA3qILcXpNuyH8Q_8C3RlpKg
Cites_doi 10.1037/0033-2909.103.3.411
10.1016/j.jhep.2023.01.006
10.1093/aje/kwq439
10.1002/sta4.326
10.1111/ectj.12097
10.1016/j.cam.2020.113065
10.1198/jcgs.2010.08162
10.1080/01621459.2017.1398657
10.1017/rsm.2025.5
10.1111/j.1541-0420.2005.00377.x
10.1073/pnas.1510489113
10.1080/01621459.2017.1319839
10.1073/pnas.1804597116
10.1111/2041-210X.12512
10.1093/biostatistics/kxab017
10.1007/s11747-014-0403-8
10.1002/mpr.70015
10.1080/01621459.1994.10476818
10.1007/s10489-025-06738-1
10.1093/biomet/70.1.41
10.1023/A:1010933404324
10.1890/08-1034.1
10.1093/bioinformatics/btx174
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2025.117020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_cam_2025_117020
S0377042725005345
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
~HD
29K
5VS
9DU
AAFWJ
AALRI
AAQXK
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
ADVLN
AEXQZ
AGHFR
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
D-I
EJD
FGOYB
G-2
HZ~
NHB
R2-
SSZ
WUQ
ZY4
ID FETCH-LOGICAL-c251t-60904f15e6d048e0936b4b8b52e67fbae6411df556d192d7ea2294d0177e6c93
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001553863700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Sat Nov 29 07:00:14 EST 2025
Sat Nov 22 16:50:41 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Causal inference
Confounding variables
Piecewise SEM
Structural causal model
Backdoor criterion
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-60904f15e6d048e0936b4b8b52e67fbae6411df556d192d7ea2294d0177e6c93
ORCID 0000-0003-4321-9515
ParticipantIDs crossref_primary_10_1016_j_cam_2025_117020
elsevier_sciencedirect_doi_10_1016_j_cam_2025_117020
PublicationCentury 2000
PublicationDate 2026-03-15
PublicationDateYYYYMMDD 2026-03-15
PublicationDate_xml – month: 03
  year: 2026
  text: 2026-03-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shpitser, Pearl (b15) 2008
Hill (b36) 2011; 20
Kang, Schafer (b6) 2007; 22
Robins, Hernan, Brumback (b34) 2000
Ayana, Kanbak, Keles (b31) 2025; 15
Parikh, Varjao, Xu, Tchetgen (b37) 2022
Lefcheck (b14) 2016; 7
Huang, Qiu, Li (b21) 2021; 382
Anderson, Gerbing (b10) 1988; 103
Zhang, Le, Liu, Zhou, Li (b26) 2017; 33
Grace (b11) 2006
Wager, Athey (b9) 2018; 113
Bang, Robins (b5) 2005; 61
Ahmad, Wang (b22) 2025
Rosseel (b13) 2012; 48
Henseler, Ringle, Sarstedt (b12) 2015; 43
Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, Robins (b8) 2018; 21
Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, Robins (b35) 2018
Glynn, Kashin (b24) 2018; 113
Künzel, Sekhon, Bickel, Yu (b27) 2019; 116
Funk, Westreich, Wiesen, Stürmer, Brookhart, Davidian (b7) 2011; 173
Hernan, Robins (b3) 2024
Robins, Rotnitzky, Zhao (b4) 1994; 89
Athey, Imbens (b17) 2016; 113
Sverdrup, Petukhova, Wager (b20) 2025; 34
Bhat, Rabindranath, Chara, Simonetto (b1) 2023; 78
Hillis, Guarcello, Levine, Fan (b19) 2021; 10
Yildirim, Akusta (b32) 2025; 15
Wang, McGrath, Lian (b29) 2025; 16
Mat, İnan, Karakoyun (b30) 2021; 11
Shipley (b16) 2009; 90
Su, Tsai, Wang, Nickerson, Li (b25) 2009; 10
Rosenbaum, Rubin (b33) 1983; 70
Pearl (b2) 2009
Ahmad, Wang (b23) 2025; 55
Gu, Taylor, Mukherjee (b28) 2023; 24
Breiman (b18) 2001; 45
Robins (10.1016/j.cam.2025.117020_b4) 1994; 89
Robins (10.1016/j.cam.2025.117020_b34) 2000
Su (10.1016/j.cam.2025.117020_b25) 2009; 10
Bhat (10.1016/j.cam.2025.117020_b1) 2023; 78
Hill (10.1016/j.cam.2025.117020_b36) 2011; 20
Funk (10.1016/j.cam.2025.117020_b7) 2011; 173
Shipley (10.1016/j.cam.2025.117020_b16) 2009; 90
Kang (10.1016/j.cam.2025.117020_b6) 2007; 22
Grace (10.1016/j.cam.2025.117020_b11) 2006
Hillis (10.1016/j.cam.2025.117020_b19) 2021; 10
Ayana (10.1016/j.cam.2025.117020_b31) 2025; 15
Yildirim (10.1016/j.cam.2025.117020_b32) 2025; 15
Künzel (10.1016/j.cam.2025.117020_b27) 2019; 116
Zhang (10.1016/j.cam.2025.117020_b26) 2017; 33
Wang (10.1016/j.cam.2025.117020_b29) 2025; 16
Henseler (10.1016/j.cam.2025.117020_b12) 2015; 43
Wager (10.1016/j.cam.2025.117020_b9) 2018; 113
Rosseel (10.1016/j.cam.2025.117020_b13) 2012; 48
Ahmad (10.1016/j.cam.2025.117020_b22) 2025
Bang (10.1016/j.cam.2025.117020_b5) 2005; 61
Gu (10.1016/j.cam.2025.117020_b28) 2023; 24
Glynn (10.1016/j.cam.2025.117020_b24) 2018; 113
Mat (10.1016/j.cam.2025.117020_b30) 2021; 11
Anderson (10.1016/j.cam.2025.117020_b10) 1988; 103
Ahmad (10.1016/j.cam.2025.117020_b23) 2025; 55
Chernozhukov (10.1016/j.cam.2025.117020_b8) 2018; 21
Athey (10.1016/j.cam.2025.117020_b17) 2016; 113
Rosenbaum (10.1016/j.cam.2025.117020_b33) 1983; 70
Parikh (10.1016/j.cam.2025.117020_b37) 2022
Sverdrup (10.1016/j.cam.2025.117020_b20) 2025; 34
Hernan (10.1016/j.cam.2025.117020_b3) 2024
Pearl (10.1016/j.cam.2025.117020_b2) 2009
Chernozhukov (10.1016/j.cam.2025.117020_b35) 2018
Lefcheck (10.1016/j.cam.2025.117020_b14) 2016; 7
Breiman (10.1016/j.cam.2025.117020_b18) 2001; 45
Shpitser (10.1016/j.cam.2025.117020_b15) 2008
Huang (10.1016/j.cam.2025.117020_b21) 2021; 382
References_xml – volume: 43
  start-page: 115
  year: 2015
  end-page: 135
  ident: b12
  article-title: A new criterion for assessing discriminant validity in variance-based structural equation modeling
  publication-title: J. Acad. Mark. Sci.
– volume: 7
  start-page: 573
  year: 2016
  end-page: 579
  ident: b14
  article-title: PiecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics
  publication-title: Methods Ecol. Evol.
– volume: 15
  start-page: 183
  year: 2025
  end-page: 201
  ident: b32
  article-title: Key drivers of volatility in BIST100 firms using machine learning segmentation
  publication-title: An Int. J. Optim. Control.: Theor. Appl. ( IJOCTA)
– year: 2009
  ident: b2
  article-title: Causality
– volume: 78
  start-page: 1216
  year: 2023
  end-page: 1233
  ident: b1
  article-title: Artificial intelligence, machine learning, and deep learning in liver transplantation
  publication-title: J. Hepatol.
– volume: 113
  start-page: 7353
  year: 2016
  end-page: 7360
  ident: b17
  article-title: Recursive partitioning for heterogeneous causal effects
  publication-title: Proc. Natl. Acad. Sci.
– volume: 10
  year: 2009
  ident: b25
  article-title: Subgroup analysis via recursive partitioning.
  publication-title: J. Mach. Learn. Res.
– volume: 61
  start-page: 962
  year: 2005
  end-page: 973
  ident: b5
  article-title: Doubly robust estimation in missing data and causal inference models
  publication-title: Biometrics
– volume: 33
  start-page: 2372
  year: 2017
  end-page: 2378
  ident: b26
  article-title: Mining heterogeneous causal effects for personalized cancer treatment
  publication-title: Bioinformatics
– year: 2024
  ident: b3
– volume: 48
  start-page: 1
  year: 2012
  end-page: 36
  ident: b13
  article-title: Lavaan: An R package for structural equation modeling
  publication-title: J. Stat. Softw.
– volume: 10
  year: 2021
  ident: b19
  article-title: Causal inference in the presence of missing data using a random forest-based matching algorithm
  publication-title: Stat
– volume: 55
  start-page: 855
  year: 2025
  ident: b23
  article-title: Transformer-variational autoencoder for estimating individual treatment effect using causal inference framework
  publication-title: Appl. Intell.
– year: 2006
  ident: b11
  article-title: Structural Equation Modeling and Natural Systems
– volume: 70
  start-page: 41
  year: 1983
  end-page: 55
  ident: b33
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
– volume: 103
  start-page: 411
  year: 1988
  ident: b10
  article-title: Structural equation modeling in practice: A review and recommended two-step approach
  publication-title: Psychol. Bull.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b18
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 20
  start-page: 217
  year: 2011
  end-page: 240
  ident: b36
  article-title: Bayesian nonparametric modeling for causal inference
  publication-title: J. Comput. Graph. Statist.
– volume: 113
  start-page: 1228
  year: 2018
  end-page: 1242
  ident: b9
  article-title: Estimation and inference of heterogeneous treatment effects using random forests
  publication-title: J. Amer. Statist. Assoc.
– start-page: 550
  year: 2000
  end-page: 560
  ident: b34
  article-title: Marginal structural models and causal inference in epidemiology
– volume: 173
  start-page: 761
  year: 2011
  end-page: 767
  ident: b7
  article-title: Doubly robust estimation of causal effects
  publication-title: Am. J. Epidemiol.
– volume: 90
  start-page: 363
  year: 2009
  end-page: 368
  ident: b16
  article-title: Confirmatory path analysis in a generalized multilevel context
  publication-title: Ecology
– volume: 113
  start-page: 1040
  year: 2018
  end-page: 1049
  ident: b24
  article-title: Front-door versus back-door adjustment with unmeasured confounding: Bias formulas for front-door and hybrid adjustments with application to a job training program
  publication-title: J. Amer. Statist. Assoc.
– volume: 34
  year: 2025
  ident: b20
  article-title: Estimating treatment effect heterogeneity in psychiatry: A review and tutorial with causal forests
  publication-title: Int. J. Methods Psychiatr. Res.
– start-page: 1
  year: 2025
  end-page: 29
  ident: b22
  article-title: TV-CCANM: a transformer variational inference in confounding cascade additive noise model for causal effect estimation
  publication-title: J. Stat. Comput. Simul.
– start-page: 17346
  year: 2022
  end-page: 17358
  ident: b37
  article-title: Validating causal inference methods
  publication-title: International Conference on Machine Learning
– volume: 89
  start-page: 846
  year: 1994
  end-page: 866
  ident: b4
  article-title: Estimation of regression coefficients when some regressors are not always observed
  publication-title: J. Amer. Statist. Assoc.
– volume: 16
  start-page: 425
  year: 2025
  end-page: 440
  ident: b29
  article-title: CausalMetaR: An R package for performing causally interpretable meta-analyses
  publication-title: Res. Synth. Methods
– volume: 21
  start-page: C1
  year: 2018
  end-page: C68
  ident: b8
  article-title: Double/debiased machine learning for treatment and structural parameters
  publication-title: Econom. J.
– volume: 22
  start-page: 523:539
  year: 2007
  ident: b6
  article-title: Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data
  publication-title: Statist. Sci.
– volume: 382
  year: 2021
  ident: b21
  article-title: Applying deep learning method in TVP-VAR model under systematic financial risk monitoring and early warning
  publication-title: J. Comput. Appl. Math.
– volume: 11
  start-page: 216
  year: 2021
  end-page: 226
  ident: b30
  article-title: An application of the whale optimization algorithm with levy flight strategy for clustering of medical datasets
  publication-title: An Int. J. Optim. Control.: Theor. Appl. ( IJOCTA)
– volume: 15
  start-page: 50
  year: 2025
  end-page: 70
  ident: b31
  article-title: BSO: Binary sailfish optimization for feature selection in sentiment analysis
  publication-title: An Int. J. Optim. Control.: Theor. Appl. ( IJOCTA)
– year: 2018
  ident: b35
  article-title: Double/debiased machine learning for treatment and structural parameters
– volume: 116
  start-page: 4156
  year: 2019
  end-page: 4165
  ident: b27
  article-title: Metalearners for estimating heterogeneous treatment effects using machine learning
  publication-title: Proc. Natl. Acad. Sci.
– year: 2008
  ident: b15
  article-title: Complete identification methods for the causal hierarchy
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 406
  year: 2023
  end-page: 424
  ident: b28
  article-title: A meta-inference framework to integrate multiple external models into a current study
  publication-title: Biostatistics
– start-page: 17346
  year: 2022
  ident: 10.1016/j.cam.2025.117020_b37
  article-title: Validating causal inference methods
– volume: 103
  start-page: 411
  issue: 3
  year: 1988
  ident: 10.1016/j.cam.2025.117020_b10
  article-title: Structural equation modeling in practice: A review and recommended two-step approach
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.103.3.411
– volume: 78
  start-page: 1216
  issue: 6
  year: 2023
  ident: 10.1016/j.cam.2025.117020_b1
  article-title: Artificial intelligence, machine learning, and deep learning in liver transplantation
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2023.01.006
– volume: 173
  start-page: 761
  issue: 7
  year: 2011
  ident: 10.1016/j.cam.2025.117020_b7
  article-title: Doubly robust estimation of causal effects
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwq439
– volume: 10
  issue: 1
  year: 2021
  ident: 10.1016/j.cam.2025.117020_b19
  article-title: Causal inference in the presence of missing data using a random forest-based matching algorithm
  publication-title: Stat
  doi: 10.1002/sta4.326
– volume: 21
  start-page: C1
  issue: 1
  year: 2018
  ident: 10.1016/j.cam.2025.117020_b8
  article-title: Double/debiased machine learning for treatment and structural parameters
  publication-title: Econom. J.
  doi: 10.1111/ectj.12097
– volume: 382
  year: 2021
  ident: 10.1016/j.cam.2025.117020_b21
  article-title: Applying deep learning method in TVP-VAR model under systematic financial risk monitoring and early warning
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2020.113065
– volume: 20
  start-page: 217
  issue: 1
  year: 2011
  ident: 10.1016/j.cam.2025.117020_b36
  article-title: Bayesian nonparametric modeling for causal inference
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1198/jcgs.2010.08162
– volume: 113
  start-page: 1040
  issue: 523
  year: 2018
  ident: 10.1016/j.cam.2025.117020_b24
  article-title: Front-door versus back-door adjustment with unmeasured confounding: Bias formulas for front-door and hybrid adjustments with application to a job training program
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2017.1398657
– volume: 16
  start-page: 425
  issue: 2
  year: 2025
  ident: 10.1016/j.cam.2025.117020_b29
  article-title: CausalMetaR: An R package for performing causally interpretable meta-analyses
  publication-title: Res. Synth. Methods
  doi: 10.1017/rsm.2025.5
– volume: 61
  start-page: 962
  issue: 4
  year: 2005
  ident: 10.1016/j.cam.2025.117020_b5
  article-title: Doubly robust estimation in missing data and causal inference models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00377.x
– volume: 48
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.cam.2025.117020_b13
  article-title: Lavaan: An R package for structural equation modeling
  publication-title: J. Stat. Softw.
– year: 2008
  ident: 10.1016/j.cam.2025.117020_b15
  article-title: Complete identification methods for the causal hierarchy
  publication-title: J. Mach. Learn. Res.
– year: 2006
  ident: 10.1016/j.cam.2025.117020_b11
– volume: 113
  start-page: 7353
  issue: 27
  year: 2016
  ident: 10.1016/j.cam.2025.117020_b17
  article-title: Recursive partitioning for heterogeneous causal effects
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1510489113
– volume: 113
  start-page: 1228
  issue: 523
  year: 2018
  ident: 10.1016/j.cam.2025.117020_b9
  article-title: Estimation and inference of heterogeneous treatment effects using random forests
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2017.1319839
– volume: 15
  start-page: 183
  issue: 1
  year: 2025
  ident: 10.1016/j.cam.2025.117020_b32
  article-title: Key drivers of volatility in BIST100 firms using machine learning segmentation
  publication-title: An Int. J. Optim. Control.: Theor. Appl. ( IJOCTA)
– volume: 116
  start-page: 4156
  issue: 10
  year: 2019
  ident: 10.1016/j.cam.2025.117020_b27
  article-title: Metalearners for estimating heterogeneous treatment effects using machine learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1804597116
– year: 2018
  ident: 10.1016/j.cam.2025.117020_b35
– volume: 11
  start-page: 216
  issue: 2
  year: 2021
  ident: 10.1016/j.cam.2025.117020_b30
  article-title: An application of the whale optimization algorithm with levy flight strategy for clustering of medical datasets
  publication-title: An Int. J. Optim. Control.: Theor. Appl. ( IJOCTA)
– start-page: 550
  year: 2000
  ident: 10.1016/j.cam.2025.117020_b34
– volume: 7
  start-page: 573
  issue: 5
  year: 2016
  ident: 10.1016/j.cam.2025.117020_b14
  article-title: PiecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12512
– year: 2009
  ident: 10.1016/j.cam.2025.117020_b2
– volume: 24
  start-page: 406
  issue: 2
  year: 2023
  ident: 10.1016/j.cam.2025.117020_b28
  article-title: A meta-inference framework to integrate multiple external models into a current study
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxab017
– year: 2024
  ident: 10.1016/j.cam.2025.117020_b3
– volume: 43
  start-page: 115
  year: 2015
  ident: 10.1016/j.cam.2025.117020_b12
  article-title: A new criterion for assessing discriminant validity in variance-based structural equation modeling
  publication-title: J. Acad. Mark. Sci.
  doi: 10.1007/s11747-014-0403-8
– volume: 34
  issue: 2
  year: 2025
  ident: 10.1016/j.cam.2025.117020_b20
  article-title: Estimating treatment effect heterogeneity in psychiatry: A review and tutorial with causal forests
  publication-title: Int. J. Methods Psychiatr. Res.
  doi: 10.1002/mpr.70015
– volume: 89
  start-page: 846
  issue: 427
  year: 1994
  ident: 10.1016/j.cam.2025.117020_b4
  article-title: Estimation of regression coefficients when some regressors are not always observed
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1994.10476818
– volume: 10
  issue: 2
  year: 2009
  ident: 10.1016/j.cam.2025.117020_b25
  article-title: Subgroup analysis via recursive partitioning.
  publication-title: J. Mach. Learn. Res.
– volume: 22
  start-page: 523:539
  issue: 4
  year: 2007
  ident: 10.1016/j.cam.2025.117020_b6
  article-title: Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data
  publication-title: Statist. Sci.
– volume: 55
  start-page: 855
  issue: 12
  year: 2025
  ident: 10.1016/j.cam.2025.117020_b23
  article-title: Transformer-variational autoencoder for estimating individual treatment effect using causal inference framework
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-025-06738-1
– volume: 70
  start-page: 41
  issue: 1
  year: 1983
  ident: 10.1016/j.cam.2025.117020_b33
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.cam.2025.117020_b18
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 90
  start-page: 363
  issue: 2
  year: 2009
  ident: 10.1016/j.cam.2025.117020_b16
  article-title: Confirmatory path analysis in a generalized multilevel context
  publication-title: Ecology
  doi: 10.1890/08-1034.1
– start-page: 1
  year: 2025
  ident: 10.1016/j.cam.2025.117020_b22
  article-title: TV-CCANM: a transformer variational inference in confounding cascade additive noise model for causal effect estimation
  publication-title: J. Stat. Comput. Simul.
– volume: 33
  start-page: 2372
  issue: 15
  year: 2017
  ident: 10.1016/j.cam.2025.117020_b26
  article-title: Mining heterogeneous causal effects for personalized cancer treatment
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx174
– volume: 15
  start-page: 50
  issue: 1
  year: 2025
  ident: 10.1016/j.cam.2025.117020_b31
  article-title: BSO: Binary sailfish optimization for feature selection in sentiment analysis
  publication-title: An Int. J. Optim. Control.: Theor. Appl. ( IJOCTA)
SSID ssj0006914
Score 2.4713316
Snippet Causal inference is a crucial framework in a variety of fields, such as economics, healthcare, and social science. In this context, data-driven machine...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 117020
SubjectTerms Backdoor criterion
Causal inference
Confounding variables
Machine learning
Piecewise SEM
Structural causal model
Title Structural equation modeling for causal effect estimation with machine learning
URI https://dx.doi.org/10.1016/j.cam.2025.117020
Volume 475
WOSCitedRecordID wos001553863700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 20211209
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006914
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTuMwFLUYmAUsEE_xlhesRgpqEz_iZYVAgMRDahfdRY7t0EFKChQQn8-1HScZmErDYjZR5DZu5HN0c-Leey5CxyaXIjVcR4oTGhEqaSQSmoCQS-OCxYLrRLpmE_zmJh2PxV2dEjRz7QR4VaXv7-Lxv0INYwC2LZ39BtzNpDAA5wA6HAF2OP4T8EPnCOvcNMyTN_L2_W5CzqSSrzP7ofctti4bvnzR78mWLrvShHYS93PUq3LdIMJOonN8rfVs2RjBNnJ9MCk9k4bTSSenYziRE5_RUcpmEAJgPn0FKrmoVcrn7r5EzGxilq_MDPVYnEe2k0c31hJOO9HSdr1xpXBfA7nfU3iAl3RrFxDTk_a7f5pmf3qYNSmGIXvtIYMpMjtF5qf4gZZiTgVEwKXB5dn4qnluM-Gd4MN9h__AXTbgp_v4u4rpKJPRGlqtQcEDT4V1tGCqDbRy3cKwiW5bUuBAChxIgYEU2JMCe1LglhTYkgLXpMCBFFtodH42Or2I6lYakQIB-xKxnuiRok8N0xCyTU8kLCd5mtPYMF7k0jDS7-uCUqZB8mtuZBwLoiFcc8OUSLbRYjWtzA7CiuRGG5FyKQwpFM-JLjSoQK7sq27BdtGvsDLZozdMyeZisYtIWLusVnxeyWXAg_mX7X3nN_bRckvPA7QI620O0U_19vJ79nxUk-ADneB4SQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+equation+modeling+for+causal+effect+estimation+with+machine+learning&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Ahmad%2C+Sohail&rft.au=Shah%2C+Kamal&rft.au=Debbouche%2C+Amar&rft.date=2026-03-15&rft.issn=0377-0427&rft.volume=475&rft.spage=117020&rft_id=info:doi/10.1016%2Fj.cam.2025.117020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2025_117020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon