Uniform-in-time estimates for mean-field type SDEs and applications
Via constructing an asymptotic coupling by reflection, in this paper we establish uniform-in-time estimates on probability distributions for mean-field type SDEs, where the drift terms under consideration are dissipative merely in the long distance. As applications, we (i) explore the long time esti...
Uloženo v:
| Vydáno v: | Journal of Differential Equations Ročník 440; s. 113445 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
25.09.2025
|
| Témata: | |
| ISSN: | 0022-0396 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Via constructing an asymptotic coupling by reflection, in this paper we establish uniform-in-time estimates on probability distributions for mean-field type SDEs, where the drift terms under consideration are dissipative merely in the long distance. As applications, we (i) explore the long time estimate on probability distributions associated with an SDE and its delay version; (ii) investigate the issue on uniform-in-time propagation of chaos for McKean-Vlasov SDEs, where the drifts might be singular with respect to the spatial variables; (iii) tackle the discretization error bounds in an infinite-time horizon for stochastic algorithms (e.g. backward/tamed/adaptive Euler-Maruyama schemes as three typical candidates) associated with McKean-Vlasov SDEs. |
|---|---|
| ISSN: | 0022-0396 |
| DOI: | 10.1016/j.jde.2025.113445 |