A two-stage stochastic programming approach for enhancing seismic resilience of water pipe networks

•We propose a two-stage stochastic mixed integer nonlinear program (MINLP).•We propose piecewise linear functions to approximate the nonlinearity in MINLP.•We formulate a mixed integer linear program (MILP) to approximate the MINLP.•We introduce a sequential heuristic algorithm.•We show that the seq...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & industrial engineering Ročník 207; s. 111266
Hlavní autoři: Boskabadi, Azam, Kareem, Uthman Abiola, Rosenberger, Jay Michael, Shahandashti, Mohsen, Pudasaini, Binaya
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2025
Témata:
ISSN:0360-8352
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •We propose a two-stage stochastic mixed integer nonlinear program (MINLP).•We propose piecewise linear functions to approximate the nonlinearity in MINLP.•We formulate a mixed integer linear program (MILP) to approximate the MINLP.•We introduce a sequential heuristic algorithm.•We show that the sequential algorithm yields a solution within 2 % of optimality. Earthquakes are sudden and inevitable disasters that can cause enormous losses and suffering, and having accessible water is critically important for earthquake victims. To address this challenge, utility managers do preventive procedures on water pipes periodically to withstand future earthquake damage. The existing seismic vulnerability models usually consider simple methods to find the pipes to rehabilitate with highest priority. In this research, we develop an optimization approach to determine which water pipes to rehabilitate subject to a limited budget to achieve a network with highest post-disaster serviceability. We propose a two-stage stochastic mixed integer nonlinear program (MINLP). The MINLP model cannot be solved by commercial optimization software, like BARON, even for problems with a very small number of scenarios. Consequently, we propose piecewise linear functions (PLF) to approximate the nonlinearity in the MINLP. Therefore, we formulate a mixed integer linear program (MILP) to approximate the MINLP. The optimization of the MILP is still challenging to solve, so we introduce a sequential heuristic algorithm to mitigate this computational challenge and find bounds for the approximated optimal solution. We tested this method on multiple water pipe networks based on a standard network from the literature, and we show that the sequential algorithm yields a solution within 2 % of optimality.
AbstractList •We propose a two-stage stochastic mixed integer nonlinear program (MINLP).•We propose piecewise linear functions to approximate the nonlinearity in MINLP.•We formulate a mixed integer linear program (MILP) to approximate the MINLP.•We introduce a sequential heuristic algorithm.•We show that the sequential algorithm yields a solution within 2 % of optimality. Earthquakes are sudden and inevitable disasters that can cause enormous losses and suffering, and having accessible water is critically important for earthquake victims. To address this challenge, utility managers do preventive procedures on water pipes periodically to withstand future earthquake damage. The existing seismic vulnerability models usually consider simple methods to find the pipes to rehabilitate with highest priority. In this research, we develop an optimization approach to determine which water pipes to rehabilitate subject to a limited budget to achieve a network with highest post-disaster serviceability. We propose a two-stage stochastic mixed integer nonlinear program (MINLP). The MINLP model cannot be solved by commercial optimization software, like BARON, even for problems with a very small number of scenarios. Consequently, we propose piecewise linear functions (PLF) to approximate the nonlinearity in the MINLP. Therefore, we formulate a mixed integer linear program (MILP) to approximate the MINLP. The optimization of the MILP is still challenging to solve, so we introduce a sequential heuristic algorithm to mitigate this computational challenge and find bounds for the approximated optimal solution. We tested this method on multiple water pipe networks based on a standard network from the literature, and we show that the sequential algorithm yields a solution within 2 % of optimality.
ArticleNumber 111266
Author Shahandashti, Mohsen
Rosenberger, Jay Michael
Kareem, Uthman Abiola
Pudasaini, Binaya
Boskabadi, Azam
Author_xml – sequence: 1
  givenname: Azam
  orcidid: 0000-0002-4856-0504
  surname: Boskabadi
  fullname: Boskabadi, Azam
  email: azam.boskabadi@wsu.edu
  organization: Department of Finance and Management Sciences, Washington State University, Washington, USA
– sequence: 2
  givenname: Uthman Abiola
  surname: Kareem
  fullname: Kareem, Uthman Abiola
  email: uak8880@mavs.uta.edu
  organization: Industrial, Manufacturing, and Systems Engineering Department, University of Texas at Arlington, TX, USA
– sequence: 3
  givenname: Jay Michael
  orcidid: 0000-0003-4038-1402
  surname: Rosenberger
  fullname: Rosenberger, Jay Michael
  email: jrosenbe@uta.edu
  organization: Industrial, Manufacturing, and Systems Engineering Department, University of Texas at Arlington, TX, USA
– sequence: 4
  givenname: Mohsen
  orcidid: 0000-0002-2373-7596
  surname: Shahandashti
  fullname: Shahandashti, Mohsen
  email: mohsen@uta.edu
  organization: Civil Engineering Department, University of Texas at Arlington, TX, USA
– sequence: 5
  givenname: Binaya
  surname: Pudasaini
  fullname: Pudasaini, Binaya
  email: binaya.pudasaini@mavs.uta.edu
  organization: Bridge EIT and HDR, Oregon, USA
BookMark eNp9kM1OwzAQhH0oEi3wANz8Agm7Tm1Scaoq_qRKXOBsbZ1169LEkR1R8faklDOn1ax2RjvfTEy62LEQtwglApq7fekClwqULhFRGTMRU6gMFHWl1aWY5bwHgLle4FS4pRyOscgDbVnmIbod5SE42ae4TdS2odtK6kdFbid9TJK7HXXutM4ccjueJs7hELhzLKOXRxo4yT70LDseo9NnvhYXng6Zb_7mlfh4enxfvRTrt-fX1XJdOKVxKLQhQO_uzZyQjHJaNQyVVw3OK2bCBRlfoydYmI1hNjUQaB4lbLTGWldXAs-5LsWcE3vbp9BS-rYI9kTG7u1Ixp7I2DOZ0fNw9vD42FfgZLP77dKExG6wTQz_uH8AXD5xOw
Cites_doi 10.1016/j.proeng.2018.01.058
10.1016/j.cie.2016.07.014
10.1016/j.ejor.2017.06.058
10.1193/030413EQS062M
10.1016/j.cor.2016.08.006
10.21236/ADA594171
10.1061/(ASCE)IR.1943-4774.0001429
10.1061/(ASCE)CO.1943-7862.0001856
10.1007/s11269-017-1694-6
10.1016/j.egypro.2017.03.1055
10.1016/j.cie.2016.07.030
10.1016/S0167-6377(98)00054-6
10.1016/j.knosys.2018.01.012
10.1016/j.resconrec.2016.03.015
10.1029/2006WR005316
10.1061/(ASCE)NH.1527-6996.0000328
10.1007/s11269-013-0488-8
10.1016/j.compchemeng.2019.05.017
10.1016/j.cor.2018.03.007
10.1016/j.cor.2017.09.019
10.1586/eri.11.155
10.1007/s11704-016-5195-1
10.1016/j.cie.2016.10.022
10.1016/j.ejor.2018.01.022
10.1061/9780784484302.010
10.1016/j.egypro.2017.03.1109
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2025.111266
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cie_2025_111266
S0360835225004127
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AAEDT
AAEDW
AAFWJ
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABDPE
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADMUD
ADNMO
ADRHT
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AAYXX
ACLOT
CITATION
EFLBG
~HD
ID FETCH-LOGICAL-c251t-56a01fc764a1a62c52de03f2d143eea19a6f81fa096b6ee680a05ea090b551853
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001506721800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 07:44:08 EST 2025
Sat Aug 30 17:12:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Mixed integer nonlinear programming (MINLP)
Network optimization
Linear approximation
Stochastic programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c251t-56a01fc764a1a62c52de03f2d143eea19a6f81fa096b6ee680a05ea090b551853
ORCID 0000-0003-4038-1402
0000-0002-4856-0504
0000-0002-2373-7596
ParticipantIDs crossref_primary_10_1016_j_cie_2025_111266
elsevier_sciencedirect_doi_10_1016_j_cie_2025_111266
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yaseen, A. (2007). “Reliability-based optimization of potable water networks using genetic algorithms and Monte Carlo simulation”
23-25.
Shahandashti, Pudasaini (b0175) 2019; 20
United States Geological Survey (USGS), The Great 1906 San Francisco Earthquake. Retrieved from
Zhang, Nicholson (b0220) 2016; 99
Calvete, Galé, Iranzo, Toth (b0060) 2018; 95
Gendron, Hanafi, Todosijević (b0110) 2018; 268
Bernhardt, K. L. S., & McNeil, S. (2004, March). “An agent based approach to modeling the behavior of civil infrastructure systems”
Tucker, Alan (b0200) 2006
Abdel-Gawad, H. A. (2001, March). “Optimal design of pipe networks by an improved genetic algorithm”
.
Sârbu, Kalmár (b0165) 2002; 46
Mak, Morton, Wood (b0135) 1999; 24
Chen, Hao (b0070) 2017; 77
Sedgewick, Robert (1983), “Graph algorithms”, Algorithms, Addison–Wesley, ISBN 0-201-06672-6.
Macaskill, Guthrie (b0125) 2018; 212
Roy, Pudasaini, Shahandashti (b0160) 2021; 2021
Pudasaini, Shahandashti, Razavi (b0155) 2017
Song, B., Li, Y., Chen, Y., Yao, F., & Chen, Y. (2018, January). “A Repair-based approach for stochastic quadratic multiple knapsack problem”
Audu, H., & Ovuworie, G. (2010, July). “Management of Water Distribution Infrastructure with GIS in the Niger Delta Region of Nigeria”
(2018), 1-11. https://doi.org/10.1016/j.knosys.2018.01.012.
Chih (b0075) 2017
Zouache, Moussaoui, Abdelaziz (b0225) 2018; 264
Cassiolato, Carvalho, Caballero, Ravagnani (b0065) 2020
McCormick, G. P. (1983). “Nonlinear programming; theory, algorithms, and applications”
Kouadio, Aljunid, Kamigaki, Hammad, Oshitani (b0120) 2012; 10
Aşchilean, Badea, Giurca, Naghiu, Iloaie (b0035) 2017; 112
Al-Khafaji, Mesheb, Jabbar Abrahim (b0020) 2019; 145
AbdelBary, A. G. M. (2008). “Optimization of Water Distribution Systems Subjected to Water Hammer Using Genetic Algorithms”
Furini, Monaci, Traversi (b0105) 2018; 90
Arin, Rabadi (b0025) 2017; 112
Djebedjian, Yaseen, Rayan (b0095) 2008
O'Rourke, Jeon, Toprak, Cubrinovski, Hughes, van Ballegooy, Bouziou (b0150) 2014; 30
Elshaboury, Attia, Marzouk (b0100) 2020; 146
413-421.
Siew, Tanyimboh, Seyoum (b0185) 2014; 28
Caballero, Ravagnani (b0055) 2019; 127
Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1988). “Network flows”.
Tayfur (b0195) 2017; 31
Sharveen, S., Roy, A., & Shahandashti, M. (2022). Risk-Averse Proactive Seismic Rehabilitation Decision-Making for Water Distribution Systems. In Pipelines 2022 (pp. 81-90). https://doi.org/10.1061/9780784484302.010.
Manicassamy, Karunanidhi, Pothula, Thirumal, Ponnurangam, Ramalingam (b0140) 2018; 12
Yerri, Piratla, Matthews, Yazdekhasti, Cho, Koo (b0215) 2017; 123
Cross, H. (1936). “Analysis of flow in networks of conduits or conductors”
Coelho, L. C., (2013).
Nicholson, Zhang (b0145) 2016; 99
Aşchilean, Badea, Giurca, Naghiu, Iloaie (b0030) 2017; 112
Bilal, Pant (b0050) 2020; 1–13
Djebedjian, Herrick, Rayan (b0090) 2016
Jayaram, Srinivasan (b0115) 2008; 44
Al-Khafaji (10.1016/j.cie.2025.111266_b0020) 2019; 145
Kouadio (10.1016/j.cie.2025.111266_b0120) 2012; 10
Furini (10.1016/j.cie.2025.111266_b0105) 2018; 90
O'Rourke (10.1016/j.cie.2025.111266_b0150) 2014; 30
Tayfur (10.1016/j.cie.2025.111266_b0195) 2017; 31
Zhang (10.1016/j.cie.2025.111266_b0220) 2016; 99
Arin (10.1016/j.cie.2025.111266_b0025) 2017; 112
Gendron (10.1016/j.cie.2025.111266_b0110) 2018; 268
10.1016/j.cie.2025.111266_b0015
Aşchilean (10.1016/j.cie.2025.111266_b0035) 2017; 112
10.1016/j.cie.2025.111266_b0130
10.1016/j.cie.2025.111266_b0010
10.1016/j.cie.2025.111266_b0210
Yerri (10.1016/j.cie.2025.111266_b0215) 2017; 123
10.1016/j.cie.2025.111266_b0040
10.1016/j.cie.2025.111266_b0085
10.1016/j.cie.2025.111266_b0080
10.1016/j.cie.2025.111266_b0180
Macaskill (10.1016/j.cie.2025.111266_b0125) 2018; 212
Caballero (10.1016/j.cie.2025.111266_b0055) 2019; 127
Tucker (10.1016/j.cie.2025.111266_b0200) 2006
Nicholson (10.1016/j.cie.2025.111266_b0145) 2016; 99
Mak (10.1016/j.cie.2025.111266_b0135) 1999; 24
Shahandashti (10.1016/j.cie.2025.111266_b0175) 2019; 20
10.1016/j.cie.2025.111266_b0205
Jayaram (10.1016/j.cie.2025.111266_b0115) 2008; 44
Chih (10.1016/j.cie.2025.111266_b0075) 2017
Manicassamy (10.1016/j.cie.2025.111266_b0140) 2018; 12
10.1016/j.cie.2025.111266_b0005
Calvete (10.1016/j.cie.2025.111266_b0060) 2018; 95
Roy (10.1016/j.cie.2025.111266_b0160) 2021; 2021
Djebedjian (10.1016/j.cie.2025.111266_b0095) 2008
Pudasaini (10.1016/j.cie.2025.111266_b0155) 2017
10.1016/j.cie.2025.111266_b0045
10.1016/j.cie.2025.111266_b0170
Djebedjian (10.1016/j.cie.2025.111266_b0090) 2016
Zouache (10.1016/j.cie.2025.111266_b0225) 2018; 264
Siew (10.1016/j.cie.2025.111266_b0185) 2014; 28
Elshaboury (10.1016/j.cie.2025.111266_b0100) 2020; 146
10.1016/j.cie.2025.111266_b0190
Aşchilean (10.1016/j.cie.2025.111266_b0030) 2017; 112
Cassiolato (10.1016/j.cie.2025.111266_b0065) 2020
Sârbu (10.1016/j.cie.2025.111266_b0165) 2002; 46
Bilal (10.1016/j.cie.2025.111266_b0050) 2020; 1–13
Chen (10.1016/j.cie.2025.111266_b0070) 2017; 77
References_xml – volume: 99
  start-page: 106
  year: 2016
  end-page: 111
  ident: b0220
  article-title: Prediction-based relaxation solution approach for the fixed charge network flow problem
– volume: 264
  start-page: 74
  year: 2018
  end-page: 88
  ident: b0225
  article-title: A cooperative swarm intelligence algorithm for multi-objective discrete optimization with application to the knapsack problem
– start-page: 739
  year: 2008
  end-page: 750
  ident: b0095
  article-title: October). “A new adaptive penalty method for constrained genetic algorithm and its application to water distribution systems”
  publication-title: , American Society of Mechanical Engineers Digital Collection
– reference: Sharveen, S., Roy, A., & Shahandashti, M. (2022). Risk-Averse Proactive Seismic Rehabilitation Decision-Making for Water Distribution Systems. In Pipelines 2022 (pp. 81-90). https://doi.org/10.1061/9780784484302.010.
– volume: 127
  start-page: 41
  year: 2019
  end-page: 48
  ident: b0055
  article-title: Water distribution networks optimization considering unknown flow directions and pipe diameters
– volume: 31
  start-page: 3205
  year: 2017
  end-page: 3233
  ident: b0195
  article-title: Modern optimization methods in water resources planning, engineering and management
– reference: AbdelBary, A. G. M. (2008). “Optimization of Water Distribution Systems Subjected to Water Hammer Using Genetic Algorithms”,
– volume: 112
  start-page: 27
  year: 2017
  end-page: 34
  ident: b0035
  article-title: Determining priorities concerning water distribution network rehabilitation
– reference: Bernhardt, K. L. S., & McNeil, S. (2004, March). “An agent based approach to modeling the behavior of civil infrastructure systems”,
– volume: 99
  start-page: 260
  year: 2016
  end-page: 268
  ident: b0145
  article-title: Optimal network flow: A predictive analytics perspective on the fixed-charge network flow problem
– reference: Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1988). “Network flows”.
– reference: (2018), 1-11. https://doi.org/10.1016/j.knosys.2018.01.012.
– volume: 112
  start-page: 19
  year: 2017
  end-page: 26
  ident: b0030
  article-title: Choosing the optimal technology to rehabilitate the pipes in water distribution systems using the AHP method
– volume: 28
  start-page: 373
  year: 2014
  end-page: 389
  ident: b0185
  article-title: Assessment of penalty-free multi-objective evolutionary optimization approach for the design and rehabilitation of water distribution systems
  publication-title: Water Resources Management
– volume: 20
  year: 2019
  ident: b0175
  article-title: Proactive seismic rehabilitation decision-making for water pipe networks using simulated annealing
– volume: 145
  year: 2019
  ident: b0020
  article-title: Fuzzy multicriteria decision-making model for maintenance management of irrigation projects
– start-page: 49
  year: 2006
  ident: b0200
  article-title: Chapter 2: Covering Circuits and Graph Colorings
– year: 2016
  ident: b0090
  article-title: October). “Modeling and optimization of potable water network”
  publication-title: . American Society of Mechanical Engineers Digital Collection
– volume: 112
  start-page: 706
  year: 2017
  end-page: 720
  ident: b0025
  article-title: Integrating estimation of distribution algorithms versus Q-learning into Meta-RaPS for solving the 0-1 multidimensional knapsack problem
– reference: , 23-25.
– volume: 44
  start-page: 1
  year: 2008
  end-page: 15
  ident: b0115
  article-title: Performance-based optimal design and rehabilitation of water distribution networks using life cycle costing
  publication-title: Water Resources Research
– volume: 146
  year: 2020
  ident: b0100
  article-title: Application of evolutionary optimization algorithms for rehabilitation of water distribution networks
  publication-title: Journal of Construction Engineering and Management
– reference: McCormick, G. P. (1983). “Nonlinear programming; theory, algorithms, and applications”,
– reference: Audu, H., & Ovuworie, G. (2010, July). “Management of Water Distribution Infrastructure with GIS in the Niger Delta Region of Nigeria”,
– reference: Cross, H. (1936). “Analysis of flow in networks of conduits or conductors”,
– reference: Coelho, L. C., (2013).
– volume: 10
  start-page: 95
  year: 2012
  end-page: 104
  ident: b0120
  article-title: Infectious diseases following natural disasters: Prevention and control measures
– volume: 46
  start-page: 75
  year: 2002
  end-page: 90
  ident: b0165
  article-title: Optimization of looped water supply networks
– volume: 77
  start-page: 226
  year: 2017
  end-page: 239
  ident: b0070
  article-title: An iterated ‘hyperplane exploration’ approach for the quadratic knapsack problem
– volume: 123
  start-page: 242
  year: 2017
  end-page: 248
  ident: b0215
  article-title: Empirical analysis of large diameter water main break consequences
  publication-title: Resources, Conservation & Recycling
– start-page: 1
  year: 2017
  end-page: 18
  ident: b0075
  article-title: Three pseudo-utility ratio-inspired particle swarm optimization with local search for multidimensional knapsack problem
– reference: , 413-421.
– start-page: 231
  year: 2017
  end-page: 238
  ident: b0155
  article-title: Identifying critical links in water supply systems subject to various earthquakes to support inspection and renewal decision making
  publication-title: In
– reference: Song, B., Li, Y., Chen, Y., Yao, F., & Chen, Y. (2018, January). “A Repair-based approach for stochastic quadratic multiple knapsack problem”,
– volume: 24
  start-page: 47
  year: 1999
  end-page: 56
  ident: b0135
  article-title: Monte carlo bounding techniques for determining solution quality in stochastic programs
– reference: Sedgewick, Robert (1983), “Graph algorithms”, Algorithms, Addison–Wesley, ISBN 0-201-06672-6.
– volume: 12
  start-page: 101
  year: 2018
  end-page: 121
  ident: b0140
  article-title: GPS: A constraint-based gene position procurement in chromosome for solving large-scale multi objective multiple knapsack problems
– volume: 30
  start-page: 183
  year: 2014
  end-page: 204
  ident: b0150
  article-title: Earthquake response of underground pipeline networks in Christchurch, NZ
– volume: 1–13
  year: 2020
  ident: b0050
  article-title: Parameter optimization of water distribution network–A hybrid metaheuristic approach
– reference: United States Geological Survey (USGS), The Great 1906 San Francisco Earthquake. Retrieved from:
– volume: 90
  start-page: 208
  year: 2018
  end-page: 220
  ident: b0105
  article-title: Exact approaches for the knapsack problem with setups
– start-page: 1
  year: 2020
  end-page: 18
  ident: b0065
  article-title: Optimization of water distribution networks using a deterministic approach
– volume: 95
  start-page: 113
  year: 2018
  end-page: 122
  ident: b0060
  article-title: A matheuristic for the two-stage fixed-charge transportation problem
– volume: 212
  start-page: 451
  year: 2018
  end-page: 458
  ident: b0125
  article-title: Funding mechanisms for disaster recovery: Can we afford to build back better?
– reference: .
– reference: Yaseen, A. (2007). “Reliability-based optimization of potable water networks using genetic algorithms and Monte Carlo simulation”,
– volume: 268
  start-page: 70
  year: 2018
  end-page: 81
  ident: b0110
  article-title: Matheuristics based on iterative linear programming and slope scaling for multi commodity capacitated fixed charge network design
– reference: Abdel-Gawad, H. A. (2001, March). “Optimal design of pipe networks by an improved genetic algorithm”,
– volume: 2021
  start-page: 171
  year: 2021
  end-page: 179
  ident: b0160
  article-title: Seismic Vulnerability Assessment of Water Pipe Networks under Network Uncertainties
  publication-title: Pipelines
– volume: 212
  start-page: 451
  year: 2018
  ident: 10.1016/j.cie.2025.111266_b0125
  article-title: Funding mechanisms for disaster recovery: Can we afford to build back better?
  publication-title: Procedia engineering
  doi: 10.1016/j.proeng.2018.01.058
– start-page: 739
  year: 2008
  ident: 10.1016/j.cie.2025.111266_b0095
  article-title: October). “A new adaptive penalty method for constrained genetic algorithm and its application to water distribution systems”
– ident: 10.1016/j.cie.2025.111266_b0080
– start-page: 1
  year: 2017
  ident: 10.1016/j.cie.2025.111266_b0075
  article-title: Three pseudo-utility ratio-inspired particle swarm optimization with local search for multidimensional knapsack problem
  publication-title: Swarm and Evolutionary Computation
– ident: 10.1016/j.cie.2025.111266_b0005
– ident: 10.1016/j.cie.2025.111266_b0170
– ident: 10.1016/j.cie.2025.111266_b0040
– volume: 99
  start-page: 106
  issue: 2016
  year: 2016
  ident: 10.1016/j.cie.2025.111266_b0220
  article-title: Prediction-based relaxation solution approach for the fixed charge network flow problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.07.014
– volume: 264
  start-page: 74
  issue: 1
  year: 2018
  ident: 10.1016/j.cie.2025.111266_b0225
  article-title: A cooperative swarm intelligence algorithm for multi-objective discrete optimization with application to the knapsack problem
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.06.058
– volume: 30
  start-page: 183
  issue: 1
  year: 2014
  ident: 10.1016/j.cie.2025.111266_b0150
  article-title: Earthquake response of underground pipeline networks in Christchurch, NZ
  publication-title: Earthquake Spectra
  doi: 10.1193/030413EQS062M
– volume: 77
  start-page: 226
  issue: 2017
  year: 2017
  ident: 10.1016/j.cie.2025.111266_b0070
  article-title: An iterated ‘hyperplane exploration’ approach for the quadratic knapsack problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2016.08.006
– ident: 10.1016/j.cie.2025.111266_b0210
– ident: 10.1016/j.cie.2025.111266_b0045
– start-page: 49
  year: 2006
  ident: 10.1016/j.cie.2025.111266_b0200
  article-title: Chapter 2: Covering Circuits and Graph Colorings
– ident: 10.1016/j.cie.2025.111266_b0015
  doi: 10.21236/ADA594171
– volume: 46
  start-page: 75
  issue: 1
  year: 2002
  ident: 10.1016/j.cie.2025.111266_b0165
  article-title: Optimization of looped water supply networks
  publication-title: Periodica Polytechnica Mechanical Engineering
– volume: 145
  issue: 12
  year: 2019
  ident: 10.1016/j.cie.2025.111266_b0020
  article-title: Fuzzy multicriteria decision-making model for maintenance management of irrigation projects
  publication-title: Journal of Irrigation and Drainage Engineering
  doi: 10.1061/(ASCE)IR.1943-4774.0001429
– volume: 146
  issue: 7
  year: 2020
  ident: 10.1016/j.cie.2025.111266_b0100
  article-title: Application of evolutionary optimization algorithms for rehabilitation of water distribution networks
  publication-title: Journal of Construction Engineering and Management
  doi: 10.1061/(ASCE)CO.1943-7862.0001856
– volume: 31
  start-page: 3205
  issue: 10
  year: 2017
  ident: 10.1016/j.cie.2025.111266_b0195
  article-title: Modern optimization methods in water resources planning, engineering and management
  publication-title: Water Resources Management
  doi: 10.1007/s11269-017-1694-6
– volume: 112
  start-page: 27
  year: 2017
  ident: 10.1016/j.cie.2025.111266_b0035
  article-title: Determining priorities concerning water distribution network rehabilitation
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1055
– year: 2016
  ident: 10.1016/j.cie.2025.111266_b0090
  article-title: October). “Modeling and optimization of potable water network”
– volume: 99
  start-page: 260
  issue: 2016
  year: 2016
  ident: 10.1016/j.cie.2025.111266_b0145
  article-title: Optimal network flow: A predictive analytics perspective on the fixed-charge network flow problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.07.030
– ident: 10.1016/j.cie.2025.111266_b0010
– volume: 24
  start-page: 47
  issue: 1–2
  year: 1999
  ident: 10.1016/j.cie.2025.111266_b0135
  article-title: Monte carlo bounding techniques for determining solution quality in stochastic programs
  publication-title: Operations Research Letters
  doi: 10.1016/S0167-6377(98)00054-6
– ident: 10.1016/j.cie.2025.111266_b0190
  doi: 10.1016/j.knosys.2018.01.012
– volume: 123
  start-page: 242
  year: 2017
  ident: 10.1016/j.cie.2025.111266_b0215
  article-title: Empirical analysis of large diameter water main break consequences
  publication-title: Resources, Conservation & Recycling
  doi: 10.1016/j.resconrec.2016.03.015
– start-page: 231
  year: 2017
  ident: 10.1016/j.cie.2025.111266_b0155
  article-title: Identifying critical links in water supply systems subject to various earthquakes to support inspection and renewal decision making
– volume: 44
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.cie.2025.111266_b0115
  article-title: Performance-based optimal design and rehabilitation of water distribution networks using life cycle costing
  publication-title: Water Resources Research
  doi: 10.1029/2006WR005316
– volume: 20
  issue: 2
  year: 2019
  ident: 10.1016/j.cie.2025.111266_b0175
  article-title: Proactive seismic rehabilitation decision-making for water pipe networks using simulated annealing
  publication-title: Natural Hazards Review
  doi: 10.1061/(ASCE)NH.1527-6996.0000328
– volume: 28
  start-page: 373
  year: 2014
  ident: 10.1016/j.cie.2025.111266_b0185
  article-title: Assessment of penalty-free multi-objective evolutionary optimization approach for the design and rehabilitation of water distribution systems
  publication-title: Water Resources Management
  doi: 10.1007/s11269-013-0488-8
– volume: 127
  start-page: 41
  year: 2019
  ident: 10.1016/j.cie.2025.111266_b0055
  article-title: Water distribution networks optimization considering unknown flow directions and pipe diameters
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2019.05.017
– volume: 1–13
  year: 2020
  ident: 10.1016/j.cie.2025.111266_b0050
  article-title: Parameter optimization of water distribution network–A hybrid metaheuristic approach
  publication-title: Materials and Manufacturing Processes
– start-page: 1
  year: 2020
  ident: 10.1016/j.cie.2025.111266_b0065
  article-title: Optimization of water distribution networks using a deterministic approach
  publication-title: Engineering Optimization
– ident: 10.1016/j.cie.2025.111266_b0085
– volume: 95
  start-page: 113
  issue: 2018
  year: 2018
  ident: 10.1016/j.cie.2025.111266_b0060
  article-title: A matheuristic for the two-stage fixed-charge transportation problem
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2018.03.007
– volume: 90
  start-page: 208
  issue: 2018
  year: 2018
  ident: 10.1016/j.cie.2025.111266_b0105
  article-title: Exact approaches for the knapsack problem with setups
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2017.09.019
– volume: 10
  start-page: 95
  issue: 1
  year: 2012
  ident: 10.1016/j.cie.2025.111266_b0120
  article-title: Infectious diseases following natural disasters: Prevention and control measures
  publication-title: Expert review of anti-infective therapy
  doi: 10.1586/eri.11.155
– ident: 10.1016/j.cie.2025.111266_b0130
– volume: 12
  start-page: 101
  issue: 1
  year: 2018
  ident: 10.1016/j.cie.2025.111266_b0140
  article-title: GPS: A constraint-based gene position procurement in chromosome for solving large-scale multi objective multiple knapsack problems
  publication-title: Frontiers of Computer Science
  doi: 10.1007/s11704-016-5195-1
– volume: 112
  start-page: 706
  issue: 2017
  year: 2017
  ident: 10.1016/j.cie.2025.111266_b0025
  article-title: Integrating estimation of distribution algorithms versus Q-learning into Meta-RaPS for solving the 0-1 multidimensional knapsack problem
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2016.10.022
– volume: 268
  start-page: 70
  issue: 1
  year: 2018
  ident: 10.1016/j.cie.2025.111266_b0110
  article-title: Matheuristics based on iterative linear programming and slope scaling for multi commodity capacitated fixed charge network design
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.01.022
– ident: 10.1016/j.cie.2025.111266_b0180
  doi: 10.1061/9780784484302.010
– volume: 2021
  start-page: 171
  year: 2021
  ident: 10.1016/j.cie.2025.111266_b0160
  article-title: Seismic Vulnerability Assessment of Water Pipe Networks under Network Uncertainties
  publication-title: Pipelines
– volume: 112
  start-page: 19
  year: 2017
  ident: 10.1016/j.cie.2025.111266_b0030
  article-title: Choosing the optimal technology to rehabilitate the pipes in water distribution systems using the AHP method
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1109
– ident: 10.1016/j.cie.2025.111266_b0205
SSID ssj0004591
Score 2.4543223
Snippet •We propose a two-stage stochastic mixed integer nonlinear program (MINLP).•We propose piecewise linear functions to approximate the nonlinearity in MINLP.•We...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111266
SubjectTerms Linear approximation
Mixed integer nonlinear programming (MINLP)
Network optimization
Stochastic programming
Title A two-stage stochastic programming approach for enhancing seismic resilience of water pipe networks
URI https://dx.doi.org/10.1016/j.cie.2025.111266
Volume 207
WOSCitedRecordID wos001506721800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004591
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMceBQQ5aU9cKJyZK-fe7RQEVSi4tBKuVlre4xTGjuK3Rf_h__J7Mt2q1aiBy6WYyUby_N59pvdmW8I-RiXFRdBxZw8FpUT-BV3khCjVt8DEcp9N_BL1WwiPjxMFgv-Yzb7Y2thzk_jpkkuL_n6v5oar6GxZensPcw9DIoX8ByNjkc0Ox7_yfDpXn_ROkj6fkrx2LaohZRitolYK1WUaITEtd53U0vNDbmsAMtupSSdu-WpfuWRSl4IqaO4Xq5hr9E5492U0dq2EJ0C0XLsBAKj0uEQ87fdL5GLUmUQpL_FanD3YgOgkHnc13JXIZXiUMOMIds_qkQ0ja8DcXUt3V8pTAq5BSC6WqcnfG_rzhS5mSUNFg45W2Mpl-tIajh100x3xzWO1pOlT9Gtc4BejjiZo2-cy9Hn43ev623fmAeH7ESb-HaS4RCZHCLTQzwg2ywOOTrP7fTb_uJgIkuvWzPa-7bb5yqR8MZ93E6AJqTm6Bl5YqIRmmoUPSczaHbIUxOZUOP3ux3yeCJb-YIUKR0gRkeI0QnEqIUYRYjRAWLUQIyOEKNtRRXEqIQYtRB7SY6_7B99_uqYZh1OgRS5d8JIuF5VxFEgPBGxImQluH7FSiTkAMLjIqoSrxIYMucRQJS4wg0BP7q5FAUM_Vdkq2kbeE1oxCBH1gwCEuSbPOc8iMscgjJmLOGQ7JJP9glma63Jkt1ps10S2GecGVKpyWKGeLn7Z2_u8x9vyaMRxu_IVr85g_fkYXHeL7vNBwOWv7QKm5A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-stage+stochastic+programming+approach+for+enhancing+seismic+resilience+of+water+pipe+networks&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Boskabadi%2C+Azam&rft.au=Kareem%2C+Uthman+Abiola&rft.au=Rosenberger%2C+Jay+Michael&rft.au=Shahandashti%2C+Mohsen&rft.date=2025-09-01&rft.issn=0360-8352&rft.volume=207&rft.spage=111266&rft_id=info:doi/10.1016%2Fj.cie.2025.111266&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2025_111266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon