A nonlocal dispersive optimal transport: Formulation and algorithm
We propose a unified framework that effectively characterizes challenging phenomena such as anomalous transport in heterogeneous media and long-range memory effects and interactions. This framework transports agent densities from a prescribed initial distribution to a terminal distribution while min...
Gespeichert in:
| Veröffentlicht in: | Journal of computational and applied mathematics Jg. 476; S. 117132 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.04.2026
|
| Schlagworte: | |
| ISSN: | 0377-0427 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We propose a unified framework that effectively characterizes challenging phenomena such as anomalous transport in heterogeneous media and long-range memory effects and interactions. This framework transports agent densities from a prescribed initial distribution to a terminal distribution while minimizing the associated energy cost. Motivated by optimal transport theory, we introduce a nonlocal dispersive optimal transport (NDOT) model governed by a space–time fractional partial differential equation (PDE). We solve the NDOT formulation using the general-proximal primal–dual hybrid gradient (G-prox PDHG) algorithm, and then introduce a novel preconditioner derived from the discretization of the space–time fractional PDE to accelerate the convergence. Numerical experiments – especially those with target states represented by power functions typical of fractional differential equation solutions – show that our model substantially reduces kinetic energy costs compared with its integer-order counterparts, highlighting its effectiveness and applicability for complex phenomena such as anomalous transport in heterogeneous environments. |
|---|---|
| ISSN: | 0377-0427 |
| DOI: | 10.1016/j.cam.2025.117132 |