MLBFN optimized with Archimedes optimization Algorithm for SRCE
The Internet of Things (IoT) and its devices have become an integral part of the people’s daily lives recently. The growing demand for intelligent applications indicates that the IoT improves regular automation and intelligent sensing, whichimproves quality of life. Datapresent in a variety of forms...
Uložené v:
| Vydané v: | Expert systems with applications Ročník 255; s. 124529 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.12.2024
|
| Predmet: | |
| ISSN: | 0957-4174 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Internet of Things (IoT) and its devices have become an integral part of the people’s daily lives recently. The growing demand for intelligent applications indicates that the IoT improves regular automation and intelligent sensing, whichimproves quality of life. Datapresent in a variety of forms and formatsis the fundamental element of the IoT ecosystem. Then, the gathered information is utilized to generate context awareness and arrive at significant conclusions.Numerousobstacles related to object security are used tomaintain on-going services withmany benefitsusing IoT. In this manuscript, Multi-Lead-Branch Fusion Network optimized using Archimedes Optimization Algorithm for Securing Resource Constrained Environments (MLBF-ArOA-SRCE)is proposed. Initially, the data are acquired from the N-BaIoT dataset. The input data are pre-processed using Structural Interval Gradient Filtering (SIGF) which requires using the common organising techniques to put the data in an accessible format, like removing extra spaces and entries without values. Then,the pre-processed data are fed intoHexadecimal Local Adaptive Binary Pattern (HLABP) for extracting features. Then, the extracted features are provided to the Multi-Lead-Branch Fusion Network (MLBFN) which classifies the benign and malicious attack. TheMLBFN does not express any adoption of optimization strategies for scaling the ideal parameters for Securing Resource Constrained Environments. Hence, Archimedes Optimization Algorithm (ArOA) is utilized to improve the MLBFN weight parameters. The performance of the proposed techniqueis examined using performance metrics like precision, recall, f-measure, specificity, and accuracy. The proposed MLBF-ArOA-SRCE method provides 38%, 14%, 29.93% higher recall; 26.87%, 25.41%, 17.92 %higher accuracy; 30.88%, 13.29%, 25.71% higher specificity compared with existing approaches like RER-EML, FOG-PDM, ALSN-SSP respectively. |
|---|---|
| AbstractList | The Internet of Things (IoT) and its devices have become an integral part of the people’s daily lives recently. The growing demand for intelligent applications indicates that the IoT improves regular automation and intelligent sensing, whichimproves quality of life. Datapresent in a variety of forms and formatsis the fundamental element of the IoT ecosystem. Then, the gathered information is utilized to generate context awareness and arrive at significant conclusions.Numerousobstacles related to object security are used tomaintain on-going services withmany benefitsusing IoT. In this manuscript, Multi-Lead-Branch Fusion Network optimized using Archimedes Optimization Algorithm for Securing Resource Constrained Environments (MLBF-ArOA-SRCE)is proposed. Initially, the data are acquired from the N-BaIoT dataset. The input data are pre-processed using Structural Interval Gradient Filtering (SIGF) which requires using the common organising techniques to put the data in an accessible format, like removing extra spaces and entries without values. Then,the pre-processed data are fed intoHexadecimal Local Adaptive Binary Pattern (HLABP) for extracting features. Then, the extracted features are provided to the Multi-Lead-Branch Fusion Network (MLBFN) which classifies the benign and malicious attack. TheMLBFN does not express any adoption of optimization strategies for scaling the ideal parameters for Securing Resource Constrained Environments. Hence, Archimedes Optimization Algorithm (ArOA) is utilized to improve the MLBFN weight parameters. The performance of the proposed techniqueis examined using performance metrics like precision, recall, f-measure, specificity, and accuracy. The proposed MLBF-ArOA-SRCE method provides 38%, 14%, 29.93% higher recall; 26.87%, 25.41%, 17.92 %higher accuracy; 30.88%, 13.29%, 25.71% higher specificity compared with existing approaches like RER-EML, FOG-PDM, ALSN-SSP respectively. |
| ArticleNumber | 124529 |
| Author | Rama Krishnan Alangudi Balaji, Navaneetha Kumar Kannaiah, Sathish Sonaimuthu, Sridevi Seshadri Aravinth, Sinnappampatty |
| Author_xml | – sequence: 1 givenname: Sathish surname: Kumar Kannaiah fullname: Kumar Kannaiah, Sathish email: drsathishkumark5543@gmail.com organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India – sequence: 2 givenname: Sridevi surname: Sonaimuthu fullname: Sonaimuthu, Sridevi email: ssridevi9980@hotmail.com organization: Department of Computer Science and Engineering, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Tamil Nadu, India – sequence: 3 givenname: Navaneetha surname: Rama Krishnan Alangudi Balaji fullname: Rama Krishnan Alangudi Balaji, Navaneetha email: nalangudibalaji8887@hotmail.com organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India – sequence: 4 givenname: Sinnappampatty surname: Seshadri Aravinth fullname: Seshadri Aravinth, Sinnappampatty email: ssaravinth009@hotmail.com organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India |
| BookMark | eNp9j8tOwzAQRb0oEm3hB1jlBxLGr5hISKhULSAVkHisLceeUFdNXNkRFXw9qQpbVrO4c67umZBRFzok5IJCQYGWl5sC094UDJgoKBOSVSMyhkqqXFAlTskkpQ0AVQBqTG4eV7fLpyzset_6b3TZ3vfrbBbt2rfoMP0lpvehy2bbjxCHhzZrQsxeX-aLM3LSmG3C8987Je_Lxdv8Pl893z3MZ6vcMkn7XDAmoeSsRiGQC9VAXUuhSiOcLBu4clBWyJ3lkiE4VI0B7mRlJKWOlorzKWHHXhtDShEbvYu-NfFLU9AHbb3RB2190NZH7QG6PkI4LPv0GHWyHjuLzke0vXbB_4f_ANFcY5Y |
| Cites_doi | 10.1007/s10489-020-01893-z 10.1016/j.cose.2023.103388 10.1109/ACCESS.2023.3292829 10.1109/JIOT.2023.3288563 10.1016/j.eswa.2023.121493 10.1016/j.pmcj.2022.101738 10.1007/s41870-023-01439-9 10.1016/j.bspc.2024.106330 10.1109/ACCESS.2024.3362347 10.1016/j.engappai.2023.107667 10.1007/s00500-023-09452-7 10.56155/978-81-955020-7-3-3 10.1109/ACCESS.2024.3362670 10.1007/s12652-021-03324-4 10.1007/s10207-023-00681-3 10.1038/s41598-023-50554-x 10.1016/j.bspc.2023.105264 10.1007/s10723-023-09725-3 10.1016/j.fraope.2023.100056 10.1109/JTEHM.2021.3064675 10.1016/j.adhoc.2023.103279 10.1016/j.compeleceng.2024.109095 10.1016/j.bspc.2023.105713 10.1016/j.neucom.2023.127068 10.1080/09540091.2024.2306962 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2024.124529 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2024_124529 S0957417424013964 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c251t-42250632be44e347f0bb5476a4d56f08d069e3dc352e0de7fa03d59a511d16733 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001265963900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 03:07:39 EST 2025 Sat Nov 16 16:00:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Resource Constrained Environments Multi-Lead-Branch Fusion Network Structural interval gradient filtering Archimedes Optimization Algorithm Hexadecimal Local Adaptive Binary Pattern |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-42250632be44e347f0bb5476a4d56f08d069e3dc352e0de7fa03d59a511d16733 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2024_124529 elsevier_sciencedirect_doi_10_1016_j_eswa_2024_124529 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jeffrey, Tan, Villar (b0065) 2024; 568 Zeghida, Boulaiche, Chikh (b0180) 2023; 22 Yang, Yang, Liu, An, Liu, Liu (b0165) 2024; 36 Bukhari, Zafar, AbouHouran, Moosavi, Mansoor, Muaaz, Sanfilippo (b0030) 2024; 103407 Shekhawat, Chaudhary, Kumar, Kalwar, Mishra, Sharma (b0100) 2024; 89 https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset. Truong, Le (b0145) 2024 Alluhaidan, Prabu (b0015) 2023 Karthikeyan, Manimegalai, RajaGopal (b0070) 2024; 14 Zhang, Liang, Liu, Gao, Chen, Zhang, Chen (b0185) 2021; 9 Song, Ma (b0115) 2024; 22 Min, W., Almughalles, W., Muthanna, M. S. A., Ouamri, M. A., Muthanna, A., Hong, S., & Abd El-Latif, A. (2024) A.An SDN-Orchestrated Artificial Intelligence-Empowered Framework to Combat Intrusions in the Next Generation Cyber-Physical Systems. Singh, Chouhan, Aujla (b0105) 2024; 103404 Alqahtani, Kumar (b0020) 2024; 129 Azimjonov, Kim (b0025) 2024; 237 Javeed, Gao, Saeed, Khan (b0060) 2023 Mohandass, Krishnan, Selvaraj, Sridhathan (b0080) 2024; 95 Pal (b0090) 2023 Campos, Lemus-Prieto, González-Sánchez, Lindo (b0035) 2024 Trong, T. H., & Hoang, T. N. (2024).Effective Multi-Stage Training Model For Edge Computing Devices In Intrusion Detection.arXiv preprint arXiv:2401.17546. Al-Ambusaidi, Yinjun, Muhammad, Yahya (b0010) 2024; 28 Wong, Arjunan (b0160) 2024; 16 Wang, Li, Yang, Luo, Li, Mahmoodi (b0155) 2024; 238 Zhang, Peter, Shankar, Viriyasitavat (b0190) 2024; 115 Zhao, Shen, Zeng (b0195) 2023; 150 Sun, An, Yang, Liu (b0135) 2024; 6 Srivastava, Addimulam, Basu, Sindhuri, Maurya (b0125) 2024; 12 Hamouda, Ferrag, Benhamida, Seridi (b0045) 2023; 88 Zakariyya, Kalutarage, Al-Kadri (b0175) 2023; 133 Sivasakthi, Sathiyaraj, Devendiran (b0110) 2024 Narmatha, Gupta, Lakshmi, Manikavelan (b0085) 2023; 86 Hashim, Hussain, Houssein, Mabrouk, Al-Atabany (b0050) 2021; 51 Shakya, Choudhary, Singh (b0095) 2024 Vashisth, S., & Goyal, A. (2024). A comparative analysis for designing security mechanism for resource-constrained internet of things devices. Subasi, Dogan, Tuncer (b0130) 2023; 14 Yasmin, Gupta (b0170) 2024; 16 Chandra Umakantham, Gajendran, Marappan (b0040) 2024 Sravanthi, Moparthi (b0120) 2023 AbouGhaly, Hannan (b0005) 2024; 12 Sivasakthi (10.1016/j.eswa.2024.124529_b0110) 2024 Song (10.1016/j.eswa.2024.124529_b0115) 2024; 22 Singh (10.1016/j.eswa.2024.124529_b0105) 2024; 103404 Azimjonov (10.1016/j.eswa.2024.124529_b0025) 2024; 237 Shakya (10.1016/j.eswa.2024.124529_b0095) 2024 Hashim (10.1016/j.eswa.2024.124529_b0050) 2021; 51 Zeghida (10.1016/j.eswa.2024.124529_b0180) 2023; 22 Karthikeyan (10.1016/j.eswa.2024.124529_b0070) 2024; 14 Zakariyya (10.1016/j.eswa.2024.124529_b0175) 2023; 133 Zhang (10.1016/j.eswa.2024.124529_b0185) 2021; 9 Yasmin (10.1016/j.eswa.2024.124529_b0170) 2024; 16 Pal (10.1016/j.eswa.2024.124529_b0090) 2023 Shekhawat (10.1016/j.eswa.2024.124529_b0100) 2024; 89 Bukhari (10.1016/j.eswa.2024.124529_b0030) 2024; 103407 Zhao (10.1016/j.eswa.2024.124529_b0195) 2023; 150 Jeffrey (10.1016/j.eswa.2024.124529_b0065) 2024; 568 10.1016/j.eswa.2024.124529_b0140 Wong (10.1016/j.eswa.2024.124529_b0160) 2024; 16 Narmatha (10.1016/j.eswa.2024.124529_b0085) 2023; 86 Chandra Umakantham (10.1016/j.eswa.2024.124529_b0040) 2024 AbouGhaly (10.1016/j.eswa.2024.124529_b0005) 2024; 12 Yang (10.1016/j.eswa.2024.124529_b0165) 2024; 36 Campos (10.1016/j.eswa.2024.124529_b0035) 2024 Hamouda (10.1016/j.eswa.2024.124529_b0045) 2023; 88 Mohandass (10.1016/j.eswa.2024.124529_b0080) 2024; 95 Zhang (10.1016/j.eswa.2024.124529_b0190) 2024; 115 Alqahtani (10.1016/j.eswa.2024.124529_b0020) 2024; 129 Al-Ambusaidi (10.1016/j.eswa.2024.124529_b0010) 2024; 28 Alluhaidan (10.1016/j.eswa.2024.124529_b0015) 2023 Subasi (10.1016/j.eswa.2024.124529_b0130) 2023; 14 10.1016/j.eswa.2024.124529_b0055 Truong (10.1016/j.eswa.2024.124529_b0145) 2024 10.1016/j.eswa.2024.124529_b0075 10.1016/j.eswa.2024.124529_b0150 Srivastava (10.1016/j.eswa.2024.124529_b0125) 2024; 12 Wang (10.1016/j.eswa.2024.124529_b0155) 2024; 238 Javeed (10.1016/j.eswa.2024.124529_b0060) 2023 Sravanthi (10.1016/j.eswa.2024.124529_b0120) 2023 Sun (10.1016/j.eswa.2024.124529_b0135) 2024; 6 |
| References_xml | – volume: 28 start-page: 1765 year: 2024 end-page: 1784 ident: b0010 article-title: ML-IDS: An efficient ML-enabled intrusion detection system for securing IoT networks and applications publication-title: Soft Computing – volume: 129 year: 2024 ident: b0020 article-title: Machine learning for enhancing transportation security: A comprehensive analysis of electric and flying vehicle systems publication-title: Engineering Applications of Artificial Intelligence – reference: https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset. – start-page: 1 year: 2024 end-page: 15 ident: b0110 article-title: HybridRobustNet: Enhancing detection of hybrid attacks in IoT networks through advanced learning approach publication-title: Cluster Computing – volume: 238 year: 2024 ident: b0155 article-title: A lightweight IoT intrusion detection model based on improved BERT-of-Theseus publication-title: Expert Systems with Applications – volume: 133 year: 2023 ident: b0175 article-title: Towards a robust, effective and resource efficient machine learning technique for IoT security monitoring publication-title: Computers & Security – volume: 150 year: 2023 ident: b0195 article-title: ALSNAP: Attention-based long and short-period network security situation prediction publication-title: Ad Hoc Networks – volume: 12 start-page: 138 year: 2024 end-page: 147 ident: b0005 article-title: Protecting Software Defined Networks with IoT and Deep Reinforcement Learning publication-title: International Journal of Intelligent Systems and Applications in Engineering – volume: 103407 year: 2024 ident: b0030 article-title: Secure and privacy-preserving intrusion detection in wireless sensor networks: Federated learning with SCNN-Bi-LSTM for enhanced reliability publication-title: Ad Hoc Networks – reference: Vashisth, S., & Goyal, A. (2024). A comparative analysis for designing security mechanism for resource-constrained internet of things devices. – volume: 36 start-page: 2306962 year: 2024 ident: b0165 article-title: AICOM-MP: An AI-based monkeypox detector for resource-constrained environments publication-title: Connection Science – volume: 22 start-page: 1075 year: 2023 end-page: 1086 ident: b0180 article-title: Securing MQTT protocol for IoT environment using IDS based on ensemble learning publication-title: International Journal of Information Security – volume: 88 year: 2023 ident: b0045 article-title: PPSS: A privacy-preserving secure framework using blockchain-enabled federated deep learning for industrial IoTs publication-title: Pervasive and Mobile Computing – volume: 12 start-page: 143 year: 2024 end-page: 150 ident: b0125 article-title: Network Intrusion Detection System (NIDS) for WSN using Particle Swarm Optimization based Artificial Neural Network publication-title: International Journal of Intelligent Systems and Applications in Engineering – volume: 6 year: 2024 ident: b0135 article-title: Optimized machine learning enabled intrusion detection 2 system for internet of medical things publication-title: Franklin Open – volume: 86 year: 2023 ident: b0085 article-title: Skin cancer detection from dermoscopic images using Deep Siamese domain adaptation convolutional Neural Network optimized with Honey Badger Algorithm publication-title: Biomedical Signal Processing and Control – year: 2024 ident: b0040 article-title: Enhancing Intrusion Detection through Federated Learning with Enhanced Ghost_BiNet and Homomorphic Encryption publication-title: IEEE Access – start-page: 1 year: 2023 end-page: 14 ident: b0120 article-title: Dual Interactive Wasserstein Generative Adversarial Network optimized with arithmetic optimization algorithm-based job scheduling in cloud-based IoT publication-title: Cluster Computing – start-page: 1 year: 2024 end-page: 20 ident: b0095 article-title: IRADA: Integrated reinforcement learning and deep learning algorithm for attack detection in wireless sensor networks publication-title: Multimedia Tools and Applications – reference: Trong, T. H., & Hoang, T. N. (2024).Effective Multi-Stage Training Model For Edge Computing Devices In Intrusion Detection.arXiv preprint arXiv:2401.17546. – year: 2023 ident: b0015 article-title: End to End encryption in resource-constrained IoT device publication-title: IEEE Access – volume: 95 year: 2024 ident: b0080 article-title: Lung Cancer Classification using Optimized Attention-based Convolutional Neural Network with DenseNet-201 Transfer Learning Model on CT image publication-title: Biomedical Signal Processing and Control – volume: 16 start-page: 1 year: 2024 end-page: 11 ident: b0160 article-title: Real-Time Detection of Network Traffic Anomalies in Big Data Environments Using Deep Learning Models publication-title: Emerging Trends in Machine Intelligence and Big Data – volume: 51 start-page: 1531 year: 2021 end-page: 1551 ident: b0050 article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems publication-title: Applied Intelligence – volume: 568 year: 2024 ident: b0065 article-title: hybrid methodology for anomaly detection in Cyber-Physical Systems publication-title: Neurocomputing – year: 2023 ident: b0060 article-title: FOG-empowered Augmented Intelligence-based Proactive Defensive Mechanism for IoT-enabled Smart Industries publication-title: IEEE Internet of Things Journal – reference: Min, W., Almughalles, W., Muthanna, M. S. A., Ouamri, M. A., Muthanna, A., Hong, S., & Abd El-Latif, A. (2024) A.An SDN-Orchestrated Artificial Intelligence-Empowered Framework to Combat Intrusions in the Next Generation Cyber-Physical Systems. – year: 2024 ident: b0145 article-title: Security for the Metaverse: Blockchain and Machine Learning Techniques for Intrusion Detection – volume: 115 year: 2024 ident: b0190 article-title: Public cloud networks oriented deep neural networks for effective intrusion detection in online music education publication-title: Computers and Electrical Engineering – volume: 103404 year: 2024 ident: b0105 article-title: SecureFlow: Knowledge and data-driven ensemble for intrusion detection and dynamic rule configuration in software-defined IoT environment publication-title: Ad Hoc Networks – volume: 14 start-page: 711 year: 2023 end-page: 725 ident: b0130 article-title: A novel automated tower graph based ECG signal classification method with hexadecimal local adaptive binary pattern and deep learning publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 237 year: 2024 ident: b0025 article-title: Stochastic gradient descent classifier-based lightweight intrusion detection systems using the efficient feature subsets of datasets publication-title: Expert Systems with Applications – year: 2024 ident: b0035 article-title: Intrusion detection on IoT environments through side-channel and Machine Learning techniques publication-title: IEEE Access – volume: 22 start-page: 1 year: 2024 end-page: 17 ident: b0115 article-title: Intrusion detection using federated attention neural network for edge enabled internet of things publication-title: Journal of Grid Computing – volume: 14 start-page: 231 year: 2024 ident: b0070 article-title: Firefly algorithm based WSN-IoT security enhancement with machine learning for intrusion detection publication-title: Scientific Reports – volume: 89 year: 2024 ident: b0100 article-title: Binarized spiking neural network optimized with momentum search algorithm for fetal arrhythmia detection and classification from ECG signals publication-title: Biomedical Signal Processing and Control – start-page: 138 year: 2023 end-page: 159 ident: b0090 article-title: Security Issues and Solutions for Resource-Constrained IoT Applications Using Lightweight Cryptography publication-title: Cybersecurity Issues, Challenges, and Solutions in the Business World – volume: 16 start-page: 2647 year: 2024 end-page: 2659 ident: b0170 article-title: Modified lightweight GIFT cipher for security enhancement in resource-constrained IoT devices publication-title: International Journal of Information Technology – volume: 9 start-page: 1 year: 2021 end-page: 11 ident: b0185 article-title: MLBF-Net: A multi-lead-branch fusion network for multi-class arrhythmia classification using 12-lead ECG publication-title: IEEE journal of translational engineering in health and medicine – volume: 51 start-page: 1531 year: 2021 ident: 10.1016/j.eswa.2024.124529_b0050 article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems publication-title: Applied Intelligence doi: 10.1007/s10489-020-01893-z – volume: 238 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0155 article-title: A lightweight IoT intrusion detection model based on improved BERT-of-Theseus publication-title: Expert Systems with Applications – volume: 133 year: 2023 ident: 10.1016/j.eswa.2024.124529_b0175 article-title: Towards a robust, effective and resource efficient machine learning technique for IoT security monitoring publication-title: Computers & Security doi: 10.1016/j.cose.2023.103388 – year: 2023 ident: 10.1016/j.eswa.2024.124529_b0015 article-title: End to End encryption in resource-constrained IoT device publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3292829 – year: 2023 ident: 10.1016/j.eswa.2024.124529_b0060 article-title: FOG-empowered Augmented Intelligence-based Proactive Defensive Mechanism for IoT-enabled Smart Industries publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2023.3288563 – volume: 237 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0025 article-title: Stochastic gradient descent classifier-based lightweight intrusion detection systems using the efficient feature subsets of datasets publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121493 – start-page: 1 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0095 article-title: IRADA: Integrated reinforcement learning and deep learning algorithm for attack detection in wireless sensor networks publication-title: Multimedia Tools and Applications – volume: 88 year: 2023 ident: 10.1016/j.eswa.2024.124529_b0045 article-title: PPSS: A privacy-preserving secure framework using blockchain-enabled federated deep learning for industrial IoTs publication-title: Pervasive and Mobile Computing doi: 10.1016/j.pmcj.2022.101738 – volume: 12 start-page: 138 issue: 8s year: 2024 ident: 10.1016/j.eswa.2024.124529_b0005 article-title: Protecting Software Defined Networks with IoT and Deep Reinforcement Learning publication-title: International Journal of Intelligent Systems and Applications in Engineering – volume: 16 start-page: 2647 issue: 4 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0170 article-title: Modified lightweight GIFT cipher for security enhancement in resource-constrained IoT devices publication-title: International Journal of Information Technology doi: 10.1007/s41870-023-01439-9 – ident: 10.1016/j.eswa.2024.124529_b0055 – volume: 103407 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0030 article-title: Secure and privacy-preserving intrusion detection in wireless sensor networks: Federated learning with SCNN-Bi-LSTM for enhanced reliability publication-title: Ad Hoc Networks – start-page: 1 year: 2023 ident: 10.1016/j.eswa.2024.124529_b0120 article-title: Dual Interactive Wasserstein Generative Adversarial Network optimized with arithmetic optimization algorithm-based job scheduling in cloud-based IoT publication-title: Cluster Computing – volume: 95 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0080 article-title: Lung Cancer Classification using Optimized Attention-based Convolutional Neural Network with DenseNet-201 Transfer Learning Model on CT image publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2024.106330 – year: 2024 ident: 10.1016/j.eswa.2024.124529_b0040 article-title: Enhancing Intrusion Detection through Federated Learning with Enhanced Ghost_BiNet and Homomorphic Encryption publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3362347 – volume: 129 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0020 article-title: Machine learning for enhancing transportation security: A comprehensive analysis of electric and flying vehicle systems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.107667 – volume: 16 start-page: 1 issue: 1 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0160 article-title: Real-Time Detection of Network Traffic Anomalies in Big Data Environments Using Deep Learning Models publication-title: Emerging Trends in Machine Intelligence and Big Data – start-page: 138 year: 2023 ident: 10.1016/j.eswa.2024.124529_b0090 article-title: Security Issues and Solutions for Resource-Constrained IoT Applications Using Lightweight Cryptography – volume: 28 start-page: 1765 issue: 2 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0010 article-title: ML-IDS: An efficient ML-enabled intrusion detection system for securing IoT networks and applications publication-title: Soft Computing doi: 10.1007/s00500-023-09452-7 – start-page: 1 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0110 article-title: HybridRobustNet: Enhancing detection of hybrid attacks in IoT networks through advanced learning approach publication-title: Cluster Computing – ident: 10.1016/j.eswa.2024.124529_b0150 doi: 10.56155/978-81-955020-7-3-3 – year: 2024 ident: 10.1016/j.eswa.2024.124529_b0035 article-title: Intrusion detection on IoT environments through side-channel and Machine Learning techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3362670 – volume: 14 start-page: 711 issue: 2 year: 2023 ident: 10.1016/j.eswa.2024.124529_b0130 article-title: A novel automated tower graph based ECG signal classification method with hexadecimal local adaptive binary pattern and deep learning publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-021-03324-4 – volume: 22 start-page: 1075 issue: 4 year: 2023 ident: 10.1016/j.eswa.2024.124529_b0180 article-title: Securing MQTT protocol for IoT environment using IDS based on ensemble learning publication-title: International Journal of Information Security doi: 10.1007/s10207-023-00681-3 – volume: 14 start-page: 231 issue: 1 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0070 article-title: Firefly algorithm based WSN-IoT security enhancement with machine learning for intrusion detection publication-title: Scientific Reports doi: 10.1038/s41598-023-50554-x – volume: 86 year: 2023 ident: 10.1016/j.eswa.2024.124529_b0085 article-title: Skin cancer detection from dermoscopic images using Deep Siamese domain adaptation convolutional Neural Network optimized with Honey Badger Algorithm publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2023.105264 – ident: 10.1016/j.eswa.2024.124529_b0140 – ident: 10.1016/j.eswa.2024.124529_b0075 – volume: 22 start-page: 1 issue: 1 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0115 article-title: Intrusion detection using federated attention neural network for edge enabled internet of things publication-title: Journal of Grid Computing doi: 10.1007/s10723-023-09725-3 – volume: 6 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0135 article-title: Optimized machine learning enabled intrusion detection 2 system for internet of medical things publication-title: Franklin Open doi: 10.1016/j.fraope.2023.100056 – year: 2024 ident: 10.1016/j.eswa.2024.124529_b0145 – volume: 103404 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0105 article-title: SecureFlow: Knowledge and data-driven ensemble for intrusion detection and dynamic rule configuration in software-defined IoT environment publication-title: Ad Hoc Networks – volume: 9 start-page: 1 year: 2021 ident: 10.1016/j.eswa.2024.124529_b0185 article-title: MLBF-Net: A multi-lead-branch fusion network for multi-class arrhythmia classification using 12-lead ECG publication-title: IEEE journal of translational engineering in health and medicine doi: 10.1109/JTEHM.2021.3064675 – volume: 150 year: 2023 ident: 10.1016/j.eswa.2024.124529_b0195 article-title: ALSNAP: Attention-based long and short-period network security situation prediction publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2023.103279 – volume: 12 start-page: 143 issue: 15s year: 2024 ident: 10.1016/j.eswa.2024.124529_b0125 article-title: Network Intrusion Detection System (NIDS) for WSN using Particle Swarm Optimization based Artificial Neural Network publication-title: International Journal of Intelligent Systems and Applications in Engineering – volume: 115 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0190 article-title: Public cloud networks oriented deep neural networks for effective intrusion detection in online music education publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2024.109095 – volume: 89 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0100 article-title: Binarized spiking neural network optimized with momentum search algorithm for fetal arrhythmia detection and classification from ECG signals publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2023.105713 – volume: 568 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0065 article-title: hybrid methodology for anomaly detection in Cyber-Physical Systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.127068 – volume: 36 start-page: 2306962 issue: 1 year: 2024 ident: 10.1016/j.eswa.2024.124529_b0165 article-title: AICOM-MP: An AI-based monkeypox detector for resource-constrained environments publication-title: Connection Science doi: 10.1080/09540091.2024.2306962 |
| SSID | ssj0017007 |
| Score | 2.4915133 |
| Snippet | The Internet of Things (IoT) and its devices have become an integral part of the people’s daily lives recently. The growing demand for intelligent applications... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 124529 |
| SubjectTerms | Archimedes Optimization Algorithm Hexadecimal Local Adaptive Binary Pattern Multi-Lead-Branch Fusion Network Resource Constrained Environments Structural interval gradient filtering |
| Title | MLBFN optimized with Archimedes optimization Algorithm for SRCE |
| URI | https://dx.doi.org/10.1016/j.eswa.2024.124529 |
| Volume | 255 |
| WOSCitedRecordID | wos001265963900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017007 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ohSQD5wW6XKw4njE9qiVjxXiC3S3iIndrpebbKrNLut-Dv8UcZxnISqIHrgEq3ycLyZLzNfZsYzCL2ReR5JlnlOFua6qLbwHO4FoZOB6Zbw8vGU8abZBJ1O4_mcfR2Nftq1MLsVLcv46opt_quoYR8IWy-dvYW4u0FhB_wGocMWxA7bfxL8l8_Hp9PxGlRBoX7Y5PKmwCwYPl1i1hwxgp-sztcVnFA06Yazb6YxU-eq13WQ67bas10HN4h493GgglfjT7wsueIL42jWjY47V_MM-L4qtvVi2xyslAB73IeYCt4om0XJ9Yy0B1Wo8TFf8aUyFgDovpT1ojMhMx2oEpWC_8V3qjS-oZmC-282uoJkbYqbWHeGTwapIdYvCZjxTOseq6L9MBwoWa-JFt-o_40rYnkkLy51USmfHPUn_15s-5oR7FITbdbbMtFjJHqMxIxxB-37NGSgOvcnH07mH7tgFXXNqnw783ZtlkkjvD6Tm_nPgNOcPUT3248RPDEgeoRGsnyMHthGH7jV-0_Q2wZTuMMU1kjAPabwEFO4wxQGTGGNqafo--nJ2bv3Ttt5w8mA79YOAS0P3NVPJSEyIDR30zQkNOJEhFHuxsKNmAxEBuxdukLSnLuBCBkH9i68iAbBM7RXrkv5HGHPT5mMBRcy4yQiXpzLnEXwFc5imkdpdoDG9nkkG1NgJfmzDA5QaB9Z0lJEQ_0SQMBfrntxq7scons9NF-ivbraylfobrar1UX1uhX_L1y6ipY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLBFN+optimized+with+Archimedes+optimization+Algorithm+for+SRCE&rft.jtitle=Expert+systems+with+applications&rft.au=Kumar+Kannaiah%2C+Sathish&rft.au=Sonaimuthu%2C+Sridevi&rft.au=Rama+Krishnan+Alangudi+Balaji%2C+Navaneetha&rft.au=Seshadri+Aravinth%2C+Sinnappampatty&rft.date=2024-12-01&rft.issn=0957-4174&rft.volume=255&rft.spage=124529&rft_id=info:doi/10.1016%2Fj.eswa.2024.124529&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2024_124529 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |