Reinforcement learning-inspired molecular generation with latent space diffusion and genetic algorithm optimization under affinity and similarity constraints
•A novel RL-inspired framework combines VAE and latent-space diffusion for molecule generation.•Affinity and similarity constraints guide generation toward biologically active candidates.•A genetic algorithm with active learning enables iterative, reward-driven optimization. In deep learning-driven...
Saved in:
| Published in: | Chemical engineering science Vol. 320; p. 122575 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.01.2026
|
| Subjects: | |
| ISSN: | 0009-2509 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A novel RL-inspired framework combines VAE and latent-space diffusion for molecule generation.•Affinity and similarity constraints guide generation toward biologically active candidates.•A genetic algorithm with active learning enables iterative, reward-driven optimization.
In deep learning-driven molecular generation, achieving both diversity and effectiveness remains a major challenge. Inspired by the principles of reinforcement learning, in this study, a molecular generation system that integrates an encoding–diffusion–decoding mechanism with iterative, feedback-driven optimization strategies to balance these two aspects is proposed. The framework first maps molecular structures into a low-dimensional latent space, where a diffusion model explores the distribution of molecular characteristics. Sampling from a Gaussian distribution and performing reverse decoding ensure diversity in the molecular generation process. To ensure the practical applicability of the generated molecules, we incorporate a target-drug affinity prediction model and molecular similarity constraints into the pipeline to effectively filter candidates that are both novel and biologically relevant. Furthermore, a molecular genetic algorithm that mimics the exploration and exploitation trade-off that is fundamental to reinforcement learning is employed to perform random crossover and mutation on selected molecules, thereby generating potentially superior candidates. Guided by an active learning strategy, these candidates are iteratively evaluated and integrated into the training set, thus forming a continuous feedback loop that refines the generation model over time. This reinforcement learning-inspired framework not only increases the quality and efficiency of molecular generation but also reduces dependency on large, high-quality datasets. The experimental results confirm the ability of the method to generate effective and diverse compounds that target specific receptors. |
|---|---|
| AbstractList | •A novel RL-inspired framework combines VAE and latent-space diffusion for molecule generation.•Affinity and similarity constraints guide generation toward biologically active candidates.•A genetic algorithm with active learning enables iterative, reward-driven optimization.
In deep learning-driven molecular generation, achieving both diversity and effectiveness remains a major challenge. Inspired by the principles of reinforcement learning, in this study, a molecular generation system that integrates an encoding–diffusion–decoding mechanism with iterative, feedback-driven optimization strategies to balance these two aspects is proposed. The framework first maps molecular structures into a low-dimensional latent space, where a diffusion model explores the distribution of molecular characteristics. Sampling from a Gaussian distribution and performing reverse decoding ensure diversity in the molecular generation process. To ensure the practical applicability of the generated molecules, we incorporate a target-drug affinity prediction model and molecular similarity constraints into the pipeline to effectively filter candidates that are both novel and biologically relevant. Furthermore, a molecular genetic algorithm that mimics the exploration and exploitation trade-off that is fundamental to reinforcement learning is employed to perform random crossover and mutation on selected molecules, thereby generating potentially superior candidates. Guided by an active learning strategy, these candidates are iteratively evaluated and integrated into the training set, thus forming a continuous feedback loop that refines the generation model over time. This reinforcement learning-inspired framework not only increases the quality and efficiency of molecular generation but also reduces dependency on large, high-quality datasets. The experimental results confirm the ability of the method to generate effective and diverse compounds that target specific receptors. |
| ArticleNumber | 122575 |
| Author | Bai, Can Wu, Zijian Huang, Renbao Han, Xianjun |
| Author_xml | – sequence: 1 givenname: Can surname: Bai fullname: Bai, Can organization: College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, China – sequence: 2 givenname: Zijian surname: Wu fullname: Wu, Zijian organization: College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, China – sequence: 3 givenname: Xianjun orcidid: 0000-0001-7674-1428 surname: Han fullname: Han, Xianjun email: hxj@ahu.edu.cn organization: School of Computer Science and Technology, Anhui University, Hefei, China – sequence: 4 givenname: Renbao surname: Huang fullname: Huang, Renbao organization: First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China |
| BookMark | eNp9kEtOAzEMQLMoEm3hAOxygSlJOh9GrFDFT6qEhGAdZRKnuJpJqiQFlbtwVzIta1a2ZT_bejMycd4BIVecLTjj9fV2oSEuBBPVggtRNdWETBljbSEq1p6TWYzbXDYNZ1Py8wrorA8aBnCJ9qCCQ7cp0MUdBjB08D3ofa8C3YCDoBJ6R78wfdBepRGJO6WBGrR2H8eecuY4mlBT1W98yLMD9buEA36f8L0zEKiyFh2mw5GIuZuPjKX2Lqag0KV4Qc6s6iNc_sU5eX-4f1s9FeuXx-fV3brQouKpWGpTa1ubuu6s4Y1pc9qBUNy2SnVQqmWtm9YK1hh-ozvRibLhpa5NaZZ1qarlnPDTXh18jAGs3AUcVDhIzuToVG5ldipHp_LkNDO3JwbyY58IQUaN4DSY7E0naTz-Q_8CcZKJ2Q |
| Cites_doi | 10.1093/nar/gkw1074 10.1038/s42256-023-00712-7 10.1109/TNNLS.2022.3147790 10.1038/s42256-021-00301-6 10.1002/advs.202417726 10.1016/j.compbiomed.2023.107372 10.1517/17460441.2015.1032936 10.1016/j.artmed.2024.102820 10.1109/TII.2023.3321332 10.1093/bib/bbad419 10.1093/bioinformatics/btz339 10.1007/s44196-024-00531-7 10.1021/ct3010485 10.1109/CVPR52688.2022.01042 10.1016/j.neunet.2024.106596 10.1007/s42979-021-00702-9 10.1093/nar/gkae300 10.1021/acs.jcim.1c00203 10.1038/sdata.2014.22 10.1186/1758-2946-4-24 10.1021/acs.jcim.2c00997 10.3389/frai.2024.1374148 10.26599/BDMA.2023.9020009 10.1016/j.compbiomed.2024.108702 10.1109/TAI.2023.3287947 10.1038/s42256-022-00557-6 10.1126/sciadv.aap7885 10.1021/acscentsci.7b00512 10.1186/s13321-017-0235-x 10.1186/s13321-021-00566-4 10.1021/ar000033j 10.1016/j.compbiomed.2024.108073 10.1021/acs.jcim.3c01964 10.1002/jcc.20035 10.1007/s10462-024-10714-5 10.3390/a17010024 10.1002/jcc.10128 10.1016/j.asoc.2024.111452 10.1016/j.simpa.2024.100656 10.1038/s43588-024-00737-x 10.1007/s10489-023-05217-9 10.1109/ACCESS.2024.3397775 10.1002/minf.202100045 10.1109/ACCESS.2024.3391249 10.1007/s10462-023-10687-x 10.1021/acscentsci.7b00572 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ces.2025.122575 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ces_2025_122575 S000925092501396X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABJNI ABMAC ABNUV ACBEA ACDAQ ACGFO ACGFS ACLOT ACNCT ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLY IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K XPP ZMT ~02 ~G- ~HD 9DU AAQXK AAYXX ABDPE ABWVN ABXDB ACRPL ADMUD ADNMO AGQPQ AI. AIDUJ ASPBG AVWKF AZFZN BBWZM CITATION EJD FEDTE FGOYB HVGLF HZ~ NDZJH R2- SC5 T9H VH1 WUQ Y6R ZY4 |
| ID | FETCH-LOGICAL-c251t-3cd6cf6d66bfd17d96d6be2a1f9aabe4a36c79f207d18cb2b24714c6d4d364a53 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001578765800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0009-2509 |
| IngestDate | Sat Nov 29 06:48:07 EST 2025 Wed Dec 10 14:31:34 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Genetic algorithm optimization Affinity constraints Molecular generation Latent space generation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c251t-3cd6cf6d66bfd17d96d6be2a1f9aabe4a36c79f207d18cb2b24714c6d4d364a53 |
| ORCID | 0000-0001-7674-1428 |
| ParticipantIDs | crossref_primary_10_1016_j_ces_2025_122575 elsevier_sciencedirect_doi_10_1016_j_ces_2025_122575 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-01-15 |
| PublicationDateYYYYMMDD | 2026-01-15 |
| PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering science |
| PublicationYear | 2026 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Wang, Sun, Zeng, Yuan, Gou, Wang, Guo, Pu (bib0036) 2022; 62 Huang, L., Zhang, H., Xu, T., Wong, K.-c., 2022. Mdm: molecular diffusion model for 3d molecule generation. Li, Yao, Wei, Niu, Zeng, Li, Wang (bib0037) 2024; 35 Segler, Kogej, Tyrchan, Waller (bib0057) 2018; 4 Liu, Xu, Luo, Jiang (bib0041) 2024 Nguyen, Roe, Simmerling (bib0046) 2013; 9 Olivecrona, Blaschke, Engkvist, Chen (bib0047) 2017; 9 Fu, Du, Zhang (bib0017) 2024; 62 Xu, Lei, Ma, Pan (bib0065) 2024; 7 Abbasi, Carvalho, Ribeiro, Arrais (bib0001) 2024; 150 Molnár, Tamás (bib0045) 2024; 57 Scutari (bib0056) 2024; 17 Chinnareddy, Grandhi, Narayan (bib0010) 2021 Assaf, Liu, Lin, Erkens (bib0003) 2024; 20 Genetic algorithm-based receptor ligand: A genetic algorithm-guided generative model to boost the novelty and drug-likeness of molecules in a sampling chemical space. 2024. J. Chem. Inf. Model. 64 (4), 1213–1228. Zeng, Xiang, Yu, Wang, Li, Nussinov, Cheng (bib0067) 2022; 4 Quan, Yuan, Luo, Song, Zhou, Wang (bib0050) 2024; 20 Axelrod, S., Gómez-Bombarelli, R., 2020. Geom: energy-annotated molecular conformations for property prediction and molecular generation. Lee, Kahng, Kim (bib0035) 2021; 40 Zhang, Xu, Xiao (bib0068) 2024; 17 Prasad, V., Chen, Z., Vilanova, A., Pfister, H., Pezzotti, N., Strobelt, H., 2023. Unraveling the temporal dynamics of the unet in diffusion models. 2312.14965. Eberhardt, Santos-Martins, Tillack, Forli (bib0014) 2021; 61 Bugnon, Röhrig, Goullieux, Perez, Daina, Michielin, Zoete (bib0008) 2024; 52 . Trabelsi, Chaabane, Ben-Hur (bib0059) 2019; 35 Wang, Zhu (bib0062) 2024; 179 Hoogeboom, E., Satorras, V. G., Vignac, C., Welling, M., 2022a. Equivariant diffusion for molecule generation in 3d. Shen, Zeng, Zhu, Wang, Chen (bib0058) 2021; 3 Zhang, Zitnik, Liu (bib0070) 2024; 37 Jin, W., Barzilay, R., Jaakkola, T., 2018. Junction tree variational autoencoder for molecular graph generation. Luo, Yan, Ji (bib0044) 2021 Lu, Xiao (bib0043) 2024; 54 Ramakrishnan, Dral, Rupp, Von Lilienfeld (bib0051) 2014; 1 Gholap, Uddin, Faiyazuddin, Omri, Gowri, Khalid (bib0023) 2024; 178 Ganea, Pattanaik, Coley, Barzilay, Jensen, Green, Jaakkola (bib0018) 2021; 34 Lin, Zhang, Duan, Ou-Yang, Zhao (bib0039) 2023 Li, Gao, Gao (bib0038) 2024 Dong, Wu, Xu, Ouyang (bib0013) 2023; 25 Asperti, Evangelista, Piccolomini (bib0002) 2021; 2 Gebauer, N. W. A., Gastegger, M., Schütt, K. T., 2019. Symmetry-adapted generation of 3D point sets for the targeted discovery of molecules. Adv. Neural Inf. Process. Syst. 32, 10757–10769. Schütt, Kindermans, Sauceda Felix, Chmiela, Tkatchenko, Müller (bib0055) 2017; 30 Yang, Gu, Liu, Gong, Lu, Qiu, Yao, Liu (bib0066) 2025; 12 Pushkaran, Arabi (bib0049) 2024; 57 Guo, Pu, Jiao, Peng, Wang, Yang (bib0026) 2024; 155 Gómez-Bombarelli, Duvenaud, Hernández-Lobato, Aguilera-Iparraguirre, Hirzel, Adams, Aspuru-Guzik (bib0024) 2016; 4 Xu, M., Yu, L., Song, Y., Shi, C., Ermon, S., Tang, J., 2022. Geodiff: a geometric diffusion model for molecular conformation generation. Bengesi, El-Sayed, Sarker, Houkpati, Irungu, Oladunni (bib0005) 2024; 12 Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B., 2022. High-resolution image synthesis with latent diffusion models. 2112.10752. Kollman, Massova, Reyes, Kuhn, Huo, Chong, Lee, Lee, Duan, Wang (bib0034) 2000; 33 Satorras, Hoogeboom, Fuchs, Posner, Welling (bib0053) 2021 van de Meent, Bronson, Wood, Gonzalez, Wiggins (bib0060) 2013 Fang, Zhang, Du, He (bib0016) 2023; 164 Gaulton, Hersey, Nowotka, Bento, Chambers, Mendez, Mutowo, Atkinson, Bellis, Cibrián-Uhalte, Davies, Dedman, Karlsson, Magariños, Overington, Papadatos, Smit, Leach (bib0019) 2016; 45 Genheden, Ryde (bib0022) 2015; 10 Deep reinforcement learning for de novo drug design, 2017. Sci. Adv. 4. Hoogeboom, E., Satorras, V. G., Vignac, C., Welling, M., 2022b. Equivariant diffusion for molecule generation in 3D. Proceedings of the 39th International Conference on Machine Learning, 1628867–8887. Wang, Wolf, Caldwell, Kollman, Case (bib0061) 2004; 25 Wang, W., Bao, J., Zhou, W., Chen, D., Chen, D., Yuan, L., Li, H., 2022. Sindiffusion: Learning a diffusion model from a single natural image. 2211.12445. Chaturvedi, Dhiman, Vishwakarma (bib0009) 2024; 41 Zhang, Zhang, Jin, Zhang, Hu, Shen, Cao, Du, Kang, Deng (bib0069) 2023; 5 Ho, J., Jain, A., Abbeel, P., 2020. Denoising diffusion probabilistic models. 2006.11239. Liu, Song, Na, Wang (bib0040) 2024; 7 Cui (bib0011) 2024; 12 Guimaraes, G. L., Sánchez-Lengeling, B., Farias, P. L. C., Aspuru-Guzik, A., 2017. Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models. Berenger, Tsuda (bib0006) 2021; 13 Jakalian, Jack, Bayly (bib0032) 2002; 23 Brefo-Mensah, Palmer (bib0007) 2012; 4 Hu, Malkin, Jain, Everett, Graikos, Bengio (bib0030) 2023 Ellis, Iqbal, Yoshimatsu (bib0015) 2024; 5 Liu, Ren, Tao, Ren (bib0042) 2024; 171 Schneuing, Harris, Du, Didi, Jamasb, Igashov, Du, Gomes, Blundell, Lio (bib0054) 2024; 4 Brefo-Mensah (10.1016/j.ces.2025.122575_bib0007) 2012; 4 Luo (10.1016/j.ces.2025.122575_bib0044) 2021 Liu (10.1016/j.ces.2025.122575_bib0040) 2024; 7 Li (10.1016/j.ces.2025.122575_bib0037) 2024; 35 Satorras (10.1016/j.ces.2025.122575_bib0053) 2021 Molnár (10.1016/j.ces.2025.122575_bib0045) 2024; 57 Cui (10.1016/j.ces.2025.122575_bib0011) 2024; 12 Lin (10.1016/j.ces.2025.122575_bib0039) 2023 10.1016/j.ces.2025.122575_bib0004 10.1016/j.ces.2025.122575_bib0048 Genheden (10.1016/j.ces.2025.122575_bib0022) 2015; 10 Pushkaran (10.1016/j.ces.2025.122575_bib0049) 2024; 57 Shen (10.1016/j.ces.2025.122575_bib0058) 2021; 3 Hu (10.1016/j.ces.2025.122575_bib0030) 2023 Gaulton (10.1016/j.ces.2025.122575_bib0019) 2016; 45 10.1016/j.ces.2025.122575_bib0052 10.1016/j.ces.2025.122575_bib0012 Segler (10.1016/j.ces.2025.122575_bib0057) 2018; 4 Ganea (10.1016/j.ces.2025.122575_bib0018) 2021; 34 Zhang (10.1016/j.ces.2025.122575_bib0069) 2023; 5 Wang (10.1016/j.ces.2025.122575_bib0062) 2024; 179 Ellis (10.1016/j.ces.2025.122575_bib0015) 2024; 5 Jakalian (10.1016/j.ces.2025.122575_bib0032) 2002; 23 Fu (10.1016/j.ces.2025.122575_bib0017) 2024; 62 Nguyen (10.1016/j.ces.2025.122575_bib0046) 2013; 9 Gómez-Bombarelli (10.1016/j.ces.2025.122575_bib0024) 2016; 4 Lee (10.1016/j.ces.2025.122575_bib0035) 2021; 40 Schütt (10.1016/j.ces.2025.122575_bib0055) 2017; 30 10.1016/j.ces.2025.122575_bib0063 Zhang (10.1016/j.ces.2025.122575_bib0068) 2024; 17 Chinnareddy (10.1016/j.ces.2025.122575_bib0010) 2021 van de Meent (10.1016/j.ces.2025.122575_bib0060) 2013 10.1016/j.ces.2025.122575_bib0020 10.1016/j.ces.2025.122575_bib0064 10.1016/j.ces.2025.122575_bib0021 Berenger (10.1016/j.ces.2025.122575_bib0006) 2021; 13 Ramakrishnan (10.1016/j.ces.2025.122575_bib0051) 2014; 1 Eberhardt (10.1016/j.ces.2025.122575_bib0014) 2021; 61 Xu (10.1016/j.ces.2025.122575_bib0065) 2024; 7 Fang (10.1016/j.ces.2025.122575_bib0016) 2023; 164 Yang (10.1016/j.ces.2025.122575_bib0066) 2025; 12 Chaturvedi (10.1016/j.ces.2025.122575_bib0009) 2024; 41 Kollman (10.1016/j.ces.2025.122575_bib0034) 2000; 33 Wang (10.1016/j.ces.2025.122575_bib0061) 2004; 25 Liu (10.1016/j.ces.2025.122575_bib0042) 2024; 171 Scutari (10.1016/j.ces.2025.122575_bib0056) 2024; 17 10.1016/j.ces.2025.122575_bib0027 Assaf (10.1016/j.ces.2025.122575_bib0003) 2024; 20 Bengesi (10.1016/j.ces.2025.122575_bib0005) 2024; 12 10.1016/j.ces.2025.122575_bib0025 Zhang (10.1016/j.ces.2025.122575_bib0070) 2024; 37 Gholap (10.1016/j.ces.2025.122575_bib0023) 2024; 178 10.1016/j.ces.2025.122575_bib0028 10.1016/j.ces.2025.122575_bib0029 Quan (10.1016/j.ces.2025.122575_bib0050) 2024; 20 10.1016/j.ces.2025.122575_bib0033 10.1016/j.ces.2025.122575_bib0031 Li (10.1016/j.ces.2025.122575_bib0036) 2022; 62 Lu (10.1016/j.ces.2025.122575_bib0043) 2024; 54 Olivecrona (10.1016/j.ces.2025.122575_bib0047) 2017; 9 Li (10.1016/j.ces.2025.122575_bib0038) 2024 Guo (10.1016/j.ces.2025.122575_bib0026) 2024; 155 Zeng (10.1016/j.ces.2025.122575_bib0067) 2022; 4 Schneuing (10.1016/j.ces.2025.122575_bib0054) 2024; 4 Asperti (10.1016/j.ces.2025.122575_bib0002) 2021; 2 Dong (10.1016/j.ces.2025.122575_bib0013) 2023; 25 Trabelsi (10.1016/j.ces.2025.122575_bib0059) 2019; 35 Bugnon (10.1016/j.ces.2025.122575_bib0008) 2024; 52 Liu (10.1016/j.ces.2025.122575_bib0041) 2024 Abbasi (10.1016/j.ces.2025.122575_bib0001) 2024; 150 |
| References_xml | – volume: 4 start-page: 268 year: 2016 end-page: 276 ident: bib0024 article-title: Automatic chemical design using a data-driven continuous representation of molecules publication-title: ACS Cent. Sci. – reference: Deep reinforcement learning for de novo drug design, 2017. Sci. Adv. 4. – reference: Ho, J., Jain, A., Abbeel, P., 2020. Denoising diffusion probabilistic models. 2006.11239. – volume: 20 start-page: 4137 year: 2024 end-page: 4148 ident: bib0050 article-title: From regression to classification: fuzzy multikernel subspace learning for robust prediction and drug screening publication-title: IEEE Trans. Ind. Inf. – volume: 4 start-page: 120 year: 2018 end-page: 131 ident: bib0057 article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks publication-title: ACS Cent. Sci. – volume: 1 year: 2014 ident: bib0051 article-title: Quantum chemistry structures and properties of 134 kilo molecules publication-title: Sci. Data – reference: Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B., 2022. High-resolution image synthesis with latent diffusion models. 2112.10752. – reference: Xu, M., Yu, L., Song, Y., Shi, C., Ermon, S., Tang, J., 2022. Geodiff: a geometric diffusion model for molecular conformation generation. – volume: 5 start-page: 1020 year: 2023 end-page: 1030 ident: bib0069 article-title: Resgen is a pocket-aware 3D molecular generation model based on parallel multiscale modelling publication-title: Nature Mach. Intell. – volume: 155 year: 2024 ident: bib0026 article-title: Online semi-supervised active learning ensemble classification for evolving imbalanced data streams publication-title: Appl. Soft Comput. – volume: 150 year: 2024 ident: bib0001 article-title: Predicting drug activity against cancer through genomic profiles and SMILES publication-title: Artif. Intell. Medicine – volume: 37 start-page: 38559 year: 2024 end-page: 38589 ident: bib0070 article-title: Generalized protein pocket generation with prior-informed flow matching publication-title: Adv. Neural Inf. Process. Syst. – volume: 4 start-page: 24 year: 2012 ident: bib0007 article-title: Mol2chemfig, a tool for rendering chemical structures from molfile or SMILES format to LATEX code publication-title: J. Cheminform. – start-page: 361 year: 2013 end-page: 369 ident: bib0060 article-title: Hierarchically-coupled hidden Markov models for learning kinetic rates from single-molecule data publication-title: Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16–21 June 2013 – volume: 171 year: 2024 ident: bib0042 article-title: Git-mol: a multi-modal large language model for molecular science with graph, image, and text publication-title: Comput. Biol. Medicine – start-page: 57 year: 2021 end-page: 60 ident: bib0010 article-title: Self-attention mechanism in GANs for molecule generation publication-title: 20th IEEE International Conference on Machine Learning and Applications, ICMLA 2021, Pasadena, CA, USA, December 13–16, 2021 – volume: 35 start-page: i269 year: 2019 end-page: i277 ident: bib0059 article-title: Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities publication-title: Bioinformatics – reference: Gebauer, N. W. A., Gastegger, M., Schütt, K. T., 2019. Symmetry-adapted generation of 3D point sets for the targeted discovery of molecules. Adv. Neural Inf. Process. Syst. 32, 10757–10769. – volume: 3 start-page: 334 year: 2021 end-page: 343 ident: bib0058 article-title: Out-of-the-box deep learning prediction of pharmaceutical properties by broadly learned knowledge-based molecular representations publication-title: Nature Mach. Intell. – volume: 2 start-page: 301 year: 2021 ident: bib0002 article-title: A survey on variational autoencoders from a green AI perspective publication-title: SN Comput. Sci. – volume: 25 start-page: 1157 year: 2004 end-page: 1174 ident: bib0061 article-title: Development and testing of a general amber force field publication-title: J. Comput. Chem. – volume: 33 start-page: 889 year: 2000 end-page: 897 ident: bib0034 article-title: Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models publication-title: Acc. Chem. Res. – start-page: 514 year: 2023 end-page: 522 ident: bib0039 article-title: MoVAE: a variational autoencoder for molecular graph generation publication-title: Proceedings of the 2023 SIAM International Conference on Data Mining, SDM 2023, Minneapolis-St. Paul Twin Cities, MN, USA, April 27–29, 2023 – volume: 17 start-page: 24 year: 2024 ident: bib0056 article-title: Entropy and the kullback-leibler divergence for bayesian networks: computational complexity and efficient implementation publication-title: Algorithms – reference: Hoogeboom, E., Satorras, V. G., Vignac, C., Welling, M., 2022b. Equivariant diffusion for molecule generation in 3D. Proceedings of the 39th International Conference on Machine Learning, 1628867–8887. – reference: . – volume: 17 start-page: 125 year: 2024 ident: bib0068 article-title: STBGRN: A traffic prediction model based on spatiotemporal bidirectional gated recurrent units and graph convolutional residual networks publication-title: Int. J. Comput. Intell. Syst. – volume: 178 year: 2024 ident: bib0023 article-title: Advances in artificial intelligence for drug delivery and development: a comprehensive review publication-title: Comput. Biol. Medicine – volume: 34 start-page: 13757 year: 2021 end-page: 13769 ident: bib0018 article-title: Geomol: torsional geometric generation of molecular 3d conformer ensembles publication-title: Adv. Neural Inf. Process. Syst. – volume: 164 year: 2023 ident: bib0016 article-title: ColdDTA: utilizing data augmentation and attention-based feature fusion for drug-target binding affinity prediction publication-title: Comput. Biol. Med. – volume: 7 start-page: 142 year: 2024 end-page: 155 ident: bib0065 article-title: Molecular generation and optimization of molecular properties using a transformer model publication-title: Big Data Min. Anal. – volume: 12 start-page: 57071 year: 2024 end-page: 57081 ident: bib0011 article-title: An attention-based improved u-net neural network model for semantic segmentation of moving objects publication-title: IEEE Access – volume: 54 start-page: 985 year: 2024 end-page: 1002 ident: bib0043 article-title: A novel belief tanimoto coefficient with its applications in multisource information fusion publication-title: Appl. Intell. – start-page: 7192 year: 2021 end-page: 7203 ident: bib0044 article-title: Graphdf: a discrete flow model for molecular graph generation publication-title: International Conference on Machine Learning – volume: 45 start-page: D945 year: 2016 end-page: D954 ident: bib0019 article-title: The ChEMBL database in 2017 publication-title: Nucleic Acids Res. – volume: 61 start-page: 3891 year: 2021 end-page: 3898 ident: bib0014 article-title: Autodock vina 1.2. 0: new docking methods, expanded force field, and python bindings publication-title: J. Chem. Inf. Model. – volume: 5 start-page: 634 year: 2024 end-page: 646 ident: bib0015 article-title: Deep q-learning-based molecular graph generation for chemical structure prediction from infrared spectra publication-title: IEEE Trans. Artif. Intell. – volume: 52 start-page: W324 year: 2024 end-page: W332 ident: bib0008 article-title: Swissdock 2024: major enhancements for small-molecule docking with attracting cavities and autodock vina publication-title: Nucleic Acids Res. – reference: Huang, L., Zhang, H., Xu, T., Wong, K.-c., 2022. Mdm: molecular diffusion model for 3d molecule generation. – volume: 23 start-page: 1623 year: 2002 end-page: 1641 ident: bib0032 article-title: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. parameterization and validation publication-title: J. Comput. Chem. – volume: 4 start-page: 1004 year: 2022 end-page: 1016 ident: bib0067 article-title: Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework publication-title: Nat. Mac. Intell. – volume: 40 year: 2021 ident: bib0035 article-title: Generative adversarial networks for de novo molecular design publication-title: Mol. Inform. – year: 2021 ident: bib0053 article-title: E(n) equivariant normalizing flows publication-title: Neural Information Processing Systems – volume: 12 start-page: 69812 year: 2024 end-page: 69837 ident: bib0005 article-title: Advancements in generative AI: a comprehensive review of gans, gpt, autoencoders, diffusion model, and transformers publication-title: IEEE Access – volume: 62 start-page: 1 year: 2024 end-page: 13 ident: bib0017 article-title: Do we need learnable classifiers? a hyperspectral image classification algorithm based on attention-enhanced resblock-in-resblock and ETF classifier publication-title: IEEE Trans. Geosci. Remote. Sens. – start-page: 13528 year: 2023 end-page: 13549 ident: bib0030 article-title: GFlowNet-EM for learning compositional latent variable models publication-title: Proceedings of the 40th International Conference on Machine Learning – volume: 179 year: 2024 ident: bib0062 article-title: Multi-objective molecular generation via clustered pareto-based reinforcement learning publication-title: Neural Netw. – volume: 7 year: 2024 ident: bib0040 article-title: PED: A novel predictor-encoder-decoder model for alzheimer drug molecular generation publication-title: Frontiers Artif. Intell. – volume: 9 start-page: 2020 year: 2013 end-page: 2034 ident: bib0046 article-title: Improved generalized born solvent model parameters for protein simulations publication-title: J. Chem. Theory Comput. – reference: Wang, W., Bao, J., Zhou, W., Chen, D., Chen, D., Yuan, L., Li, H., 2022. Sindiffusion: Learning a diffusion model from a single natural image. 2211.12445. – volume: 57 start-page: 42 year: 2024 ident: bib0045 article-title: Variational autoencoders for 3D data processing publication-title: Artif. Intell. Rev. – reference: Genetic algorithm-based receptor ligand: A genetic algorithm-guided generative model to boost the novelty and drug-likeness of molecules in a sampling chemical space. 2024. J. Chem. Inf. Model. 64 (4), 1213–1228. – reference: Guimaraes, G. L., Sánchez-Lengeling, B., Farias, P. L. C., Aspuru-Guzik, A., 2017. Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models. – volume: 35 start-page: 4852 year: 2024 end-page: 4861 ident: bib0037 article-title: Geometry-based molecular generation with deep constrained variational autoencoder publication-title: IEEE Trans. Neural Networks Learn. Syst. – year: 2024 ident: bib0041 article-title: Graph diffusion transformers for multi-conditional molecular generation publication-title: The Thirty-Eighth Annual Conference on Neural Information Processing Systems – volume: 41 year: 2024 ident: bib0009 article-title: Fight detection with spatial and channel wise attention-based convLSTM model publication-title: Expert Syst. J. Knowl. Eng. – reference: Hoogeboom, E., Satorras, V. G., Vignac, C., Welling, M., 2022a. Equivariant diffusion for molecule generation in 3d. – reference: Prasad, V., Chen, Z., Vilanova, A., Pfister, H., Pezzotti, N., Strobelt, H., 2023. Unraveling the temporal dynamics of the unet in diffusion models. 2312.14965. – reference: . – volume: 10 start-page: 449 year: 2015 end-page: 461 ident: bib0022 article-title: The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities publication-title: Expert Opin. Drug Discov. – volume: 62 start-page: 4873 year: 2022 end-page: 4887 ident: bib0036 article-title: Correlated RNN framework to quickly generate molecules with desired properties for energetic materials in the low data regime publication-title: J. Chem. Inf. Model. – volume: 12 year: 2025 ident: bib0066 article-title: DiffMC-gen: a dual denoising diffusion model for multi-conditional molecular generation publication-title: Adv. Sci. – volume: 57 start-page: 86 year: 2024 ident: bib0049 article-title: From understanding diseases to drug design: can artificial intelligence bridge the gap? publication-title: Artif. Intell. Rev. – volume: 9 year: 2017 ident: bib0047 article-title: Molecular de-novo design through deep reinforcement learning publication-title: J. Cheminform. – volume: 20 year: 2024 ident: bib0003 article-title: PDB2DAT: automating LAMMPS data file generation from PDB molecular systems using python, rdkit, and pysimm publication-title: Softw. Impacts – reference: Axelrod, S., Gómez-Bombarelli, R., 2020. Geom: energy-annotated molecular conformations for property prediction and molecular generation. – volume: 13 start-page: 1 year: 2021 end-page: 10 ident: bib0006 article-title: Molecular generation by fast assembly of (deep)SMILES fragments publication-title: J. Cheminform. – volume: 25 year: 2023 ident: bib0013 article-title: FormulationAI: a novel web-based platform for drug formulation design driven by artificial intelligence publication-title: Briefings Bioinform. – year: 2024 ident: bib0038 article-title: Point Cloud Compression - Technologies and Standardization – volume: 4 start-page: 899 year: 2024 end-page: 909 ident: bib0054 article-title: Structure-based drug design with equivariant diffusion models publication-title: Nature Comput. Sci. – reference: Jin, W., Barzilay, R., Jaakkola, T., 2018. Junction tree variational autoencoder for molecular graph generation. – volume: 30 start-page: 809 year: 2017 end-page: 919 ident: bib0055 article-title: SCHNet: a continuous-filter convolutional neural network for modeling quantum interactions publication-title: Adv. Neural Inf. Process. Syst. – volume: 45 start-page: D945 issue: D1 year: 2016 ident: 10.1016/j.ces.2025.122575_bib0019 article-title: The ChEMBL database in 2017 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1074 – volume: 5 start-page: 1020 issue: 9 year: 2023 ident: 10.1016/j.ces.2025.122575_bib0069 article-title: Resgen is a pocket-aware 3D molecular generation model based on parallel multiscale modelling publication-title: Nature Mach. Intell. doi: 10.1038/s42256-023-00712-7 – volume: 35 start-page: 4852 issue: 4 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0037 article-title: Geometry-based molecular generation with deep constrained variational autoencoder publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2022.3147790 – volume: 3 start-page: 334 issue: 4 year: 2021 ident: 10.1016/j.ces.2025.122575_bib0058 article-title: Out-of-the-box deep learning prediction of pharmaceutical properties by broadly learned knowledge-based molecular representations publication-title: Nature Mach. Intell. doi: 10.1038/s42256-021-00301-6 – ident: 10.1016/j.ces.2025.122575_bib0028 – year: 2021 ident: 10.1016/j.ces.2025.122575_bib0053 article-title: E(n) equivariant normalizing flows – volume: 12 issue: 22 year: 2025 ident: 10.1016/j.ces.2025.122575_bib0066 article-title: DiffMC-gen: a dual denoising diffusion model for multi-conditional molecular generation publication-title: Adv. Sci. doi: 10.1002/advs.202417726 – volume: 164 year: 2023 ident: 10.1016/j.ces.2025.122575_bib0016 article-title: ColdDTA: utilizing data augmentation and attention-based feature fusion for drug-target binding affinity prediction publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.107372 – volume: 10 start-page: 449 issue: 5 year: 2015 ident: 10.1016/j.ces.2025.122575_bib0022 article-title: The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities publication-title: Expert Opin. Drug Discov. doi: 10.1517/17460441.2015.1032936 – volume: 34 start-page: 13757 year: 2021 ident: 10.1016/j.ces.2025.122575_bib0018 article-title: Geomol: torsional geometric generation of molecular 3d conformer ensembles publication-title: Adv. Neural Inf. Process. Syst. – volume: 150 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0001 article-title: Predicting drug activity against cancer through genomic profiles and SMILES publication-title: Artif. Intell. Medicine doi: 10.1016/j.artmed.2024.102820 – volume: 62 start-page: 1 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0017 article-title: Do we need learnable classifiers? a hyperspectral image classification algorithm based on attention-enhanced resblock-in-resblock and ETF classifier publication-title: IEEE Trans. Geosci. Remote. Sens. – ident: 10.1016/j.ces.2025.122575_bib0063 – volume: 20 start-page: 4137 issue: 3 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0050 article-title: From regression to classification: fuzzy multikernel subspace learning for robust prediction and drug screening publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2023.3321332 – volume: 25 issue: 1 year: 2023 ident: 10.1016/j.ces.2025.122575_bib0013 article-title: FormulationAI: a novel web-based platform for drug formulation design driven by artificial intelligence publication-title: Briefings Bioinform. doi: 10.1093/bib/bbad419 – year: 2024 ident: 10.1016/j.ces.2025.122575_bib0041 article-title: Graph diffusion transformers for multi-conditional molecular generation – volume: 35 start-page: i269 issue: 14 year: 2019 ident: 10.1016/j.ces.2025.122575_bib0059 article-title: Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz339 – volume: 17 start-page: 125 issue: 1 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0068 article-title: STBGRN: A traffic prediction model based on spatiotemporal bidirectional gated recurrent units and graph convolutional residual networks publication-title: Int. J. Comput. Intell. Syst. doi: 10.1007/s44196-024-00531-7 – start-page: 57 year: 2021 ident: 10.1016/j.ces.2025.122575_bib0010 article-title: Self-attention mechanism in GANs for molecule generation – volume: 9 start-page: 2020 issue: 4 year: 2013 ident: 10.1016/j.ces.2025.122575_bib0046 article-title: Improved generalized born solvent model parameters for protein simulations publication-title: J. Chem. Theory Comput. doi: 10.1021/ct3010485 – ident: 10.1016/j.ces.2025.122575_bib0052 doi: 10.1109/CVPR52688.2022.01042 – volume: 179 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0062 article-title: Multi-objective molecular generation via clustered pareto-based reinforcement learning publication-title: Neural Netw. doi: 10.1016/j.neunet.2024.106596 – volume: 2 start-page: 301 issue: 4 year: 2021 ident: 10.1016/j.ces.2025.122575_bib0002 article-title: A survey on variational autoencoders from a green AI perspective publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00702-9 – ident: 10.1016/j.ces.2025.122575_bib0029 – start-page: 13528 year: 2023 ident: 10.1016/j.ces.2025.122575_bib0030 article-title: GFlowNet-EM for learning compositional latent variable models – volume: 52 start-page: W324 issue: W1 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0008 article-title: Swissdock 2024: major enhancements for small-molecule docking with attracting cavities and autodock vina publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkae300 – ident: 10.1016/j.ces.2025.122575_bib0025 – volume: 30 start-page: 809 year: 2017 ident: 10.1016/j.ces.2025.122575_bib0055 article-title: SCHNet: a continuous-filter convolutional neural network for modeling quantum interactions publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.ces.2025.122575_bib0004 – ident: 10.1016/j.ces.2025.122575_bib0031 – ident: 10.1016/j.ces.2025.122575_bib0021 – volume: 61 start-page: 3891 issue: 8 year: 2021 ident: 10.1016/j.ces.2025.122575_bib0014 article-title: Autodock vina 1.2. 0: new docking methods, expanded force field, and python bindings publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c00203 – volume: 1 year: 2014 ident: 10.1016/j.ces.2025.122575_bib0051 article-title: Quantum chemistry structures and properties of 134 kilo molecules publication-title: Sci. Data doi: 10.1038/sdata.2014.22 – volume: 4 start-page: 24 year: 2012 ident: 10.1016/j.ces.2025.122575_bib0007 article-title: Mol2chemfig, a tool for rendering chemical structures from molfile or SMILES format to LATEX code publication-title: J. Cheminform. doi: 10.1186/1758-2946-4-24 – start-page: 361 year: 2013 ident: 10.1016/j.ces.2025.122575_bib0060 article-title: Hierarchically-coupled hidden Markov models for learning kinetic rates from single-molecule data – ident: 10.1016/j.ces.2025.122575_bib0064 – volume: 62 start-page: 4873 issue: 20 year: 2022 ident: 10.1016/j.ces.2025.122575_bib0036 article-title: Correlated RNN framework to quickly generate molecules with desired properties for energetic materials in the low data regime publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.2c00997 – volume: 7 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0040 article-title: PED: A novel predictor-encoder-decoder model for alzheimer drug molecular generation publication-title: Frontiers Artif. Intell. doi: 10.3389/frai.2024.1374148 – volume: 7 start-page: 142 issue: 1 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0065 article-title: Molecular generation and optimization of molecular properties using a transformer model publication-title: Big Data Min. Anal. doi: 10.26599/BDMA.2023.9020009 – volume: 178 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0023 article-title: Advances in artificial intelligence for drug delivery and development: a comprehensive review publication-title: Comput. Biol. Medicine doi: 10.1016/j.compbiomed.2024.108702 – volume: 5 start-page: 634 issue: 2 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0015 article-title: Deep q-learning-based molecular graph generation for chemical structure prediction from infrared spectra publication-title: IEEE Trans. Artif. Intell. doi: 10.1109/TAI.2023.3287947 – volume: 4 start-page: 1004 issue: 11 year: 2022 ident: 10.1016/j.ces.2025.122575_bib0067 article-title: Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework publication-title: Nat. Mac. Intell. doi: 10.1038/s42256-022-00557-6 – volume: 41 issue: 1 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0009 article-title: Fight detection with spatial and channel wise attention-based convLSTM model publication-title: Expert Syst. J. Knowl. Eng. – ident: 10.1016/j.ces.2025.122575_bib0012 doi: 10.1126/sciadv.aap7885 – volume: 4 start-page: 120 issue: 1 year: 2018 ident: 10.1016/j.ces.2025.122575_bib0057 article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00512 – volume: 9 year: 2017 ident: 10.1016/j.ces.2025.122575_bib0047 article-title: Molecular de-novo design through deep reinforcement learning publication-title: J. Cheminform. doi: 10.1186/s13321-017-0235-x – volume: 13 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.ces.2025.122575_bib0006 article-title: Molecular generation by fast assembly of (deep)SMILES fragments publication-title: J. Cheminform. doi: 10.1186/s13321-021-00566-4 – start-page: 514 year: 2023 ident: 10.1016/j.ces.2025.122575_bib0039 article-title: MoVAE: a variational autoencoder for molecular graph generation – start-page: 7192 year: 2021 ident: 10.1016/j.ces.2025.122575_bib0044 article-title: Graphdf: a discrete flow model for molecular graph generation – volume: 33 start-page: 889 issue: 12 year: 2000 ident: 10.1016/j.ces.2025.122575_bib0034 article-title: Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models publication-title: Acc. Chem. Res. doi: 10.1021/ar000033j – volume: 37 start-page: 38559 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0070 article-title: Generalized protein pocket generation with prior-informed flow matching publication-title: Adv. Neural Inf. Process. Syst. – volume: 171 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0042 article-title: Git-mol: a multi-modal large language model for molecular science with graph, image, and text publication-title: Comput. Biol. Medicine doi: 10.1016/j.compbiomed.2024.108073 – ident: 10.1016/j.ces.2025.122575_bib0020 doi: 10.1021/acs.jcim.3c01964 – volume: 25 start-page: 1157 issue: 9 year: 2004 ident: 10.1016/j.ces.2025.122575_bib0061 article-title: Development and testing of a general amber force field publication-title: J. Comput. Chem. doi: 10.1002/jcc.20035 – volume: 57 start-page: 86 issue: 4 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0049 article-title: From understanding diseases to drug design: can artificial intelligence bridge the gap? publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10714-5 – volume: 17 start-page: 24 issue: 1 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0056 article-title: Entropy and the kullback-leibler divergence for bayesian networks: computational complexity and efficient implementation publication-title: Algorithms doi: 10.3390/a17010024 – volume: 23 start-page: 1623 issue: 16 year: 2002 ident: 10.1016/j.ces.2025.122575_bib0032 article-title: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. parameterization and validation publication-title: J. Comput. Chem. doi: 10.1002/jcc.10128 – volume: 155 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0026 article-title: Online semi-supervised active learning ensemble classification for evolving imbalanced data streams publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111452 – volume: 20 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0003 article-title: PDB2DAT: automating LAMMPS data file generation from PDB molecular systems using python, rdkit, and pysimm publication-title: Softw. Impacts doi: 10.1016/j.simpa.2024.100656 – year: 2024 ident: 10.1016/j.ces.2025.122575_bib0038 – volume: 4 start-page: 899 issue: 12 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0054 article-title: Structure-based drug design with equivariant diffusion models publication-title: Nature Comput. Sci. doi: 10.1038/s43588-024-00737-x – volume: 54 start-page: 985 issue: 1 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0043 article-title: A novel belief tanimoto coefficient with its applications in multisource information fusion publication-title: Appl. Intell. doi: 10.1007/s10489-023-05217-9 – ident: 10.1016/j.ces.2025.122575_bib0048 – volume: 12 start-page: 69812 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0005 article-title: Advancements in generative AI: a comprehensive review of gans, gpt, autoencoders, diffusion model, and transformers publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3397775 – ident: 10.1016/j.ces.2025.122575_bib0027 – ident: 10.1016/j.ces.2025.122575_bib0033 – volume: 40 issue: 10 year: 2021 ident: 10.1016/j.ces.2025.122575_bib0035 article-title: Generative adversarial networks for de novo molecular design publication-title: Mol. Inform. doi: 10.1002/minf.202100045 – volume: 12 start-page: 57071 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0011 article-title: An attention-based improved u-net neural network model for semantic segmentation of moving objects publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3391249 – volume: 57 start-page: 42 issue: 2 year: 2024 ident: 10.1016/j.ces.2025.122575_bib0045 article-title: Variational autoencoders for 3D data processing publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10687-x – volume: 4 start-page: 268 year: 2016 ident: 10.1016/j.ces.2025.122575_bib0024 article-title: Automatic chemical design using a data-driven continuous representation of molecules publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00572 |
| SSID | ssj0007710 |
| Score | 2.48727 |
| Snippet | •A novel RL-inspired framework combines VAE and latent-space diffusion for molecule generation.•Affinity and similarity constraints guide generation toward... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 122575 |
| SubjectTerms | Affinity constraints Genetic algorithm optimization Latent space generation Molecular generation |
| Title | Reinforcement learning-inspired molecular generation with latent space diffusion and genetic algorithm optimization under affinity and similarity constraints |
| URI | https://dx.doi.org/10.1016/j.ces.2025.122575 |
| Volume | 320 |
| WOSCitedRecordID | wos001578765800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect issn: 0009-2509 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007710 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Pb9MwFMCtsnGAw8RfMQaTD5yoUtWJE8fHCQ2NCU1oGtBb5NjOlKpNp66Z9mX4EnxCnu3YyTYmsQOXKHVtJ-r79fn52X4PoQ8q1prmikQiJTKiAi5C0TwSGdj3mpRE2C3_P76yk5N8NuPfRqPf_izM1YI1TX59zS_-q6ihDIRtjs4-QNyhUyiAexA6XEHscP0nwZ9qGwxVWr-fzwpxHtWNWVMH83LpE-Ka7Mm6A8C6Yxdgd0IT0DHwZzeZU9pLv1nZVLWhXRfnqzXUXY5XoGuW3SFOm0x3PRZVVTfGqrfOePgWHmI-SmODmlQULmpUCIzgYxXoPibiuBuRewdr7balBIZ_tnY9pZ4PuD5yXtwZFM3bvrTtfOGnuinFaujfiK1_w53wDDqbR2Co8aHOTuLpQOsSUEou_8qdAcH5JuYTULoT6D2d9HVvBt--NSiGrYp-F9y8gC4K00XhuniEtmOWchgMtg--HM6Ow_jPGJn6_H3mvf1aut1VeOs9_m4NDSycs2dop5ua4AOH1HM00s0L9HQQsPIl-nUDLnwHLhzgwj1c2MCFHVzYwoUDXBhQwR1cOMCFh3BhCxf2cNkWPVx4ANcr9P3z4dmno6hL8BFJMKs3USJVJqtMZVlZKcIUh9tSx4JUXIhSU5FkkvEqnjJFclnGZQymFJWZoirJqEiT12irWTX6DcJMlGZunIDpwWhVqZymFKbKJtADlzxRu-ij_6GLCxfHpbhXtLuIelEUHfbOwCwAq_ubvX3IM_bQk572d2hrs271e_RYXm3qy_V-x9QfkuO0OQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+learning-inspired+molecular+generation+with+latent+space+diffusion+and+genetic+algorithm+optimization+under+affinity+and+similarity+constraints&rft.jtitle=Chemical+engineering+science&rft.au=Bai%2C+Can&rft.au=Wu%2C+Zijian&rft.au=Han%2C+Xianjun&rft.au=Huang%2C+Renbao&rft.date=2026-01-15&rft.issn=0009-2509&rft.volume=320&rft.spage=122575&rft_id=info:doi/10.1016%2Fj.ces.2025.122575&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ces_2025_122575 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |